CS 671 Automated Reasoning

Meta Reasoning
Object Level versus Meta Level

- **Object level**: language for formalizing concepts
 - Concrete type theoretical expressions: x, 2, 2^x, $\lambda x.2^x$, ... Always a formal language

- **Meta level**: describe object level from the outside
 - Term language: “$\lambda x.t$ term if x variable and t term”
 - x and t are syntactical meta-variables
 - Substitution: “$x[t/x] = t$ and $y[t/x] = y$ if $x \neq y$”
 - Evaluation and judgments, validity
 - Sequents, proofs, proof rules, tactics, decision procedures, ...
 - Libraries, theorems, abstractions, display forms, ...
 Often semi-formal: English augmented with formal text
Renaming of bound variables does not change meaning

All Nuprl tactics are correct

Arith is correct
 - An arithmetic sequent F is valid iff the corresponding labelled graph has positive cycles

A first-order formula F is valid iff JProver can prove it
 - F has a sequent proof iff there is a matrix proof for F

The algorithm extracted from the proof of intsqrt_4adic runs in logarithmic time

If two record types are syntactically equal up to reordering of labels then they are semantically equal wrt. \equiv

F is provable if a certain syntactic transformation of F is

If F has a certain form then tactic tac will always prove it

Meta-reasoning can simplify proof tasks significantly
ML: meta-language as programming language

Express object language as (abstract) data type

```
abstype var = ...
abswtype term = (tok # parm list) # bterm list
and bterm = var list # term
with mk_term (opid,parms) bterms = abs_term((opid,parms),bterms)
and dest_term t = rep_term t
and mk_bterm vars t = abs_bterm(vars,t)
and dest_bterm bt = rep_bterm bt
```

Express proofs and tactics as data types

```
abstype declaration = var # term
lettype sequent = declaration list # term;;
abswtype proof = (declaration list # term) # rule # proof list
with mk_proof_goal decs t = abs_proof((decs,t), \[])
and refine r p = let children = deduce_children r p
and validation = deduce_validation r p
  in children, validation
and hypotheses p = fst (fst (rep_proof p))
and conclusion p = snd (fst (rep_proof p))
and refinement p = fst (snd (rep_proof p))
and children p = snd (snd (rep_proof p))
lettype validation = proof list -> proof;;
lettype tactic = proof -> (proof list # validation);;
```
• Top loops and proof editor reside at meta level

• Object level expressions can be quoted (use C-o)
 – Quoting lifts NUPRL terms to the meta-level
 – Use term editor for editing object level expressions

• Quoted terms can be arguments of ML functions
 – Mostly tactics, computation, decomposition, or substitution

 ... but we can’t reason about the results

 ... and we can’t use ML functions in NUPRL terms
 – can’t define $R_1 \triangleq R_2 \equiv \text{sort-labels}(R_1) = \text{sort-labels}(R_2)$
Can we Reason About the Meta Level?

Meta level of Nuprl is not a logic
... but it has many similarities to type theory

One could use type theory to build a meta-logic

\[
\begin{align*}
\text{Var} & \equiv \text{Atom} \\
\text{Parm} & \equiv \text{Atom} \times \text{Atom} \\
\text{Term} & \equiv \text{rectype Term}=\text{Atom} \times \text{Parm list} \times (\text{Var list} \times \text{Term}) \text{ list}
\end{align*}
\]

\text{mk_term} \text{ opid parms bterms } \equiv < \langle \text{opid,parms}, \text{bterms} \rangle, \text{bterms} >

\text{mk_lambda \ var \ t } \equiv \text{mk_term} "\text{lambda}" [] [[\text{var} \ t]]

\text{Declaration} \equiv \text{Var} \times \text{Term}

\text{Sequent} \equiv \text{Declaration list} \times \text{Term}

\text{Proof} \equiv (\text{Declaration list} \times \text{Term}) \times \text{Rule} \times \text{Proof list}

But that involves a lot of double work

- All meta-level constructs (evaluation, tactics, ...) need to be lifted
- Meta-logic is part of a different (duplicate) object logic as it does not connect to the logic in which it is defined
- We need to formalize the meta logic of that logic as well
How can we reduce double work?

- **Meta-Logical Frameworks**
 - Build logic for meta level first
 - Embed object logic into meta logic
 - Easy to build (Isabelle, Elf/Twelf, HOL, ...)
 - Can handle multiple logics
 - Fast construction of theorem proving tools for new logics

- **Reflection**
 - Bring meta-logic back into the object logic
 - Reasoning about capabilities of its own meta-logic
 - Replace execution of complex tactics by applying meta-theorems
 - More complex but much more powerful
Logical Frameworks

• Simple logic and proof environment for meta-level
 - Higher order logic of $\forall \Rightarrow$ together with λ-calculus
 - Fast mechanisms for matching, unification, rewriting

• Represent generic proof theory
 - Terms, sequents, proofs, rules, tactics, ...
 - Prove generic meta-theorems

\[
\forall A, B, C, T_1, T_2. \text{is_rule}(A, B \vdash C) \Rightarrow \text{is_thm}(\vdash T_1) \Rightarrow \text{is_thm}(\vdash T_2) \\
\Rightarrow \text{match}(A, T_1, \sigma) \Rightarrow \text{match}(B, T_2, \sigma) \Rightarrow \text{is_thm}(\vdash \sigma(C))
\]

 - Build fast generic proof tactics

• Define object logic as (inductive) data types
 - Concrete term language, specific rules
 - Prove that specific logic fits generic theory
 - Build proof tactics specialized to object logic
Reflection

- **Represent meta-logic** as **Nuprl expressions**
 - Data types for terms, sequents, proofs, rules, tactics, ...
 - λ-expressions for substitution, evaluation, refinement, ...
 - Informally prove isomorphism $\text{Term} \equiv \text{term}$, $\text{Proof} \equiv \text{proof}$, ...

- **Express object logic** in represented meta logic
 - λ-expressions for building concrete terms and rules
 - Display forms + color to make embedded logic look like object logic

- **Build hierarchy of levels**
 - Level i is meta level for level $i+1$

- **Reflection rule** links meta level to object level

 $H \vdash_{i+1} A$ \hspace{1cm} by reflection i

 $[H] \vdash_i \exists p: \text{Proof}_i. \text{goal}(p) = [A]$

 - Use same reasoning apparatus for object and meta level reasoning

Theoretically clean but impractical