
A New Start: Innovative Introductory AI-Centered Courses at Cornell

Eric Breck∗, David Easley†, K-Y Daisy Fan∗, Jon Kleinberg∗,
Lillian Lee∗, Jennifer Wofford‡, and Ramin Zabih∗

Departments of Computer Science∗ and Economics† and Faculty of Computing and Information Science‡
Cornell University
Ithaca, NY 14853

Abstract

We describe an array of novel introductory-level courses
based on exciting topics in modern artificial intelligence. All
present a great deal of often research-level technical content
in a rigorous manner while keeping the material accessible to
lower-level students. On the other hand, they differ in subject
matter and style, since a “one-size-fits-all” approach cannot
be expected to be effective given the wide variety of student
interests and backgrounds. Thus, the courses cover topics
ranging from computer vision to natural language processing
to game theory and emphasize perspectives from hands-on
implementation with robots to mathematical foundations to
societal implications. The courses range in format from lab-
style to seminar discussion-style to large lectures with out-
of-class blogging activities, and some have been held during
summer sessions expressly to attract high-school students.
The evidence shows that these courses are succeeding in
drawing a broad audience to learn about ideas in computing.
For example, several exceeded their initial enrollment esti-
mates or limits; one drew over 200 students from 25 different
majors in its first running; one reports over 30% female en-
rollment. Course materials are available on the Web and two
textbooks based on some of these classes are in progress.
Pub. info: AAAI Spring Symposium on Using AI to Moti-
vate Greater Participation in Computer Science, 2008.

Introduction
One of the current paradoxes in computer science is the in-
creasing divergence between the research vitality of the field
and its declining undergraduate enrollments. This decline is
taking place at all levels, but it is particularly alarming at
the introductory levels: in the US, the number of entering
freshman expressing an interest in computing has fallen by
70% from Fall 2000 to Fall 2005 (Vegso 2007, quoting an
HERI/UCLA survey). Thus, while there may also be prob-
lems in keeping upper-class students in the major once they
enter it, or in maintaining the interest of those college stu-
dents who originally intended to pursue CS-related studies,
the far more significant battle is getting entering freshmen to
consider the field in the first place.

At a superficial level, this drop in student interest may
seem surprising in light of the pervasively digital culture
in which these students are growing up. More than in any

Copyright c© 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

earlier period, students entering college are highly conver-
sant with on-line environments and interfaces; indeed, many
of these interfaces are compelling AI applications, includ-
ing Web search engines, email spam filters, the grammar
checker in Microsoft Word, automated telephone answering
systems, and many others. Yet most students do not perceive
the intellectual content that goes into the creation of these
applications, and instead too often form a view of computer
science that is shaped by negative stereotypes of the field.
A successful introduction to computer science, then, needs
to break through these preconceptions by exposing the deep
ideas of computing and relating them to the concrete experi-
ences of students and to the computing applications that they
use every day.

An overview of the new Cornell courses. At Cornell, we
have been actively pursuing such a plan to energize our in-
troductory curriculum through the design of novel courses,
many of them based on exciting topics in modern artificial
intelligence. All of these new courses are rooted in a long
tradition at Cornell of moving research material as quickly
as possible into early undergraduate syllabi, and all of the
courses emphasize ideas such as algorithmic thinking over
simple skill acquisition. All have instructors who are ac-
tively engaged in research on the fields presented. And fi-
nally, they all also present a great deal of technical content
in a rigorous manner while keeping the material accessible
to lower-level students.

But although these courses hold the aforementioned fun-
damental tenets in common, by design the courses differ
quite widely in subject matter and style — it is clear that a
“one-size-fits-all” approach cannot work in the current set-
ting. Students arrive with backgrounds ranging from fun-
damentally non-technical to years of prior computer pro-
gramming experience, and they also come to college with
interests that range all over the map. As such, the courses
emphasize perspectives ranging from hands-on implemen-
tation with robots to mathematical foundations to societal
implications; they range in format from lab-style to seminar
discussion-style to large lectures with out-of-class blogging
activities; and two have been held during summer sessions
expressly to attract high-school students.

The use of AI as a basis for introductory courses has
turned out to have many advantages. First, it imparts a cer-



tain concreteness and immediacy to the material that can be
hard to achieve with traditional introductory programming
assignments — for example, there is considerable appeal in
getting a robot to actually move around and respond to its
environment. Even early assignments can be crafted so that
students are able to think about what is involved in creat-
ing agents that can behave “intelligently,” and to see into the
complexity behind applications that they have been familiar
with for years. At an intellectual level, the long-term goal
of making an entity that can act independently is very excit-
ing (though, of course, also potentially scary — but many
students find debating this point to be part of the thrill).

The interdisciplinarity of AI — always a part of the field,
and only increasing in recent years — is another source of
benefits in these courses. The ability to draw naturally on
connections to psychology, economics, linguistics, philoso-
phy, and other fields broadens the range of students to whom
such courses can appeal. Moreover, many mathematically
advanced topics that feature prominently in AI can actually
be described fairly intuitively. For example, cutting-edge
material such as linear discrimination or random-graph mod-
els can be introduced via geometric concepts that students
have learned in high school or via “naive” probability (as
described later).

The courses that Cornell has developed to incorporate AI
ideas at the freshman level can be briefly summarized, in
order of increasing hands-on contact with computers, as fol-
lows; a more complete description of each course appears in
the sections below. (Note that the three non-programming
courses do not exempt students from any programming re-
quirements: if students choose to enter a computing disci-
pline after taking them, they must achieve programming pro-
ficiency through the same sets of classes that all the other
students do.) Computation, Information, and Intelligence
is a non-programming, mathematically-oriented course that
exposes students to algorithmic thinking as it arises in ma-
chine learning, search engine technology, and natural lan-
guage processing. Networks is a course situated at the inter-
section of of computer science, economics, information sci-
ence, and sociology; it explores how the social, technolog-
ical, and natural worlds are connected, how agents interact
in these systems, and how the study of networks sheds light
on these phenomena. Computation and Culture in a Digital
Age is an applications-oriented course for summer session
high school students that pulls together AI, programming,
Web development and social issues. Introduction to Com-
putation with Robotics is an honors version of our standard
Matlab introduction that uses camera-controlled robots —
Sony Aibos (robot dogs) and the iRobot Roomba, both ap-
pealing platforms — to teach fundamental computer science
concepts, with emphasis on computer vision techniques.

This curriculum evolution is intended to attract students
with a wide variety of interests and experiences and to make
more students aware of the opportunities that computer sci-
ence offers. While many of the above courses are too new
for us to evaluate formally, early evidence indicates that they
will achieve their desired outcomes. For example, several
exceeded their initial enrollment estimates or limits; one
drew over 200 students from 25 different majors; one reports

over 30% female enrollment; and all synthesize material that
was recently viewed as research-level, much of it never hav-
ing appeared before at the freshman level anywhere.

Pedagogical Framework
Ten years after the publication of the National Science
Education Standards (National Research Council 1996),
student-centered learning approaches have spread from their
beginnings in K-12 classrooms to undergraduate courses
across science, technology, engineering, and mathematics
(STEM) disciplines (Apedoe & Reeves 2006; McIntosh
2000; Powers & Hartley 1999). This shift from old guard
skill-transmission to more progressive “inquiry-based” and
“constructivist” learning incorporates three primary peda-
gogic tenets: a philosophically inquisitive approach to cur-
riculum where ideas and knowledge are discovered or cre-
ated by students through teacher facilitation; in situ, often
project-based problem-solving; and a focus on cross-context
transferable skills like critical thinking and research de-
sign (Oliver 2007; Phillips 1995; Brown, Collins, & Duguid
1989).

Programming skills are important components of some
of our new courses, and remain the central focus of our
traditional “CS100-style” classes. However, the new suite
of introductory courses is meant to broaden participation
in computer science, focusing on fundamental CS concepts
(in particular, algorithms and models) instead of, or in ad-
dition to, programming skills. By their very nature, con-
cepts are amenable to this new style of pedagogy. Brown
et al (1989, p. 32) discuss “situated cognition,” a peda-
gogy that, like inquiry-based and constructivist educational
approaches, privileges knowledge-in-use. In their discus-
sion, a concept “will continually evolve with each new oc-
casion of use, because new situations, negotiations, and ac-
tivities inevitably recast it in a new, more densely textured
form. So a concept, like the meaning of a word, is al-
ways under construction” (Brown, Collins, & Duguid 1989,
p. 32). A concept-centered curriculum is therefore more
naturally suited to inquiry-based and constructivist learning
than skills-based approaches. Such a focus also allows us
to present cutting-edge material without sacrificing rigor yet
without mandating technical prerequisites. Students individ-
ually and collaboratively reconstruct a knowledge base from
a common conceptual starting point, and instructors can as-
sess students’ understandings of the material from effective,
situated application, rather than the often misleading skill-
and-drill.

Computation, Information, and Intelligence
Computation, Information, and Intelligence is a non-
programming yet rigorous and mathematically-intensive
freshman-level introduction to computer and information
science through the lens of AI, with major units built around
modern machine learning, information retrieval, and natural
language processing.

These topics are quite natural to use to attract students
entering college to CS, since many of these students use
systems that incorporate machine learning, information re-



trieval, and natural language processing technologies on a
well-nigh daily basis. Examples are Web search engines
such as Google and the grammar checker in Microsoft Word.
(And, students certainly use natural language quite fre-
quently.) Moreover, the goals of machine learning seem to
embody precisely what young students (and others) often
think are completely unachievable, and so are perhaps most
apt to be curious about. For example, they already know
that Deep Blue defeated Kasparov, but they are not particu-
larly impressed, because they think that “machines only do
what you tell them.” They are thus quite struck to learn about
systems that learned championship-level backgammon skills
through self-play and cars that surpassed their human train-
ers at driving in reverse.

The decision to neither require nor teach programming
has a number of advantages. First, it has the effect of de-
privileging students who have had prior programming ex-
perience, thus serving to level the playing field and make
the course more welcoming to students without such back-
ground. Second, it conveys the message that CS is not just
about programming; rather, the focus is on models, algo-
rithms, and critical thinking. Third, it makes coordinating
with other course selections easier for students: the teach-
ing of programming skills is done well in other courses, so
there is no need to repeat such training in this class. Thus,
coursework for the class currently consists of challenging
“pencil-and-paper” problems. Finally, it has been suggested
that an emphasis on hacking (i.e., the more “gory” aspects
of programming) can be unappealing to certain populations
of students (De Palma 2001). The fact that a relatively high
number of women enroll in this class, as mentioned below,
may be related to this suggestion.

The main question, of course, is how to present modern
material in a way that is accessible to college freshmen, but
that is still technically rigorous and promotes critical think-
ing — since, in the end, CS is in large part a technical field,
and there is no point in misleading students about this fact.
The transmission of critical-thinking skills is arguably one
of the highest priorities in the educational mission of a uni-
versity. What follows is a brief sketch of how various units
of the course accomplish this goal.

• Search and game-playing. We begin with the most “tra-
ditional” unit. We find that freshmen have very few diffi-
culties understanding the ideas of trees as data structures,
depth- and breadth-first search, and elementary forms of
alpha-beta pruning.

• Perceptron-based learning. Students are introduced to
the idea of function computation by neurons, and hence
to representation of instances by feature vectors, and from
there to the notion of linear classifiers and perceptrons.
We then present a version of the perceptron learning al-
gorithm and go through a complete proof of convergence
under certain assumptions. Crucial for this unit to work
is that while background in linear algebra cannot be as-
sumed, luckily, elementary trigonometry is still fairly
fresh in ex-high-schoolers’ minds, and so notions like or-
thogonal projection and inner product can be framed in
terms of familiar geometric concepts like the cosine.

In order to sharpen the students’ understanding, the cen-
terpiece homework problem of this unit involves asking
the students to suitably alter the proof (or show how the
proof breaks) if one of the initial assumptions is altered.
This question illustrates one of the underlying themes be-
hind the design of this course: one comes to truly under-
stand a concept or algorithm if one can predict the effects
of changes in the underlying assumptions, conditions, or
steps. One of our deepest goals is to get students to inde-
pendently ask themselves such questions later on in their
academic (and “real”) lives.

• Information retrieval within the vector-space model.
Students are already quite familiar with search engines
and their uses, if not with their internals, so little motiva-
tion is needed for this unit. Having already dealt heavily
with vector-based operations in the previous unit, cosine-
based retrieval comes naturally to the students. A typical
homework problem here is to ask what is the effect of us-
ing a somewhat different form of a previously-introduced
term-weighting function.

• Link-based information retrieval. Given students’ prior
experience with the World Wide Web, this unit tends to
be one of the most popular. Their familiarity with the
Web also means they find graph-theoretic notions (e.g.,
in-degree, connected components) intuitive. We study
PageRank and hubs-and-authorities in technical detail, as
well as random-graph models for describing the evolution
of the Web graph. Interestingly, the iterative nature of the
two link-based document-scoring algorithms echoes the
iterative nature of the updates in the perceptron learning
algorithm presented earlier.
We make heavy use of probability in this section, both
for the aforementioned random-graph models and for the
random-surfer motivation of the PageRank equation, but
are able to rely on an intuitionistic understanding of it.
(We do not cover any eigenvector-based interpretations.)
Our analysis of random-graph models does require some
elementary calculus skills, but homework questions ex-
plicitly state the solutions to any integration problems the
students are asked to face.
A typical homework problem involves presenting the stu-
dents with an example of a graph on which PageRank or
hubs-and-authorities has unexpected behavior (e.g., the
“dangling link” issue with the “usual” PageRank equa-
tion that leads to probability “draining out” of the sys-
tem), having them verify through hand-simulation that a
problem exists, and proposing how to modify the relevant
equations or algorithms accordingly.

• Natural language processing. Relying on students’ in-
stincts about and experience with language, we intro-
duce context-free grammars as a basic model of syn-
tax, thus going beyond the “bag of words” representa-
tion from the previous unit. We then introduce Ear-
ley’s algorithm as an example of an efficient dynamic-
programming algorithm for parsing that uses some inter-
esting, linguistically-motivated reasoning constraints (and
is thus more complex than the CKY algorithm one usu-
ally meets in standard courses on the theory of comput-



ing). Not surprisingly, we then move on to the question
of language learning, using statistical machine transla-
tion as the prime example. Here, the use of an auxiliary
hidden variable (specifically, word-to-word alignments in
the IBM expectation-maximization-based models) corre-
sponds nicely with the idea of using the auxiliary informa-
tion of “hubness” in the link-based information retrieval
section.
We believe that “Computation, Information, and Intelli-

gence” effectively conveys the notion that computer science
is not just about programming, and the non-programming
nature of the course appeals to a broad range of students.
In the 2007 spring semester, 34% of the 47 students were
women, and enrollees included a psychology major and a
French/English double major. Interestingly, during an in-
ternship visit to the offices of the New York Times, this dou-
ble major challenged an editor’s assertion that on the Inter-
net, all information is equal with a disquisition on PageR-
ank. This anecdote underscores the importance of outreach
introductory courses: even those who do not end up pursu-
ing technical disciplines can be empowered by understand-
ing more about computer and information science.

Lecture guides are available at http://www.cs.
cornell.edu/courses/cs172, and a textbook based on
the course is currently in progress.

Social and Economic Interaction on Networks
The study of networks focuses on how the social, techno-
logical, and natural worlds are connected and how the struc-
ture of these connections affects each of these worlds. The
topic thrives on insights that reach across very different do-
mains. For example, models for the spread of epidemic dis-
eases have been used to analyze the movement of fads and
rumors through word-of-mouth communication; principles
behind cascading failures in power grids have been applied
to cascading extinctions that unravel food webs as well as
economic crises that spread through the worldwide financial
system; and the notion that certain individuals occupy pow-
erful roles in social networks has helped form the basis for
link analysis ranking methods in Web search engines.

In this way, the subject has a natural inter-disciplinary ap-
peal, and in particular connects to the interests of many en-
tering college students, who — regardless of their intended
majors — inhabit on-line networks such as Facebook and
tend to see themselves as part of an increasingly “connected”
world. Motivated by these developments, we designed an
introductory undergraduate course entitled Networks, which
covers social and economic interactions in network settings.
Cross-listed in computer science, economics, information
science, and sociology, it seeks to cover the recent develop-
ments in this subject, and more generally to use the topic as
a way of conveying both fundamental ideas from computing
and information as well as fundamental mathematical mod-
els in the social sciences.

This blending of areas is consistent with a growing inter-
est by computer scientists — from both artificial intelligence
and other subfields —- in ideas from economics and soci-
ology, including game theory, agent interaction, and social

networks. Within this context, it becomes possible to con-
vey these current trends in computer science to students who
might never have otherwise intended to take any courses re-
lated to computing during their time in college.

Interest in the first offering of the course, Spring 2007,
exceeded our expectations; it came from many parts of cam-
pus, with an enrollment of over 200 students representing 25
different majors and intended majors. The second offering
of the course in Spring 2008 attracted an even larger number
of students from a still broader diversity of majors.

In addition to other parts of the coursework, students ac-
tively contributed to a class blog, where they wrote about
connections between course topics and material they had
found in current news or elsewhere on-line. A number
of blog posts attracted positive responses from the out-
side world, including from founders of technology com-
panies and press liaisons at financial institutions. The
class blog is available at http://expertvoices.nsdl.
org/cornell-info204, with a digest version including
comments by the course staff at http://expertvoices.
nsdl.org/cornell-info204-digest/.

To give a more specific sense for the focus of the course,
we now describe a brief outline of the content, organized
around five main topics. The first two topics served as back-
ground in context for the main analytical techniques, and the
latter three topics illustrated extended applications of net-
work thinking.
• Graph theory and social networks. The course begins

with a discussion of graph theory as the area of mathe-
matics that studies networks. It develops this through ex-
amples from social network analysis, including Granovet-
ter’s famous “strength of weak ties” hypothesis, and con-
nects this to recent large-scale empirical studies of on-line
social networks.

• Game theory. Since most network studies require us to
consider not only the structure of a network but also the
behavior of the agents that inhabit it, a second important
set of techniques comes from game theory. This too is in-
troduced in the context of examples, including the design
of auctions and the Braess paradox for network traffic.

• Markets and strategic interaction on networks. The in-
teractions among participants in a market can naturally be
viewed as a phenomenon taking place in a network, and in
fact network models provide valuable insights into how an
individual’s position in the network structure can translate
into economic outcomes. Thus, this topic provides a very
natural illustration of how graph theory and game theory
can come together in the development of mathematical
models. Our discussion in this part of the course also built
on a large body of sociological work using human-subject
experiments to study negotiation and power in networked
settings.

• Information networks and the World Wide Web. The
Internet and the Web of course are central to the argument
that computing and information is becoming increasingly
networked. Building on the earlier course topics, we de-
scribe why it is useful to model the Web as a network, dis-
cussing how search engines make use of link information



for ranking, how they use ideas related to power and cen-
trality in social networks, and how they have implemented
network-based matching markets for selling advertising.

• Cascading behavior in networks. Finally, networks are
powerful conduits for the flow of information, opinions,
beliefs, innovations, and technologies. We discuss how
models of agent interaction can give us ways of reasoning
about processes that cascade through networks. In partic-
ular, we describe “herding” models in which agents make
decisions based on Bayesian analysis, and diffusion mod-
els in which agents are embedded in networked coordina-
tion games. Here too, we connect the models to recent
empirical studies, illustrating for example how the rich-
get-richer dynamics inherent in cascades lead to heavy-
tailed distributions for on-line popularity.
Handouts, problem sets, readings and references are avail-

able at http://www.infosci.cornell.edu/courses/
info204/2007sp/, and a textbook based on the course is
in progress.

Computation and Culture in a Digital Age
Offered for the first time in 2007 through Cornell’s Summer
Explorations Program for high school students, Computa-
tion and Culture in a Digital Age is an introduction to com-
puting and information science from both the technological
and social perspectives. The goal of the course is to show
the students, most of whom are about to apply to college,
the wide range of exciting opportunities in computing and
information science. We intend to follow up with the stu-
dents, tracking their college applications to see how many
enroll in computer science or related programs.

AI makes up one quarter of the course contents — the
other topics are programming, user-centered Web develop-
ment, and the legal and social issues of computing. Tech-
nologies and issues that are relevant to the students’ every-
day life are highlighted. In the AI portion of the course, the
central theme is for the students to understand that intelli-
gence isn’t a monolithic concept realized only in fictional
androids, but instead is a collection of behaviors that can be
individually understood and implemented. To this end, the
course discusses three research areas of AI: natural language
processing, information retrieval, and machine learning. In
each area, we focus on one application, addressing both the
implementation (at a high level) and the user’s perspectives.
• Natural language processing. We discuss the prob-

lems posed by ambiguity at all levels of language. The
students explore some of these issues by solving puz-
zles from the North American Computational Linguistics
Olympiad. We discuss practical applications of natural
language processing, including question answering and
summarization, and then delve into the problem of ma-
chine translation. In a lab exercise, students evaluate a
number of publicly available translation systems.

• Information retrieval. As students are already familiar
with Google and other Web search engines, we empha-
size the connection between Web search and other infor-
mation retrieval technologies, such as desktop search and

library indexing. We introduce some of the basic ideas of
information retrieval, such as indexing, and have students
compare and evaluate different search engines.

• Machine Learning. The idea that machines can learn is a
popular one in science fiction — the students can readily
name movies that feature some kind of (fictional) machine
learning. We discuss the state of the art in machine learn-
ing and introduce the concepts of training and test sets,
the basics of several types of machine learning models,
and we explore how to evaluate them. Continuing with
the theme of human language technologies established so
far, we introduce the problem of spam classification, cul-
minating in the construction of a Naive Bayes spam clas-
sifier.

In addition to topics in AI, other activities in the course in-
clude programming to manipulate digital media, conducting
Web usability tests, and debating issues such as illegal music
sharing and the use of blocking and monitoring software in
high schools. We also present a mini seminar series to show-
case other research activities and facilities in computing and
information science. By exploring the digital technologies
that students use everyday and studying the related issues,
we show students that the field of computing and informa-
tion science is broad, exciting, and has important humanistic
and societal dimensions.

Slides and problem sets for this course are avail-
able at http://www.infosci.cornell.edu/courses/
info153/2007su/.

Introduction to Computation with Robotics
Introduction to Computation with Robotics is an honors-
level introduction to computer science based on camera-
controlled robots. The course primarily emphasizes the is-
sues involving sensing, rather than reasoning or control, for
several reasons. First, many exciting computational issues
naturally arise in the analysis of real-world data. For exam-
ple, it is necessary to robustly handle noise and to perform
some kind of model fitting. Such issues arise quite naturally
in the context of machine perception. Second, Matlab pro-
vides excellent tools for the analysis of noisy data sets, in
an interpreted environment that is easily accessible to fresh-
men. Finally, sensing is a vital component of any robotic
system; sophisticated sensing capabilities, combined with
relatively simple reasoning and control, can lead to impres-
sively complex robotic behavior.

The topics in the course are focussed on creating sens-
ing capabilities for robots that would be of broad use (in
fact, the topics are to some degree motivated by the common
sensing requirements of student-run robot projects, such as
Robocup). In the first portion of the course, the goal is to de-
termine the position and orientation of a red light stick (like
those used to guide an airplane into its gate). This leads
to numerous important algorithms such as sorting, median
finding, depth-first search, connected components, and con-
vex hull. Even advanced topics, such as robust statistics,
graph algorithms and problem reductions, naturally appear
in simplified forms.



In a later project, the students use least-squares fitting to
analyze odometry data from the robots in order to build a
robot speedometer and accelerometer. This introduces some
of the math behind least squares, and the students imple-
ment a simple form of gradient descent. In another project,
the students design simple clustering algorithms to enable
the robot to distinguish between primarily red objects (e.g.
Coke cans) and primarily blue ones (e.g. Pepsi cans).

The robots are a combination of the Sony Aibo (robot
dogs) and iRobot Create (which is essentially a Roomba
without the vacuum cleaner attachment). At the end of the
course, the students complete a final project of their own
choosing, drawing on the robotics capabilities that they build
up over the semester. Some of these projects have proven to
be quite impressive, with teams of robots cooperating to ac-
complish a task.

Slides and problem sets for this course are available at
http://cs100r.cs.cornell.edu.

Conclusion and Future Directions
We have described four new courses at Cornell that, while
differing widely in certain important respects, all focus on
important topics in modern AI and use these topics to inter-
est students in the ideas in CS as a whole. Course materials
we have developed are available on the Web, and we are in
the process of writing two textbooks based on some of these
classes.

It should be mentioned that the four courses described in
this paper are part of a broader initiative at Cornell in re-
envisioning the entire introductory computing curriculum.
Other efforts in progress include the following: an honors
version of our standard Java introduction featuring projects
that are much less structured and, as a result, much more
research-like; a course entitled Computing in the Arts that
looks at randomness and stochastic processes in the context
of poetry, visual art, music, and sculpture, with some Java
programming; self-paced (“auto-tutorial”) on-line introduc-
tions to programming; and a course entitled Visual Imaging
in the Electronic Age that integrates ideas from architecture,
art, and computer science

We believe that through these innovations, we will be able
to bring more students into CS and related majors, and, just
as importantly, that we will be able to bring key CS ideas
to more students regardless of their eventual choice of aca-
demic and career paths.

Acknowledgments
We owe a large debt of gratitude to Charles Van Loan, for-
mer Chair of the CS Department, who inspired and encour-
aged us to create these courses and who provided very gen-
erous support of many kinds during the process of devel-
opment; the new suite of introductory courses is due in
large part to his vision, creativity, and commitment to ex-
cellence in undergraduate education. We are also grateful
to all the teaching assistants and course consultants who
have helped us with creating and maintaining these courses:
Steve Baker, Jared Cantwell, Tze Jian Chear, Chris Da-
nis, Ray Doyle, Rafael Frongillo, Nick Gallo, Jon Guar-

ino, Abraham Heifets, Amanda Holland-Minkley, Marek
Janicki, Tian Liang, Homan Lee, Yuzhe Liu, Selina Lok,
Ezra Kannof, Devin Kennedy, Blazej Kot, Elliot Kulakow,
Shannon McGrath, Brian Mick, Anton Morozov, Milo Polte,
Ben Pu, Neeta Rattan, Brian Rogan, Gurmeet Singh, Sara
Tansey, Mark Yatskar, Adam Yeh, Chong-Suk Yoon, and
Yisong Yue. We also thank Stephen Chong and the review-
ers for helpful comments on earlier drafts of this paper.

This paper is based upon work supported in part by
the National Science Foundation under grant nos. IIS-
0329064, CCF-0325453, and CNS-0403340, and BCS-
0537606, a Cornell University Provost’s Award for Distin-
guished Scholarship, a Yahoo! Research Alliance gift, a
grant from the G.E. Fund for furthering educational outreach
to underrepresented groups, an Alfred P. Sloan Research
Fellowship, Intel, Microsoft, the GRASP laboratory at the
University of Pennsylvania, Cornell’s Faculty Innovation in
Teaching Program, a Google Research grant, the Institute for
Social Sciences at Cornell, and the John D. and Catherine T.
MacArthur Foundation. Any opinions, findings, and conclu-
sions or recommendations expressed are those of the author
and do not necessarily reflect the views or official policies,
either expressed or implied, of any sponsoring institutions,
the U.S. government, or any other entity.

References
Apedoe, X. S., and Reeves, T. C. 2006. Inquiry-based
learning and digital libraries in undergraduate science ed-
ucation. Journal of Science Education and Technology
15(5):321–330.
Brown, J. S.; Collins, A.; and Duguid, P. 1989. Situ-
ated cognition and the culture of learning. Educational
Researcher 18(1):32–42.
De Palma, P. 2001. Why women avoid computer science.
Communications of the ACM 44(6):27–29.
McIntosh, W. J. 2000. Beyond 2000 - the changing face of
undergraduate science education. Journal of College Sci-
ence Teaching 29(6):379–380.
National Research Council. 1996. National science edu-
cation standards. Washington, D.C.: National Academy
Press.
Oliver, R. 2007. Exploring an inquiry-based learning
approach with first-year students in a large undergraduate
class. Innovations in Education and Teaching International
44(1):3–15.
Phillips, D. C. 1995. The good, the bad, and the ugly:
The many faces of constructivism. Educational Researcher
42(7):5–12.
Powers, M. L., and Hartley, N. K., eds. 1999. Promot-
ing Excellence in Teacher Preparation: Undergraduate
Reforms in Mathematics and Science. Fort Collins, CO:
Rocky Mountain Teacher Education Collaborative.
Vegso, J. 2007. Continued drop in CS bachelor’s degree
production and enrollments as the number of new majors
stabilizes. Computing Research News 15(2):4.


