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Abstract

Given the lack of word delimiters in written

Japaneseword seggmentationis generallyconsid-
ereda crucialfirst stepin processinglapanestxts.
Typical Japanessggmentationalgorithmsrely ei-

theron alexicon andgrammaror on pre-sgmented
data. In contrast,we introducea novel statistical
method utilizing unsgmentedtraining data, with

performanceon kanji sequencesomparabldo and
sometimesurpassinghatof morphologicabnalyz-
ersover avarietyof errormetrics.

1 Introduction

Becauselapanesés written without delimitersbe-
tweenwords! accurateword sggmentationto re-
coverthelexical itemsis akey stepin Japaneseext
processing.Proposedpplicationsof segmentation
technologyinclude extractingnew technicalterms,
indexing documentdor information retrieval, and
correctingoptical characterecognition(OCR) er
rors (Wu andTseng,1993; NagaoandMori, 1994;
Nagata,1996a;Nagata,1996b;Sproatet al., 1996;
Fung,1998).

Typically, Japaneseavord segmentationis per
formedby morphologicalanalysisbasedon lexical
andgrammaticaknowledge. This analysisis aided
by the fact that there are three types of Japanese
characterskanji, hiragana andkatakana changes
in charactetypeoftenindicateword boundariesal-
thoughusingthis heuristicaloneachie/eslessthan
60%accurag (Nagata,1997).

Charactersequencegonsistingsolely of kanji
pose a challengeto morphologically-basedkseay-
menters for several reasons. First and most
importantly kanji sequencesften containdomain
terms and proper nouns: Fung (1998) notesthat
50-85% of the termsin various technical dictio-

1Theanalogousituationin Englishwould beif wordswere
written without spacedetweerthem.

Sequencéength  # of characters % of corpus
1- 3kanji 20,405,486 25.6
4 - 6 kanji 12,743,177 16.1
morethan6 kaniji 3,966,408 5.1
Total 37,115,071 46.8

Figure 1. Statisticsfrom 1993 Japanes@ewnswire
(NIKKEL), 79,326,40&haractersotal.

nariesare composedt leastpartly of kanji. Such
words tend to be missing from general-purpose
lexicons, causingan unknownword problem for
morphologicalanalyzersyet, thesetermsarequite
important for information retrieval, information
extraction,andtext summarizationmakingcorrect
segmentationof thesetermscritical. Secondkanji
sequence®ften consistof compoundnouns, so
grammaticalconstraintsare not applicable. For
instance, the sequencesha-dohkengyoh-mdbu-
choh (presidenandbusinesigererd manager
= “a presidentas well as a generalmanagerof
business”)could beincorrectlysegmentedas: sha-
chohken-gyolmubu-choh  (presidersubsidary
businesglsutomu [a name]general manager);
since both alternatves are four-noun sequences,
they cannot be distinguishedby part-of-speech
information alone. Finally, heuristics basedon
changesn charactetype obviously do notapplyto
kanji-only sequences.

Although kanji sequencesre difficult to seg-
ment, they can comprisea significant portion of
Japanesdext, as shavn in Figure 1. Since se-
quencesof morethan 3 kanji generallyconsistof
morethanoneword, atleast21.2%of 1993Nikkei
newswire consistf kanji sequencesequiringseg-
mentation.Thus,accurag on kanji sequences an
importantaspecbf thetotal sgmentatiorprocess.

As an alternatve to lexico-grammaticaland su-
pervisedapproacheswe proposea simple, effi-



cient sggmentation method which learns mostly
from very large amountsof unsgmentedtraining
data,thus avoiding the costsof building a lexicon
or grammaror hand-sgmentinglarge amountsof
training data. Somekey advantageof this method
are:

e No Japanese-specifitles are emplged, en-
hancingportability to otherlanguages.

e A very small numberof pre-sgmentedtrain-
ing examples(asfew as5 in our experiments)
are neededfor good performanceas long as
large amountsof uns@menteddataare avail-
able.

e Forlongkaniji strings,themethodproducese-
sults rivalling thoseproducedby Juman3.61
(KurohashiandNagao,1998)and Chasenl.0
(Matsumotoet al., 1997), two morphological
analyzersn widespreadise. For instancewe
achieze 5% higherword precisionand6% bet-
termorphemeecall

2 Algorithm

Ouralgorithmemploys countsof characten-grams
in anuns@mentecdcorpusto make segmentatiorde-
cisions. We illustrateits usewith an example(see
Figure2).

Let“A BCD W X Y Z” represenaneight-kaniji
sequenceTo decidewhetherthereshouldbeaword
boundarybetweenD andW, we checkwhethern-
gramsthat are adjacentto the proposedooundary
suchasthe4-gramss; =“A B C D" ands, =W
XY Z7, tendto bemorefrequentthann-gramsthat
straddleit, suchasthe4-gramt; =“B CD W”. If
so, we have evidenceof a word boundarybetween
D and W, sincethere seemsto be relatively little
cohesionbetweenthe characterson oppositesides
of this gap.

The n-gram ordersusedas evidencein the seg-
mentationdecisionare specifiedby the set N. For
instancejf N = {4} in our example,thenwe pose
thesix questionof theform, “Is #(s;) > #(t;)?",
where+#(z) denoteghe numberof occurrencesf
x in the (unsgmented)training corpus. If N =
{2,4}, thentwo more questions(Is “#(CD) >
#(DW)?" and“Is #(W X) > #(DW)?") are
added.

More formally, let sT and s be the non-
straddlingn-gramsjust to the left andright of lo-
cation k, respectrely, andlet ¢? be the straddling
n-gramwith j charactergo theright of locationk.

Figure2: Collectingevidencefor a word boundary
— are the non-straddlingn-gramss; and s, more
frequentthanthe straddlingn-gramsty, to, andts?

Let I~ (y, z) beanindicatorfunctionthatis 1 when
y > z, andO otherwis€ In orderto compensatéor
the fact that thereare more n-gramquestionghan
(n — 1)-gramquestionsyve calculatethefractionof
affirmative answerseparatelyor eachn in N:

) = 5y 3 S I D), #E)

i=1 j=1

Then,we averagethe contrikutions of eachn-gram
order:

1
un (k) = ] > (k)

After vy (k) is computedor every location,bound-
ariesareplacedatall locations? suchthateither:

° ’UN(E) > UN(E - 1) anva(E) > ’UN(€ + 1)
(thatis, ¢ is alocal maximum),or

e vy (¢) > t, athresholdparameter

The secondcondition is necessaryto allow for
single-charactewords (seeFigure 3). Notethatit
also controls the granularity of the segmentation:
low thresholdsencouragehortersegments.

Both the countacquisitionandthe testingphase
are efficient. Computingn-gram statisticsfor all
possiblevaluesof n simultaneoushcanbe donein
O(mlogm) time using sufix arrays,wherem is
the training corpussize (Manberand Myers, 1993;
Nagaoand Mori, 1994). However, if theset N of
n-gram ordersis known in adwance, conceptually
simpleralgorithmssufiice. Memory allocationfor

2Note that we do not take into accountthe magnitudeof
the differencebetweenthe two frequenciesseesection5 for
discussion.



A B|C D|W X|Y|Z

Figure3: Determiningword boundariesThe X- Y
boundaryis createdby the thresholdcriterion, the
otherthreeby thelocal maximumcondition.

counttablescan be significantly reducedby omit-
ting n-gramsoccurringonly onceandassuminghe
countof unseem-gramsto be one. In the applica-
tion phasethe algorithmis clearlylinearin thetest
corpussizeif | N| is treatedasa constant.

Finally, we notethatsomepre-sgmenteddatais
necessaryn orderto setthe parametersV andt.
However, asdescribedbelaw, very little suchdata
wasrequiredto getgoodperformanceye therefore
deemour algorithmto be“mostly unsupervised”.

3 Experimental Framework

Our experimental data was dravn from 150
megabytesof 1993 Nikkei nenswire (see Figure
1). Five 500-sequencéeld-outsubsetswere ob-
tainedfrom this corpus,the rest of the dataserv-
ing astheunsgmentedcorpusfrom whichto derive
charactem-gramcounts.Eachheld-outsubsetvas
hand-sgmentedand then split into a 50-sequence
parametetraining setand a 450-sequenceestset.
Finally, any sequencesccurringin both a testset
and its correspondingparametetraining set were
discardedfrom the parametetraining set, so that
thesesetswere disjoint. (Typically no more than
five sequencewereremoved.)

3.1 Hed-out set annotation

Eachheld-outsetcontainecbO0randomly-etracted
kanji sequencest leastten characterdong (about
twelve on average),lengthy sequencedeing the
most difficult to segment (Takeda and Fujisaki,
1987). To obtainthe gold-standarcgnnotationsye
segmentedhesequencely hand,usinganobsena-
tion of TakedaandFujisaki (1987)that mary kaniji
compound words consist of two-characterstem
wordstogethemwith one-characteprefixesandsuf-
fixes.Usingthisterminology ourtwo-level braclet-
ing annotationmay be summarizedasfollows 2 At

3A completedescriptionof theannotatiorpolicy, including
the treatmenf numericexpressionsmay be foundin a tech-
nical report(Ando andLee,1999).

theword level, a stemandits affixesarebracleted
togetheras a single unit. At the morphemdevel,
stemsaredivided from their affixes. For example,
althoughboth naga-no (Nagano)and shi (city) can
appearas individual words, naga-no-shi(Nagano
city) is bracletedas|[[naga-nd[shi]], sincehereshi
senes as a sufiix. Loosely speaking,word-level
bracleting demarcatesliscourseentities, whereas
morpheme-leel bracletsenclosestringsthatcannot
befurthersggmentedwithoutlossof meaningt For
instance,if one sggmentsnaga-noin naga-no-shi
into naga (long) andno (field), theintendedmean-
ing disappearsHereis an examplesequencdrom
our datasets:
[/N2R] [EA] [ ES] [ 5] ] [ EER]
Three native Japanesespeakrs participatedin
the annotation:onesegmentedall the held-outdata
basedntheaborerules,andtheothertwo reviewed
350 sequencein total. The percentageof agree-
mentwith thefirst persons bracletingwas98.42%:
only 62 out of 3927 locationswere contestedy a
verifier. Interestingly all disagreementvas at the
morphemsdevel.

3.2 Basdinealgorithms

We evaluatedour sggmentationmethod by com-

paring its performanceagainstChasen1.(® (Mat-

sumotoet al., 1997)and Juman3.618 (Kurohashi
andNagao,1998),two state-of-the-artpublically-

available,userextensiblemorphologicalanalyzers.
In bothcasesthegrammarsvereusedasdistributed

withoutmodification.Thesizesof Chasers andJu-

man’s default lexicons are approximately115,000
and231,000words,respectiely.

Comparison issues An important questionthat
arosein designingour experimentsvashow to en-
able morphologicalanalyzersto make use of the
parametetraining data,sincethey do not have pa-
rametergo tune. Theonly significantway thatthey
can be updatedis by changingtheir grammarsor
lexicons, which is quite tedious(for instance,we
hadto add part-of-speechnformationto nev en-
tries by hand). We took what we felt to be a rea-
sonablebput nottoo time-consuminggourseof cre-
atingnew lexical entriesfor all the bracletedwords
in the parametetraining data. Evidencethat this

“This level of segmentationis consistentvith Wu’s (1998)
MonotonicityPrinciple for segmentation.

Shttp://cactus.aist-nara.ac.jp/lab/nlt/chasen.html

Shttp://pine.kuee yoto-u.ac.jp/nl-resource/juman-e.html
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Figure 4: Word accurag. The three rightmost
groups representour algorithm with parameters
tunedfor differentoptimizationcriteria.

wasappropriatecomesfrom the fact that thesead-
ditionsnever degradedestsetperformanceandin-
deedimprovedit by onepercenin somecasegonly
smallimprovementsareto be expectedbecausehe
parametetraining setswerefairly small).

It isimportantto notethatin theend,we arecom-
paring algorithmswith accesdo differentsources
of knowledge. JumanandChaseruselexiconsand
grammarsdeveloped by humanexperts. Our al-
gorithm, not having accessto such pre-compiled
knowledgebasesmustof necessitydrav on other
information sourceg(in this case,a very large un-
segmentedcorpusanda few pre-sgmentedexam-
ples)to compensatéor this lack. Sincewe arein-
terestedn whethemsingsimplestatisticccanmatch
the performanceof laborintensve methodswe do
not view theseinformation sourcesas corveying
an unfair advantage especiallysincethe annotated
training setswere small, available to the morpho-
logical analyzersanddisjoint from thetestsets.

4 Reaults

We reportthe averageresultsover the five testsets
using the optimal parametesettingsfor the corre-
spondingtraining sets(we tried all nonemptysub-
setsof {2, 3,4, 5,6} for thesetof n-gramordersN

andall valuesin {.05,.1,.15, ..., 1} for thethresh-
old t)’. In all performancegraphs the “error bars”
represenione standarddeviation. The resultsfor

Chaserand Jumanreflectthe lexicon additionsde-

"For simplicity, ties were deterministicallybroken by pre-
ferring smallersizesof N, shortern-gramsin N, andlarger
thresholdvalues,in thatorder

scribedin section3.2.

Word and morpheme accuracy The standard
metricsin word segmentationare word precision
andrecall. Treatinga proposedseggmentationasa
non-nestedracleting (e.g.,“|AB|C|” corresponds
to the bracleting“[AB][C]"), word precision(P) is
definedasthe percentag®f proposecdracletsthat
exactlymatchword-level bracletsin theannotation;
word recall (R) is the percentagef word-level an-
notationbracletsthatareproposedy thealgorithm
in questionandword F combinesprecisionandre-
call: F =2PR/(P + R).

One problem with using word metrics is that
morphologicalanalyzersare designedto produce
morpheme-leel segments. To compensateywe al-
tered the segmentationsproducedby Jumanand
Chaserby concatenatingtemsandaffixes,asiden-
tified by the part-of-speeclnformationthe analyz-
ersprovided. (We also measurednorphemeaccu-
ragy, asdescribedelow.)

Figures4 and8 shav word accurag for Chasen,
Juman, and our algorithm for parametersettings
optimizing word precision, recall, and F-measure
rates. Our algorithmachiares 5.27%higher preci-
sionand0.26%betterF-measureccurag thanJu-
man,anddoesevenbetter(8.8%and4.22%,respec-
tively) with respectto Chasen. The recall perfor
mancefalls (barely)betweerthatof Jumanandthat
of Chasen.

As noted above, Jumanand Chasenwere de-
signedto producemorpheme-leel segmentations.
We thereforealso measurednorphemeprecision,
recall, and F measue, all definedanalogouslyto
theirword counterparts.

Figure 5 shavs our morphemeaccurag results.
We seethat our algorithmcanachiere betterrecall
(by 6.51%)andF-measurd¢by 1.38%)thanJuman,
anddoesbetterthanChaserby anevenwider mar
gin (11.18%and 5.39%, respectirely). Precision
wasgenerallyworsethanthemorphologicabnalyz-
ers.

Compatible Brackets Althoughword-level accu-
ragy is a standardpoerformancanetric, it is clearly
very sensitve to thetestannotation Morphemeac-
curay suffers the sameproblem. Indeed,the au-
thors of Jumanand Chasenmay well hase con-
structedtheir standarddictionariesusing different
notionsof word andmorphemehanthe definitions
we usedin annotatinghe data.We thereforedevel-
opedtwo new, morerobust metricsto measurdhe
numberof proposedbraclets that would be incor



[[dat a] [ base] ] [ syst en] (annotation brackets)

Proposedeaymentation word | morpheme compatible-bradlt errors
errors| errors | crossing morpheme-diiding

[dat a] [ base] [systen] 2 0 0 0

[dat a] [ basesystem 2 1 0

[ dat abase] [sys][teni 2 3 0 2

Figure6: Examplesof word, morphemeandcompatible-braakt errors. Thesequencédatabase’hasbeen
annotateds”[[data][base]]” becausédatabase’and“database’areinterchangeable.
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rectwith respecto anyreasonablannotation.

Our novel metricsaccountfor two typesof er
rors. The first, a crossingbradket, is a proposed
braclet that overlapsbut is not containedwithin an
annotationbraclet (Grishmanet al., 1992). Cross-
ing braclets cannotcoexist with annotationbrack-
ets, and it is unlikely that anotherhumanwould
create such braclets. The secondtype of er
ror, a morpheme-dividingbradket, subdvides a
morpheme-ieel annotationbraclet; by definition,
suchabracletresultsin alossof meaning.SeeFig-
ure 6 for someexamples.

We define a compatiblebradcket as a proposed
braclet that is neither crossing nor morpheme-
dividing. Thecompatiblebradketsrateis simplythe
compatiblebraclets precision. Note that this met-
ric accountdor differentlevels of sggmentationsi-
multaneouslywhich is beneficialbecause¢he gran-
ularity of Chaserand Jumans sggmentatiorvaries
from morphemdevel to compoundword level (by
our definition). For instancewell-known university
namesretreatedassingleseggmentsy virtue of be-
ing in the default lexicon, whereastheruniversity
namesaredividedinto the nameandtheword “uni-
versity”. Using the compatiblebraclets rate, both

seymentationcanbe countedascorrect.

We also use the all-compatible bradkets rate,
which is the fraction of sequencedor which all
the proposedbraclets are compatible. Intuitively,
thisfunctionmeasuregheeasawith whichahuman
could correctthe output of the sgmentationalgo-
rithm: if the all-compatiblebraclets rate is high,
then the errors are concentratedn relatively few
sequencesif it is low, thena humandoing post-
processingvould have to correctmary sequences.

Figure7 depictsthe compatiblebracletsandall-
compatiblebracletsrates. Our algorithmdoesbet-
ter on both metrics(for instance when F-measure
is optimized, by 2.16% and 1.9%, respectiely, in
comparisonto Chasenandby 3.15% and 4.96%,
respectiely, in comparisorto Juman)regardlesof
training optimizationfunction (word precision,re-
call, or F — we cannotdirectly optimizethe com-
patiblebracletsratebecauséperfect” performance
is possiblesimply by makingthe entiresequence
singlesgment).

Compatible and all-compatible brackets rates
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Figure 7: Compatiblebraclets and all-compatible
braclet rateswhenword accurayg is optimized.



| Juman5/s. Juman50 Our50vsJuman50 Our5vs. Juman5| Our5vs. Juman50

precision -1.04 +5.27 +6.18 +5.14
recall -0.63 -4.39 -3.73 -4.36
F-measur -0.84 +0.26 +1.14 +0.30

Figure8: Relatve word accurag asa function of training setsize. “5” and“50” denotetraining setsize

befoe discardingoverlapswith thetestsets.

4.1 Discussion

Minimal human effort is needed. In contrast
to our mostly-unsupervisethethod,morphological
analyzersneeda lexicon and grammarrules built
using humanexpertise. The workloadin creating
dictionarieson the orderof hundredsof thousands
of words (the size of Chasers and Jumans$ de-
fault lexicons)is clearly muchlarger thanannotat-
ing the small parametetraining setsfor our algo-
rithm. We also avoid the needto sggmenta large
amountof parametetraining databecauseour al-
gorithm drawvs almostall its information from an
unsgmentedcorpus.Indeedthe only humaneffort
involvedin ouralgorithmis pre-sgmentingthefive
50-sequencearametertraining sets, which took
only 42 minutes. In contrast,previously proposed
supervisedapproachefiave usedsegmentedtrain-
ing setsrangingfrom 1000-5000sentence¢Kash-
ioka et al., 1998) to 190,000sentencegNagata,
1996a).

To testhow muchannotatedrainingdatais actu-
ally necessarywe experimentedwith using minis-
cule parametetraining sets: five setsof only five
stringseach(from which ary sequencegepeatedn
thetestdatawerediscarded)lt took only 4 minutes
to performthe handsegmentationin this case. As
shawvn in Figure 8, relatve word performancevas
notdeggradedandsometimes®venslightly better In
fact, from the last column of Figure 8 we seethat
evenif our algorithmhasaccesgo only five anno-
tatedsequenceshenJumarhasaccesso tentimes
asmaury, we still achieve betterprecisionandbetter
F measure.

Both the local maximum and threshold condi-
tions contribute. In our algorithm, a location &
is deemeda word boundaryif vy (k) is either(1) a
local maximumor (2) at leastasbig asthe thresh-
old ¢. It is naturalto askwhethemwe really needtwo
conditions,or whetherjust onewould sufiice.

We therefore studied whether optimal perfor
mancecouldbeachiezedusingonly oneof thecon-
ditions. Figure9 shaws thatin factboth contrikute

to producinggood segmentations.Indeed,in some
casesoth are neededto achieve the bestperfor
mance;also,eachconditionwhenusedin isolation
yieldssuboptimaperformancevith respecto some
performancemetrics.

accurag optimize | optimize | optimize
precision| recall | F-measure

word M M&T M

morpheme|| M & T T T

Figure9: Entriesindicatewhethetbestperformance
is achievedusingthelocalmaximumcondition(M),
thethresholdcondition(T), or both.

5 Redated Work

Japanese Marny previously proposedsegmenta-
tion methodsfor Japaneseéext make useof either
a pre-«isting lexicon (Yamronet al., 1993; Mat-
sumotcandNagao,1994; TakeuchiandMatsumoto,
1995; Nagata,1997; Fuchi and Takagi, 1998) or
pre-sgmentedtraining data(Nagata,1994; Papa-
geogiou, 1994; Nagata, 1996a; Kashiokaet al.,
1998; Mori and Nagao,1998). Otherapproaches
bootstrapirom aninitial segmentationprovided by
a baselinealgorithmsuchasJuman(Matsukava et
al., 1993;Yamamoto,1996).

Unsupervised, non-lexicon-based methods for
Japanesseggmentatiordo exist, but they oftenhave
limited applicability Both Tomokiyo and Ries
(1997)and Teller and Batchelden1994) explicitly
avoid working with kanji charactes. Takedaand
Fujisaki (1987) proposethe short unit mode| a
type of Hidden Markov Model with linguistically-
determinedtopology to seggmentkanji compound
words. However, their method does not handle
three-charactestemwordsor single-charactestem
words with affixes, both of which often occurin
propernouns. In our five testdatasetswe found
that 13.56%o0f the kanji sequencesontainwords
thatcannotbe handledby the shortunit model.

NagacandMori (1994)proposeusingthe heuris-



tic thathigh-frequeng charactem-gramsmay rep-

resent(portions of) new collocationsand terms,
but the results are not experimentally evaluated,
nor is a generalseggmentationalgorithm proposed.
The work of Ito andKohda(1995) similarly relies
on high-frequeng charactem-grams,but again,is

more concernedvith usingthesefrequentn-grams
aspseudo-Iricon entries;a standardsegmentation
algorithmis thenusedon the basisof the induced
lexicon. Our algorithm,on the hand,is fundamen-
tally differentin thatit incorporateso explicit no-

tion of word, but only “sees” locations between
characters.

Chinese Accordingto Sproatetal. (1996), most
prior work in Chinesesegmentationhas exploited
lexical knovledgebasesjndeed,the authorsassert
that they were aware of only one previously pub-
lished instance(the mutual-informationmethodof
Sproatand Shih (1990)) of a purely statisticalap-
proach. In a later paper Palmer (1997) presents
a transformation-basedlgorithm, which requires
pre-sgmentedrainingdata.

To our knowledge, the Chinesesggmentermost
similar to oursis thatof Sunetal. (1998). They
also avoid usinga lexicon, determiningwhethera
given location constitutesa word boundaryin part
by decidingwhetherthe two characterson either
sidetendto occurtogetheralso,they usethresholds
and several typesof local minima and maximato
make sggmentationdecisions.However, the statis-
tics they use(mutualinformation and ¢-score)are
more comple thanthe simple n-gram countsthat
we emplgy.

Our preliminary reimplementation of their
methodshaws that it doesnot performaswell as
the morphologicalanalyzerson our datasets,al-
thoughwe do notwantto drav definiteconclusions
becausesomeaspectonf Sunet al's methodseem
incomparablego ours. We do note, however, that
their method incorporatesnumerical differences
betweenstatistics,whereaswe only useindicator
functions; for example, once we know that one
trigram is more commonthan another we do not
take into accountthe differencebetweenthe two
frequencies. We conjecturethat using absolute
differencesmay have an adwerse effect on rare
sequences.

6 Conclusion

In this paper we have presentedh simple, mostly-
unsupervisedlgorithmthat sggmentsJapanesse-

guencesnto wordsbasedon statisticsdravn from
a large unsgmentedcorpus. We evaluatedper
formanceon kanji with respectto several metrics,
including the novel compatible braclets and all-
compatiblebraclets rates, and found that our al-
gorithm could yield performancesivaling that of
lexicon-basednorphologicaknalyzers.

In future work, we plan to experiment on
Japanesesentenceswith mixtures of character
types, possibly in combinationwith morphologi-
cal analyzerdn orderto balancethe strengthsand
weaknessesf the two types of methods. Since
our methoddoesnot useary Japanese-dependen
heuristicswe alsohopeto testit on Chineseor other
languagesswell.
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