Controlled-distribution results:
2 topics, pair-wise kappa average precision

LSI’s performance drops as the topic-doc distributions become less uniform.

(Average over 10 sets; dim = # of topics.)
Two topics, kappa average precision (cont)

IRR with $q=2$ compensates for non-uniformity slightly.
Two topics, kappa average precision (cont)

IRR with $q=4$ compensates for non-uniformity more.

VSM IRR: $q=4$

LSI ($q=0$) IRR: $q=2$

uniform less uniform
Two topics, kappa average precision (cont)

IRR with automatically selected q compensates for any non-uniformity.

Same trends on 3-topic and 5-topic data.
Two topics, document clustering performance

Floor
(worst over 6 clustering algs)

Ceiling
(best over 6 clustering algs)

IRR: auto

LSI

VSM

$q=0$
$q=2$
$q=4$

of clusters = # of topics
Adjustment for Non-Uniformity

Selected scaling factor, two topics

uniform less uniform
Large q Considered Harmful
5 topics, pair-wise kappa average precision

![Graph showing pair-wise kappa average precision for different methods and query sizes.](image)
Five topics, document clustering performance

Floor
(worst over 6 clustering algs)

Ceiling
(best over 6 clustering algs)

of clusters = # of topics
Conclusions

- A new analysis relating LSI’s performance to the uniformity of the underlying topic-document distribution

- A new algorithm --- Iterative Residual Rescaling --- that automatically compensates for non-uniformity

- Experimental results showing IRR’s effectiveness in comparison to LSI