1. Design Decisions for Nuprl’s Type Theory
2. Product, Union, and List Types
3. The Curry-Howard Isomorphism, formally
4. Empty and Unit Types
Design Decisions for Nuprl’s Type Theory

• Syntax:
 – Expressions will be represented in a uniform term syntax
 – Term display is independent of the internal syntax

• Semantics:
 – Semantics models proof, not denotation
 – Semantics is based on judgments and lazy evaluation of noncanonical terms
 – Judgments concern typehood, type equality, membership, and typed equality

• Proof Theory:
 – Proofs proceed by applying sequent-style refinement rules
 – A judgment “t is a member of T” is represented as $T_{\text{ext } t}$
 – Propositions are represented as types
 Basic propositions have Ax as only member
 – Typehood is represented by a cumulative hierarchy of universes

See Appendix A of the Nuprl 5 manual for details
Syntax:
 Canonical: \(S \times T, \langle e_1, e_2 \rangle \)
 Noncanonical: let \(\langle x, y \rangle = e \) in \(u \)

Evaluation:
\[
e \downarrow \langle e_1, e_2 \rangle \quad u[e_1, e_2 / x, y] \downarrow val \\
\text{let } \langle x, y \rangle = e \text{ in } u \downarrow val
\]

Semantics:
 \(S \times T \) is a type if \(S \) and \(T \) are
 \(\langle e_1, e_2 \rangle = \langle e_1', e_2' \rangle \) in \(S \times T \) if \(S \times T \) type, \(e_1 = e_1' \) in \(S \), and \(e_2 = e_2' \) in \(T \)

Library Concepts: \(e.1, e.2 \)

See Appendix A.3.2 and the library theory \texttt{core.2} for further details
Lists: Basic Data Containers

Syntax:
- Canonical: \(T \text{ list}, \; [], \; e_1::e_2 \)
- Noncanonical: \(\text{list}_\text{ind}(e; \; \text{base}; \; x, l, f_{xl}. \text{up}) \)

Evaluation:
- \(\frac{e \downarrow []}{\frac{\text{list}_\text{ind}(e; \; \text{base}; \; x, l, f_{xl}. \text{up}) \downarrow \text{val}}{\text{base} \downarrow \text{val}}} \)
- \(\frac{e \downarrow e_1::e_2}{\frac{\text{up}[e_1, e_2] \text{list}_\text{ind}(e_2; \; \text{base}; \; x, l, f_{xl}. \text{up}) / x, , l, f_{xl} \downarrow \text{val}}{\frac{\text{list}_\text{ind}(e; \; \text{base}; \; x, l, f_{xl}. \text{up}) \downarrow \text{val}}{\text{base} \downarrow \text{val}}} \)

Semantics:
- \(T \text{ list} \) is a type if \(T \) is
- \([] = [] \) in \(T \text{ list} \) if \(T \text{ list} \) is a type
- \(e_1::e_2 = e_1'::e_2' \) in \(T \text{ list} \) if \(T \text{ list} \) type, \(e_1=e_1' \) in \(T \), and \(e_2=e_2' \) in \(T \text{ list} \)

Library Concepts:
- \(\text{hd}(e), \; \text{tl}(e), \; e_1@e_2, \; \text{length}(e), \; \text{map}(f; e), \; \text{rev}(e), \; e[i], \; e[i..j^-], \ldots \)

See Appendix A.3.10 and the library theory \texttt{list_1} for further details
Disjoint Union: Case Distinctions

Syntax:
Canonical: \(S+T , \text{ inl}(e) , \text{ inr}(e) \)
Noncanonical: case \(e \) of inl\((x) \) \(\mapsto u \) | inr\((y) \) \(\mapsto v \)

Evaluation:
\[
\begin{align*}
\text{case } e \text{ of inl}(x) & \mapsto u \mid\text{ inr}(y) \mapsto v \downarrow \text{val} \\
\quad \quad e \downarrow \text{inl}(e') \quad u[e'/x] & \downarrow \text{val} \\
\quad \quad e \downarrow \text{inr}(e') \quad v[e'/y] & \downarrow \text{val}
\end{align*}
\]

Semantics:
\begin{itemize}
\item \(S+T \) is a type if \(S \) and \(T \) are
\item \(\text{inl}(e) = \text{inl}(e') \) in \(S+T \) if \(S+T \) type, \(e = e' \) in \(S \)
\item \(\text{inr}(e) = \text{inr}(e') \) in \(S+T \) if \(S+T \) type, \(e = e' \) in \(T \)
\end{itemize}

Library Concepts: ——

See Appendix A.3.3 for further details
The Curry-Howard Isomorphism, Formally

<table>
<thead>
<tr>
<th>Proposition</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>$P \land Q$</td>
<td>$P \times Q$</td>
</tr>
<tr>
<td>$P \lor Q$</td>
<td>$P + Q$</td>
</tr>
<tr>
<td>$P \Rightarrow Q$</td>
<td>$P \rightarrow Q$</td>
</tr>
<tr>
<td>$\lnot P$</td>
<td>$P \rightarrow \text{void}$</td>
</tr>
<tr>
<td>$\exists x:T. P[x]$</td>
<td>$x:T \times P[x]$</td>
</tr>
<tr>
<td>$\forall x:T. P[x]$</td>
<td>$x:T \rightarrow P[x]$</td>
</tr>
</tbody>
</table>

Need an **empty type** to represent “falsehood”

Need **dependent types** to represent quantifiers

See the library theory **core_1** for further details
Empty Type void

Syntax:
- Canonical: `void` — *no canonical elements*
- Noncanonical: `any(e)`

Evaluation: — *no reduction rules* —

Semantics:
- `void` is a type
- `e = e’` in void *never holds*

Library Concepts: —

See Appendix A.3.6 and Section 3 of the 1993 CS611 notes for further details

Warning: rules for `void` allows proving semantical nonsense like

\[x: \text{void} \vdash 0=1 \in 2 \quad \text{or} \quad \vdash \text{void} \rightarrow 2 \text{ type} \]
Unit: ONE ELEMENT TYPE

Syntax:
 Canonical: \texttt{Unit, Ax}
 Noncanonical: \texttt{no noncanonical expressions}

Evaluation: \texttt{no reduction rules}

Semantics:
 \begin{itemize}
 \item \texttt{Unit is a type}
 \item \texttt{Ax = Ax in Unit}
 \end{itemize}

Library Concepts: ——

\texttt{Defined type in NUPRL, see the library theory core_1 for further details}