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The Document Representation Problem

Goal: Find a representation that succinctly describes the “meaning” of a

“document” ...

... or in which we at least can determine if two “documents” have “similar”

“meanings”, without human labelings.

� information retrieval

� multi-document summarization

� topic spotting

� creating/organizing knowledge resources
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The Vector Space Model (VSM)
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Problems: Synonymy & Polysemy
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Approach: Subspace Projection

Given a term-document matrix

�

, project the document vectors into a

different subspace so that vector cosines more accurately represent

semantic similarity.

In a lower dimensional space, synonym vectors may not be orthogonal.

Latent Semantic Indexing [Deerwester, Dumais, Furnas, Landauer,

Harshman 1990] seeks to uncover such hidden semantic relations through

projection methods.

Applications (a sampling): [Dumais 1991, 1993, 1994, 1995], [Landauer+Littman

1990], [Foltz 1990, 1996], [Foltz+Dumais 1992], [Dumais+Nielsen 1992], [Foltz+al

1996, 1998a, 1998b], [Landauer+al 1997, 1998], [Schütze+Silverstein 1997],

[Soboroff+al 1998], [Wolfe+al 1998], [Weimer-Hastings, 1999], [Jiang+al 1999b],

[Kurimo 2000] [Weimer-Hastings+al, 1999], [Schone+Jurafsky 2000, 2001]
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Talk Outline

� Introduction: Latent Semantic Indexing (LSI)

� A new analysis: relating LSI’s potential to the uniformity of the underlying

topic-document distribution [Ando+Lee 2001]

� A new algorithm: Iterative Residual Rescaling automatically

compensates for non-uniformity [Ando 2000; Ando+Lee 2001]

� Experimental results
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Introduction to LSI
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Singular Value Decomposition

The SVD is the matrix factorization underlying LSI.

Let the � � � term-document matrix
�

have rank � .

...
v2

vr

...

... = ...d1 d2 d u u

0
0σ

σ

σ
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r

2

r1n

= U V
TΣD x x

��� : left singular vectors; form a basis for range(
�

)
� � : singular values (assume in sorted order); all positive

(Each � � is an eigenvector of
� � 	

with eigenvalue ��
� )
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SVD: Geometric View

Recall:

...
v2

vr

...

... = ...d1 d2 d u u

0
0σ

σ

σ

v11

r

2

r1n

= U V
TΣD x x

u 1

u 2

Repeat to get next u
(orthogonal to previous   ’s)ui

Compute residuals
(subtract projections)

u 1 u 1

document vectors
Start with Choose direction u

(σ
maximizing projections

: "sizes" of max. projection)

More formally, find � � � �� � � � �
vectors such that

� � � � 	 
 ��� 
 �� ��� � ���� � � � � � ��� �� � �� � �� � � � � (“weighted average”)
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Latent Semantic Indexing

LSI projects
�

into the � -dimensional subspace spanned by
������������� �
	 .

v2

vr

...
σr

...

...
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Tx xD’

... = ...d1 d2 d u u

0
0σ v11
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Σ ’

σh+1

Set all but the first h to 0

σh

Theorem: This is the optimum (in two-norm) rank- �
approximation to

�
. (Note that it selects the � basis vectors

that maximize projections.)
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LSI (continued)

Recall: LSI computes the optimum rank-

�

approximation to
�

.

But this does not mean LSI does the best job at representing document

relationships – just the best job at being close to
�

.

“Whether [LSI] is superior in practical situations with general

collections remains to be verified.” Baeza-Yates and Ribeiro-Neto,

Modern Information Retrieval, 1999.

(See e.g. [Dumais+al 1998])

We desire an analysis based on the underlying semantic relationships.
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Analyzing LSI
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Topic Model

For a given set of � documents, we assume there exists the following

unknown quantities:

� a set of

� � � underlying topics

� (normalized) document-topic relevance scores

These define the hidden true topic-based document similarities:

� � 
 �doc� doc

� � �
topics �

rel

�
doc� � � �

rel

�

doc

�� � �

and we desire a subspace in which vector cosines approximate these true

similarities closely.
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Subspace Projections

Xsubspace term-doc matrix D

CHOOSE GIVEN

topic-document 
relevances

HIDDEN

true similaritiessimilarities (cosine) in X

orthogonal projection

Let

��� �

be the subspace with minimum similarity error (and dimensionality)

where � � � � � � � � � � �� � � 
 �doc �� doc � �� � � 	
� 
 � 	� � � �

How close is

� � �


to
�� � �

? Let’s define some useful quantities ...
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Dominance and Non-Uniformity

The (hidden) dominance of a topic in the document collection is defined as:

Dom

� � � �

doc

rel

�

doc� � � �
� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �

� � � � �� � � � �� � � � �� � � � �� � � � �� � � � � � � � � � �� � � � � �� � � � � �� � � � � �� � � � � �

� � � � �� � � � �� � � � �� � � � �� � � � �

� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �

� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �

� � � � �� � � � �� � � � �� � � � �� � � � �

� � � � �� � � � �� � � � �� � � � �� � � � � � � � � � �� � � � � �	 	 	 	 		 	 	 	 	


 
 
 
 
 

 
 
 
 
 

 
 
 
 
 


� � � � �� � � � �� � � � �

Dom = =Dom DomDom >> >>Dom

non-uniformity = is highDom /

Dom

Dom non-uniformity is low

We assume a dominance ordering on the topics, most dominant first.

Intuitively, less dominant topics risk being “lost”.
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Document Sharing and Difficulty

The (hidden) degree to which topics share documents is defined as:

DocSharing � � �� � �
�

doc rel

�

doc� � �

rel

�

doc� � � � � �

� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �

� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �

� � � � �� � � � �� � � � �� � � � �� � � � �

� � � � �� � � � �� � � � �� � � � �� � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �

	 	 	 	 	 		 	 	 	 	 		 	 	 	 	 		 	 	 	 	 		 	 	 	 	 		 	 	 	 	 	 
 
 
 
 

 
 
 
 
� � � � �� � � � �

� � � � � �� � � � � �
 
 
 
 

 
 
 
 


more document sharing among topics less document sharing (same dominances)

Intuitively, when document sharing is high, distinguishing between topics is

difficult. ([Papadimitriou+al 1997] assume low document sharing.)
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Structure of Main Result

The distance between

� � �


and

��� �

can be bounded by a function of:

� � � � � � � � � � � �

and � � � � � � ��� � �

,

� the amount of document sharing between topics, and

� the non-uniformity of the topic-document distribution, as measured by a

ratio of topic dominances.

assuming that � � � � � � � � � � �

doesn’t swamp certain topic dominances.

The proof relies on:

1) a subspace perturbation theorem [Stewart 1973, Davis+Kahan 1970]

relating subspace distances to certain singular values, and

2) sensitivity theorems relating certain singular values to topic dominances.
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Related Work
[Papadimitriou+al 1997, Azar+al 2001, Story 1996, Ding

1999] etc. assume a generative model in which LSI “works”

Xsubspace term-doc matrix D

GIVENCHOOSE

topic model

HIDDEN

true similaritiessimilarities (cosine) in X

simple generative

orthogonal projection

Cf. our framework:

Xsubspace term-doc matrix D

CHOOSE GIVEN

topic-document 
relevances

HIDDEN

true similaritiessimilarities (cosine) in X

orthogonal projection

(cf. [Bartell+Cottrell+Belew 1992; 1995, Isbell+Viola 1998])
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The Iterative Residual Rescaling (IRR)
Algorithm
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Non-uniformity: Geometric Interpretation

LSI finds a sequence of

�

basis vectors such that

� � � � 	 
 ��� 
 �� ��� � ���� � � � � � �� �� � �� � �� � � � � (“weighted average”)

u 1
u 1 u 1

u 2

Choose direction u
maximizing projections

Repeat to get next u
(orthogonal to previous   ’s)ui

Compute residuals

dominant topics bias the choice

90 90
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IRR: First Version

� � � � 	 
 ��� 
 �� ��� � ���� � � � � � ��� �� � �� � �� � � � � (“weighted average”)

Compensate for non-uniformity by rescaling the residuals by the �th power of

their length at each iteration. [Ando 2000]

u 1 u 1

u 2
u 1

Choose direction u
maximizing projections

Rescale residuals

u 1

Repeat to get next u
(orthogonal to previous   ’s)ui

Compute residuals
(relative diffs rise)

90

Good results, but how do we pick the scaling factor �?

We need a principled way to choose amount of re-scaling.
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Scaling Factor Determination

Consider the following function of non-uniformity: �
�

Dom

� � � � � �
� �

� one giant topic

� �

�

�

same-size topics with no document sharing

� � � �

We’d like to set the scaling factor � to this quantity to compensate for

non-uniformity ...

but we don’t know it!

We can roughly approximate it in our model by

����� ���
� �� � �� � � �� � � � � � �
�

	 (coarse assumptions: small input error,

single-topic documents)

We set � to a linear function of this approximation.
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Experiments
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Experimental Framework: Data

We used TREC documents, with topic labels as validation. (Stop-words

removed; no term weighting; only single-topic documents (no topic sharing)

to facilitate scoring).

Controlled distributions: we artificially altered topic dominances to study their

effects on LSI and IRR’s performance

� For a set of

�

topics, for a sequence of increasingly non-uniform

distributions, ten 50-document sets were selected randomly for each.

Uncontrolled distributions: we simulated retrieval results.

� For each keyword in a randomly-chosen set of 15, all documents

containing that keyword were selected to create a document set.



Lillian Lee, Cornell University 25

Evaluation Metrics

Kappa average precision: degree to which same-topic document pairs have

high similarity scores, corrected for chance

Clustering score: degree to which a clustering has “pure” clusters but

preserves topic integrity [cf. Slonim and Tishby 2000]

We record the floor and ceiling results over 6 clustering algorithms.

A high-quality subspace should enable good results for many clustering

algorithms.

[To simplify presentation, we do not discuss dimensionality selection issues]
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(Switch to slides on experimental results now)


