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Abstract

Failure Detection is valuable for system management, replication, load balancing, and other
distributed services. To date, Failure Detection Services scale badly in the number of members
that are being monitored. This paper describes a new protocol based on gossiping that does
scale well and provides timely detection. We analyze the protocol, and then extend it to discover
and leverage the underlying network topology for much improved resource utilization. We then
combine it with another protocol, based on broadcast, that is used to handle partition failures.

1 Introduction

Accurate failure detection in asynchronous (non-realtime) distributed systems is notoriously dif-
ficult. In such a system, a process may appear failed because it is slow, or because the network
connection to it is slow or even partitioned. Because of this, several impossibility results have been

found [7, 9].
In systems that have to make minimal progress even in the face of process failures, it is still

important to try to determine if a process is reachable or not. False detections are allowable as
long as they are reasonable with respect to performance. That is, it is acceptable to report an

exceedingly slow process, or a badly connected one, as failed. Unfortunately, when scaled up to
more than several dozens of members, many failure detectors are either unreasonably slow, or make

too many false detections. Although we are not aware of any publications about this, we know this
from experiences with our own Isis, Horus, and Ensemble systems (see, for example, [13, 14, 15]),

as well as from experiences with Transis [2].
In this paper, we present a failure detector based on random gossiping that has, informally, the

following properties:

1. the probability that a member is falsely reported as having failed is independent of the number
of processes.

2. the algorithm is resilient against both message loss (or rather, message delivery timing failures)
and process failures, in that a small percentage of lost (or late) messages or small percentage

of failed members does not lead to false detections.
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organizations or the U.S. Government.
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3. if local clock drift is negligible, the algorithm detects all failures or unreachabilities accurately
with known probability of mistake.

4. the algorithm scales in detection time, in that the detection time increases O(n logn) with

the number of processes.

5. the algorithm scales in network load, in that the required bandwidth goes up at most linearly

with the number of processes. For large networks, the bandwidth used in the subnets is
approximately constant.

The protocol makes minimal assumptions about the network. There is no bound on message
delivery time, and indeed messages may be lost altogether. We do assume that most message are
delivered within some predetermined, reasonable time. Processes may crash or become unreachable.

We assume a fail-stop rather than a Byzantine failure model, which basically means that processes
do not lie about what they know. (The actual implementation uses checksums and other sanity

checks on messages to approximate the fail-stop model as closely as possible.) We also assume
that the clock rate on each host is close to accurate (low drift), but do not assume that they are

synchronized. The basic version of the failure detector will place a limit on how many hosts may
become unreachable. The final version will drop this limitation, and will tolerate arbitrary crashes

and network partitions.
In our protocol, each host in the network runs a failure detector process that executes the

protocol and offers continuous process failure and recovery reports to interested clients. Output
from one of the failure detector processes in our department is used to generate and automatically
update the web page http://www.cs.cornell.edu/home/rvr/mbrship.html, which gives an overview

of our department’s network status, and a log of recent activity on it. We view the failure detector
as a middleware service. Other middleware services, such as system management, replication, load

balancing, group communication services, and various consensus algorithms that rely on reasonably
accurate failure detection (such as pioneered in [6]), can use the failure detection service to optimize

their performance in the face of failures.
Approaches based on hierarchical, tree-based protocols have the potential to be more efficient

than the ones described in this paper. However, we are not aware of publications describing any
such protocols. Having tried to build one, we believe this is because tree-based failure detector

protocols require complex agreement protocols to construct the tree and repair it as failures occur.
Gossip protocols do not have this problem, and in fact one of their important advantages is their
simplicity.

In this paper, we first present a simple protocol that assumes a uniform network topology, as
well as a bounded number of host crashes. We analyze this protocol in Section 3. In Section 4, we

extend the protocol to discover some information about the actual network topology and to use
this information to optimize network resources. Section 5 presents another protocol that, when

combined with gossiping, deals with arbitrary host failures and partitions.

2 Basic Protocol

The basic protocol is simple. It is based on gossiping as pioneered in the Clearinghouse project

[8, 12]. Long before that, Baker and Shostak [4] describe a gossip protocol, using ladies and
telephones in the absence of the widespread availability of computers and networks. In gossip

protocols, a member forwards new information to randomly chosen members. Gossip combines
much of the efficiency of hierarchical dissemination with much of the robustness of flooding protocols
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(in which a member sends new information to all of its neighbors). In the case of Clearinghouse
directories, it was used to resolve inconsistencies. Our protocol gossips to figure out whom else is

still gossiping.
Each member maintains a list with for each known member its address and an integer which

is going to be used for failure detection. We call the integer the heartbeat counter. Every Tgossip

seconds, each member increments its own heartbeat counter, and selects one other member at
random to send its list to. Upon receipt of such a gossip message, a member merges the list in the

message with its own list, and adopts the maximum heartbeat counter for each member.
Each member occasionally broadcasts its list in order to be located initially and also to recover

from network partitions (see Section 5). In the absence of a broadcast capability, the network could
be equiped with a few gossip servers, that differ from other members only in that they are hosted

at well known addresses, and placed so that they are unlikely to be unavailable due to network
partitioning.

Each member also maintains, for each other member in the list, the last time that its corre-
sponding heartbeat counter has increased.1 If the heartbeat counter has not increased for more
than Tfail seconds, then the member is considered failed. Tfail is selected so that the probability

that anybody makes an erroneous failure detection is less than some small threshold Pmistake.
After a member is considered faulty, it cannot immediately be forgotten about. The problem

is that not all members will detect failures at the same time, and thus a member A may receive a
gossip about another member B that A has previously detected as faulty. If A had forgotten about

B, it would reinstall B in its membership list, since A would think that it was seeing B’s heartbeat
for the first time. A would continue to gossip this information on to other members, and, in effect,

the faulty member B never quite disappears from the membership.
Therefore, the failure detector does not remove a member from its membership list until after

Tcleanup seconds (Tcleanup ≥ Tfail). Tcleanup is chosen so that the probability that a gossip is received
about this member, after it has been detected as faulty, is less than some small threshold Pcleanup.
We can make Pcleanup equal to Pfail by setting Tcleanup to 2 × Tfail.

To see why, let B be some failed member, and consider another member A that heard B’s last
heartbeat at time t. With probability Pfail, every other member will have heard B’s last heartbeat

by t+Tfail, and so every process will fail B by time t+2×Tfail. Thus, if we set Tcleanup to 2×Tfail,
then with probability Pfail, no failed member will ever reappear on A’s list of members once that

member has been removed.
Note that this protocol only detects hosts that become entirely unreachable. It does not detect

link failures between hosts. In particular, if hosts A and B cannot talk to each other, but they
can both communicate with some other host C, A will not suspect B nor the other way around.

When these kinds of partial connectivity occur commonly throughout the systems, the protocol
may cycle through adding and removing hosts. However, the dynamic Internet routing protocols
should eventually take care of the problem.

In Section 4 we will extend this protocol to scale well in the Internet. This requires that part of
the network topology is discovered, which we accomplish through gossiping as well. First, we will

analyze the basic protocol to come up with a reasonable value for Tfail.

1It is possible that the heartbeat counter overflows, so it is necessary to use a window such as used in sliding
window protocols.
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3 Analysis

In order to find suitable parameters for the basic protocol, in particular the rate of gossiping and

Tfail, it is necessary to understand how these parameters affect the probability of a false detection.
In this section, we analyze the protocol for a system in which the population of processes is static
(that is, no new processes are added), and known to all members. The discovery of new members

only poses a problem when a large number of new members join at once, since that would lengthen
the time it takes for the dissemination of information, and would potentially cause processes that

have not yet learned of the enlarged membership to suspect other processes falsely. Section 5
discusses the behavior of the system in situations with sharp changes in membership.

The probabilities involved in gossiping can be calculated using epidemic theory (see, for example,
[3, 8, 10, 5]). A typical way of doing this is using stochastic analysis based on the assumption that

the execution is broken up into synchronous rounds, during which every process gossips once.
A member that has new information is called infected. For analysis, initially only one member

is infected, and this is the only source of infection in the system, even though in reality new
information may be introduced at multiple processes at once. At each round the probability that a
certain number of members is infected given the number of already infected members is calculated.

This is done for each number of infected members. Allowing all members to gossip in each round
makes this analysis stochastically very complex, and usually approximations and/or upper bounds

are used instead (for example, see [5]).
This section suggests a simplified analysis that we believe may be more accurate to boot. In

practice, the protocols are not run in rounds. Each member gossips at regular intervals, but the
intervals are not synchronized. The time for propagation of a gossip message is typically much

shorter than the length of these intervals. We therefore define a different concept of round, in
which only one (not necessarily infected) member is gossiping. The member is chosen at random

and chooses one other member to gossip to at random. Thus, in a round, the number of infected
members can grow by at most one, which is what simplifies the analysis.

Let n be the total number of members, ki be the number of infected members in round i, and
Parrival be the probability that a gossip successfully arrives at a chosen member before the start
of the next round. (Actually, the probability can be chosen less conservatively, since all that is

required is that the gossip arrives at the member before it itself gossips next.) The probability
Parrival is independent for each message. Note that if the system behaves better than Parrival (for

instance if no messages are dropped), then the protocol becomes more efficient. Initially, only one
member p is infected. We assume that no more than f members fail.

For simplicity, we assume, conservatively, that all f members have failed at the beginning of the
protocol. They are gossiped to, but they cannot pass gossips on. This way the number of infected

members cannot shrink. We also assume that the initially infected member does not fail.2 If k out
of n members are infected already, then the probability that the number of infected members is

incremented in a round is

Pinc(k) = (k/n) ×
n − f − k

n − 1
× Parrival (1)

Therefore, the probability that the number of infected members in round i+1 is k (0 < k ≤ n−f)
is

2We believe this assumption will not affect the outcome by more than one round. For it to be more than one, the
initially infected member would have to gossip, then crash, and the next infected member would have to do the same
thing again. This is a very unlikely scenario.
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Figure 1: This graph depicts the failure detection time for three different mistake probabilities
(p = Pmistake). The bandwidth per member is 250 bytes per second, and one member has failed.

The protocol has O(n logn) behavior, which appears as being approximately linear in the graph.

P (ki+1 = k) = Pinc(k − 1) × P (ki = k − 1) + (1 − Pinc(k))× P (ki = k) (2)

(with P (ki = 0) = 0, P (k0 = 1) = 1 and P (k0 = k) = 0 for k 6= 1).
Then, the probability that any process does not get infected by p after r rounds is Pmistake(p, r) =

1−P (kr = n− f). To find Pmistake(r), which is the probability that any process is not infected by
any other process, we need to range over all members. For any two processes p and q, Pmistake(p, r)

and Pmistake(q, r) are not independent. We will bound Pmistake(r) using the Inclusion-Exclusion
Principle [11]: Pr(∪iAi) ≤

∑

i Pr(Ai). Using this principle, we can bound Pmistake(r) as follows:

Pmistake(r) ≤ (n − f)Pmistake(p, r) = (n − f)(1− P (kr = n − f)) (3)

From this we can calculate how many rounds are needed to achieve a certain quality of detection.
(The calculation is best done not recursively, such as suggested here, but iteratively starting at the

first round. Even then, it is costly. In Appendix A we present an alternative analysis that works
well if the number of members is at least about 50, and that can be calculated more easily.)

Next, we calculate how often members should gossip so that worst-case bandwidth use is linear
in the number of members. Say that each member is allowed to send B bytes/second, and that 8
bytes per member are necessary in each gossip message (6 bytes for the address, and 2 bytes for

the heartbeat counter). From this, the interval between gossips, Tgossip has to be 8n/B seconds. If
n is small and B is large, then we may wish to place a minimum on Tgossip, since we assume that

the common communication delay is less than Tgossip. (In the case of a pure switched network, as
opposed to a broadcast-based network such as an Ethernet, the bandwidth per link will only be

2B bytes per second, independent of the number of members. Still, the total load on the switches
increases with the number of members.) Note that members will receive, on average, B bytes/second

worth of gossip information as a result, limiting the incurred overhead of the protocol.
We are interested in the time that it takes to reach a certain low probability p of a false failure

detection being made. By iterating Pmistake, we can find how many rounds this takes, and multiply
this by Tgossip. We have plotted this for different values of n, Pmistake, and f = 1, in Figure

5



20

40

60

80

100

120

140

160

180

200

1e-10 1e-09 1e-08 1e-07 1e-06 1e-05 0.0001 0.001 0.01 0.1

de
te

ct
io

n 
tim

e 
(s

ec
on

ds
)

probability of mistake

#members = 150
#members = 100
#members =   50

Figure 2: This graph shows the cost of quality of detection. Note that the x scale is logarithmic,
thus the cost for better quality is excellent.

1. The near-linearity in n can be confirmed visually. In actuality, the growth of the curve is
O(n logn), because the number of rounds increases logarithmically with the number of members

and the spacing between rounds linearly.
Readers familiar with other presentations on gossip protocols may be disappointed, and expected

to see much better than linear degradation in detection time. The reason for this is that much
other gossip work either disseminated information that did not grow linearly with the number of
members, or were only interested in message complexity, not in the bandwidth taken up by the

messages. In our work, we decided to slow gossiping down linearly with the number of members
because of the growing message size, which introduces a linear factor into our detection time.

There is a trade-off between minimizing the probability of making a false detection, and the
failure detection time. In Figure 2 we show that this trade-off is satisfactory, in that little extra

detection time is necessary for better quality.
Next, we look into the resilience of the protocol against process failures. Obviously, if many

members fail, many gossips will be wasted, and it will take longer to distribute new heartbeat
counters. We show this effect in Figure 3. Notice that even if we assume that half of the members

can fail, it takes less than twice as long to detect a failure than if we had assumed that no members
would fail. This is because if half of the processes fail, then half of the gossips will be wasted, which
is roughly equivalent to gossiping half as often. In general, it is easy to show that allowing for the

failure of a fraction p of the members will increase the detection time by approximately 1/(1− p).
Thus, the detection time begins to rise rapidly as p becomes larger than one half (note that the

y-axes in this graph is logarithmic).
Therefore, in case of a network partition in which a small subgroup of members can get par-

titioned from a large group, the basic gossip algorithm does not perform satisfactorily (from the
viewpoint of the small subgroup). For any reasonable detection time, the members of the subgroup

will presume each other faulty because they are unlikely to gossip to each other. Section 5 presents
a solution for this.
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Figure 3: This graph shows, for three different probabilities of message loss q, the effect of failed
members on detection time. It can be observed that the algorithm is quite resilient to process

failures up until about half of the members have failed.
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Figure 4: This graph shows the effect of message loss on detection time (Pmistake = 10−6). It can

be observed that the algorithm is quite resilient to message loss.

Finally, we investigate the impact of message loss. In Figure 4 we show for three different group

sizes the effect of message loss on failure detection time. Again, we see satisfactory resilience. Even
if we assume that 10% of the gossips get lost, we pay only a small price in detection time.

4 Multi-level Gossiping

In a large system, the basic protocol has an inefficiency that can be corrected fairly easily, with
an important improvement in scalability. The problem is that members choose other members at

random, without concern to the topology of the network through which they are connected. As a
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result, the bridges between the physical networks are overloaded with much redundant information.
In this section, we will show how members can correct this by automatically detecting the bounds

of Internet domains and subnets, and reducing gossips that cross these bounds.
Before we present our modified gossiping protocol, we will review the structure of Internet

domains and subnets. Internet addresses are 32-bit numbers subdivided into three fields. We call

these fields the Domain number, Subnet number, and Host number. For example, here at the Cornell
University campus the Domain number for all hosts is the same, and, roughly, each Ethernet (or

other LAN) has its own Subnet number. The Host number identifies individual hosts on a subnet.
The three fields form a hierarchy that reflects fairly accurately the underlying physical topology of

networks.
The fields are variable length. The length of the Domain number can be determined by looking

at the first few bits of it. The length of the Subnet and Host numbers cannot be determined that
way, and can be different for any particular domain. 3 In case of Cornell, it happens that both the

Subnet and Host numbers are 8 bits, but this is not visible externally. In fact, Cornell may decide
to change this overnight without notifying anybody outside of Cornell, and this need not have any
effects on routers outside of Cornell.

We will now present our modified protocol. There are two aspects to this protocol. First,
the lengths of Subnet and Host numbers for each domain are gossiped along with the heartbeat

counters of each host. Secondly, gossips are mostly done within subnets, with few gossips going
between subnets, and even fewer between domains.

As for the first aspect, hosts now maintain two lists. One is the same as in the basic protocol,
and contains the hosts and their heartbeat counters. The second list contains the Domain numbers

and their so-called Subnet Masks that determine the length of the Subnet and Host numbers. An
invariant of our protocol is that for every host in the first list, there has to be an entry in the second

that corresponds to that host’s domain and subnet. (Since typically many hosts are in the same
subnet, the second list will be much shorter.) The second list is gossiped along with the first, and
merged on arrival, which maintains this invariant.

Within subnets, we run the basic protocol as described in Section 2. For gossips that cross
subnets and domains we run a modified version of the protocol. This modified protocol tunes the

probability of gossiping so that every round, on average one member per subnet will gossip to
another subnet in its domain, and one member per domain will gossip to another domain. Thus,

the bandwidth use at each level will be proportional to the number of entities contained at the
next level down. So, for example, the cross-subnet bandwidth in a given domain will depend only

on the number of subnets in that domain.4

To achieve this average behavior, every member tosses a weighted coin every time it gossips.

One out of n times, where n is the size of the subnet, it picks a random (other) subnet in its domain,
and within that subnet, a random host to gossip to. The member then tosses another weighted
coin, but this time with probability 1/(n × m), where m is the number of subnets in its domain,

it picks a random (other) domain, then a random subnet within that domain, and then a random
host within that subnet to gossip to.

This protocol significantly reduces the amount of bandwidth that flows through the Internet
routers, since the gossiping is concentrated on the lower levels of the hierarchy. The protocol also

allows for accelerated failure detection times within subnets, and is more resilient against network

3Subnets may be subsubnetted further to add another level to the hierarchy. We do not currently take this into
account, which is not optimal, but does not affect the correctness of our protocol.

4We have chosen here to keep the bandwidth use per subnet and per domain equal to the bandwidth use per
member at the subnet level. The protocol can trivially be generalized.
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Figure 5: This graph shows the result of simulating the protocol for 256 members evenly distributed

over a number of subnets.

partitions. On the down side, it has a negative influence on the number of rounds needed for

information to be disseminated through the system, and hence on failure detection times across
subnets and domains.

To show this negative effect, we simulated the protocol, and have plotted the average of the
number of rounds it takes to gossip a new heartbeat counter to all members in a group of 256

members in Figure 5. We have spread the members evenly across a number of subnets, ranging
from one subnet of 256 members to 256 subnets of one member each (all within a single domain).

As we can see, we may pay as much as approximately 50% for certain subdivisions. We appear to
pay most when the number of subnets and the sizes of the subnets are equal (16 in this case). But

at this point we also are most efficient in bandwidth use, and use 16 times less bandwidth than we
would have on a flat broadcast based network.

In fact, we may conclude that bandwidth use is approximately constant for large networks. To
see this, let’s see what happens when we double the number of members in a large network. We
would not do this by doubling the number of members on each subnet, but by doubling the number

of subnets, or, if there are many of those already, doubling the number of domains. When we
double the number of members, the size of gossip messages doubles, but at the same time gossiping

slows down by a factor of two. Therefore, within subnets and within domains, the bandwidth used
remains the same. The only increase in bandwidth use would be at the highest level of the hierarchy,

consisting of messages between domains. Fortunately, the Internet is designed to accommodate a
constant amount of traffic per domain.

We can make calculations much like in Appendix A (generalizing those of Section 3 becomes
too complex) for any particular division of members into subnets and domains to figure failure

detection times for members in particular subnets. The failure detection times for members in the
same subnet will improve, while the other times will be longer than before, but generally not more
than 50% longer. If this is a problem, we may choose to use some of the gain in bandwidth to

increase the gossip frequency and hence reduce failure detection times.
In previous work, Agarwal et al. [1] have shown that it is possible to exploit the network

topology in membership and total ordering protocols. In their work, called Totem, it is necessary
to run special software on the gateway machines between networks, while our protocol automatically

discovers the boundaries of subnets and does not require special software other than on end-host
machines. The intention of Totem is not providing rigorous guarantees about failure detections, but
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efficient membership and totally-ordered multicast in a local area network consisting of multiple
physical networks.

Vogels [15] suggests multiple confidence levels of failure reports, and node failure monitors on
each subnet in order to enhance scalability of failure detection. Our work implicitly follows the
latter suggestion. [15] does not provide an analysis of scalability nor of quality of detection.

5 Catastrophe Recovery

Gossip algorithms do not work well if a large percentage of members crash or become partitioned

away (see Figure 3). The problem is that too many gossips get wasted by sending them to un-
reachable processes. In order to deal with this, the failure detector does not immediately report

members whom it has not heard from for time Tfail. Instead, it waits longer, but it does stop
gossiping to these members.

In the meantime, we use a broadcast protocol to attempt to restore the connections to remaining

members.5 Since we know the Subnet Masks of each subnet (these were found using the protocol
of Section 4), we can determine the broadcast addresses of each subnet (using either all zeroes or

all ones for the Host Number).
The protocol below will guarantee, with high probability, that a broadcast is generated at least

once every 20 seconds. In a failure-free environment, however, it will generate on average one
broadcast every 10 seconds, imposing only a low load on the hosts in the network. (We have chosen

exact parameters here for ease of explanation, but these parameters can be chosen more-or-less
arbitrarily.)

Each member decides every second, probabilistically, on whether it should send a broadcast or
not, based on how recently it has received a broadcast. If it was recent, then the member broadcasts
with very low probability. If the member received the last broadcast almost 20 seconds ago, then it

will broadcast with very high probability. The probability is also chosen so that the expected time
that somebody first sends a broadcast is after 10 seconds. A function that appears to work well for

this is p(t) = (t/20)a. p(t) is the probability that a member sends t seconds after receiving the last
broadcast, and a is a constant chosen so that the expected first broadcast sent by any member is

after µ = 10 seconds. To find a, we first have to calculate the probability q(t) that anybody sends
a broadcast after t seconds. This is q(t) = 1 − (1 − p(t))n. Thus the probability f(t) that the first

broadcast is sent at time t is

f(t) = q(t) ×
t−1
∏

i=0

(1 − q(i)) (4)

Finally, the expected time µ at which the first broadcast is sent is

µ =
20
∑

t=0

t · f(t) (5)

For example, for n = 1000, we find that a has to be approximately 10.43 to make µ ≈ 10.

We have plotted these functions for this example in Figure 6, and it can be seen that with high
probability the next broadcast is around 10 seconds after the last one. The expected number of

5In the absence of a broadcast capability, a small set of hosts at well known addresses may be used to gossip
through. The gossip servers should be placed strategically so they remain available in the case of partitions. We have
not yet analyzed this approach.
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senders around 10 seconds is 1000 × p(10), which is only 0.7, making it very unlikely that more
than one member broadcasts at a time.

But what if a large fraction of members becomes unreachable? Clearly, with high probability,
the next broadcast is before 20 seconds. The more members are unavailable, the closer the expected

time gets to 20 seconds. The concern is that, as the expected time gets closer to 20 seconds, the
probability that any member sends a broadcast, q(t), goes up rapidly. Therefore, too many members
may broadcast at the same time, leading to a storm of broadcasts. It turns out that the probability

that more than 20 members broadcast at a time, in a group of 1000 members, is less than 10−5

(see Figure 7 and Appendix B). The reason is that the smaller the partition becomes, the smaller
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the number of prospective senders, which offsets the growing probability with which the members
do send.

This broadcast protocol may be made to scale better by using the hierarchy determined by
the gossip protocol. Each subnet would run an instance of the broadcast protocol among the
hosts, as well as each domain among the subnets, and the domains among each other. This is an

improvement, because most partitions are not arbitrary, but occur along the boundaries of subnets
and domains. Each host would determine three values for a to decide whether to broadcast in only

its subnet, in the entire domain, or everywhere. (With three levels in the hierarchy, this would
increase the total number of broadcasts by a factor of three, which may be corrected by adjusting

the protocol’s parameters.)
Now that the time to the next broadcast is bound, we can calculate how quickly the members

within a new partition can find each other. (It should be taken into account that broadcast messages
may get lost and that therefore the bound is probabilistic and may be somewhat larger than 20

seconds, but we are ignoring this issue here.) After the first broadcast in the new partition, all
its members know just the originator of that broadcast, and will gossip to only it. Within 8/B
seconds (where B is the bandwidth assigned to each member), the originator will know the entire

membership, and gossip this information on (again, ignoring the probability of message loss). We
can calculate the amount of time that is necessary to gossip the entire membership using the same

analysis of Section 3. The maximum size of such a partition is n − f members (f chosen as in
Section 3). The maximum time to the next broadcast should be chosen so that the members within

a partition have enough time to locate each other before they report each other as failed.
A particular instance of a catastrophic situation is at a cold start of one or more hosts, which

do not know any other members to gossip to. A problem in this situation is that the domains and
subnets are not initially known. Without this information, we can only determine the broadcast

address of our own subnet. Currently, we extract a list of subnets in our own domain (for which we
know the Subnet Mask) by scanning the Hosts data base that most computer networks maintain.
Knowledge about subnets in other domains has to be manually configured.

6 Conclusion

In this paper we have presented a failure detection service based on a gossip protocol. The service

provides accurate failure detection with known probability of a false detection, and is resilient
against both transient message loss and permanent network partitions, as well as host failures. The

service uses two separate protocols that automatically take advantage of the underlying network
topology, and scale well in the number of members.

We have implemented a system based on these ideas and have run it within the cs.cornell.edu

domain for the last three weeks. Over that period, it has measured over 100 failures and recoveries,
without missing any failures and without making a single false failure detection. The output of the

failure detector can be observed at http://www.cs.cornell.edu/home/rvr/mbrship.html. We have
also implemented the basic protocol in the Ensemble system [13].

The failure detection service can be used by distributed applications directly, or support other
middleware services such as system management, replication, load balancing, and group communi-

cation and membership services. As such, failure detection is a valuable extension to current O.S.
services.
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Appendix A

We present here an efficient but, particularly for small numbers of members, only approximate
analysis of the basic protocol. Following the terminology of [3], we call this analysis deterministic.

We will show that for large members, the deterministic analysis of the basic protocol approximates
quite well the more precise analysis presented in Section 3. The deterministic analysis can be

computed much more efficiently, and can be generalized to analyze the multi-level protocol, although
it is not clear how closely it will approximate it.

Again, let n be the number of members in the system. We assume that n > 2, and that the
members execute the protocol in rounds. Initially, we will ignore the possibility of failed members
and message loss, but we will introduce these later. Assume one member increases its heartbeat

counter. We call the members that have heard about this infected. We are interested in the
probability that one or more members are not infected in some round r.

Given k infected members, the probability Pinfection(k) that a non-infected member is infected
in a round is

Pinfection(k) = 1 − (1−
1

n − 1
)k (6)

That is, one minus the probability that the member is not infected by any of the currently
infected members.

Let ki be the number of infected members in round i (k0 = 1). We can calculate ki+1 as is

done below. This step is what makes this analysis an approximation of the behavior. What we
are doing is assuming on each round that the system follows the expected behavior in that round.

The problem is that the expected behavior of the system over several rounds is not necessarily the
composition of the expected behavior for the various rounds. However, for the basic protocol, this

is a good approximation.

ki+1 = ki + (n − ki) × Pinfection(ki) (7)

The probability that a particular member is not infected at round r is then 1 − (kr/n), the

probability that everybody is infected is P (kr = n) = (kr/n)n, and the probability that somebody
is non-infected (and therefore would mistakenly report this particular process as failed in this round)
is 1 − (kr/n)n. In order to bound the probability that anybody erroneously reports anybody else,

we again use the Inclusion-Exclusion Principle:

Pmistake(r) ≤ n(1− (kr/n)n) (8)

If we admit message loss (we call a message lost if it hasn’t been delivered within a round), and

call the probability of timely message arrival Parrival, then Pinfection(k) becomes:
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Figure 8: This graph compares (a) the analysis of Section 3 with (b) the deterministic analysis of

this appendix. In both cases, the message loss probability is 0.05, the mistake probability is 10−6,
and f = 1.

Pinfection(k) = 1 − (1 −
Parrival

n − 1
)k (9)

For compatibility with the analysis of Section 3, we assume again that members that fail do so

immediately, and that the initially infected member does not fail.6 If a certain number of members
f have failed, these members cannot gossip, but they are unnecessarily gossiped to. In that case,

ki+1 and Pmistake(r) become:

ki+1 = ki + (n − f − ki)× Pinfection(ki) (10)

Pmistake(r) ≤ (n − f)(1− (kr/(n − f))n−f ) (11)

This turns out to be almost identical as derived in Section 3 for n large enough (see Figure
8). For n under about 50, it is better to use the analysis of Section 3. (The reason for the initial

drop in the curve is because f is absolute, rather than a percentage of the members.) Over 50, the
overhead of doing it that way becomes quickly very expensive, and therefore it is better to switch

to the deterministic analysis of this appendix.

6It is easy to improve the current analysis to substitute a fail probability for hosts in each round, rather than
assuming a set of host failed from the start.
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Appendix B

This is an appendix to Section 5. To find the probability that more than m members broadcast,

we first calculate the conditional probability that more than m members broadcast given that the
time is at t seconds.

P (#senders ≥ m | time = t) =
n
∑

k=m

(

n
k

)

p(t)k(1− p(t))n−k (12)

To find the probability that more than m members at t seconds, we just need to multiply with
the probability that at time t the first broadcast is sent:

P (#senders ≥ m ∧ time = t) = P (time = t) × P (#senders ≥ m | time = t) (13)

= f(t) × P (#senders ≥ m | time = t) (14)

Finally, the probability that more than m members broadcast within 20 seconds after the last
broadcast is

P (#senders ≥ m) =
20
∑

t=0

P (#senders ≥ m ∧ time = t) (15)
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