CS 671 Automated Reasoning

Tactical Theorem Proving in NuPRL

1. Basic Tactics
2. Tacticals
3. Advanced Tactics
 Chaining, Induction, Case Analysis
Tactics: User-defined inference rules

- **Meta-level programs built using**
 - Basic inference rules
 - Predefined tacticals . . .
 - Meta-level analysis of the proof goal and its context
 - Large collection of standard tactics in the library

- **May produce incomplete proofs**
 \[\rightarrow\] User has to complete the proof by calling other tactics

- **May not terminate**
 \[\rightarrow\] User has to interrupt execution

but

Applying a tactic always results in a valid proof
Basic Tactics

Subsume primitive inferences under a common name

- **Hypothesis**: Prove \(\ldots C \ldots \vdash C' \) where \(C' \) \(\alpha \)-equal to \(C \)
- **Declaration**: Prove \(\ldots x:T \ldots \vdash x \in T' \) where \(T' \) \(\alpha \)-equal to \(T \)
 - Variants: NthHyp \(i \), NthDecl \(i \)

- **D \(c \)**: Decompose the outermost connective of clause \(c \)

- **EqD \(c \)**: Decompose immediate subterms of an equality in clause \(c \)
 - **MemD \(c \)**: Decompose subterm of a membership term in clause \(c \)
 - Variants: EqCD , EqHD \(i \), MemCD , MemHD \(i \)

- **EqTypeD \(c \)**: Decompose type subterm of an equality in clause \(c \)
 - **MemTypeD \(c \)**: Decompose type subterm of a membership term in clause \(c \)
 - Variants: EqTypeCD , EqTypeHD \(i \), MemTypeCD , MemTypeHD \(i \)

- **Assert \(t \)**: Assert (or cut) term \(t \) as last hypothesis

- **Auto**: Apply trivial reasoning, decomposition, decision procedures ...

- **Reduce \(c \)**: Reduce all primitive redices in clause \(c \)
TACTICALS

- \(\text{tac}_1 \ \text{THEN} \ \text{tac}_2 \): Apply \(\text{tac}_2 \) to all subgoals created by \(\text{tac}_1 \)
- \(\text{tac}_1 \ \text{THENL} \ [\text{tac}_1; \ldots; \text{tac}_n] \): Apply \(\text{tac}_i \) to the \(i \)-th subgoal created by \(\text{tac}_1 \)
- \(\text{tac}_1 \ \text{THENA} \ \text{tac}_2 \): Apply \(\text{tac}_2 \) to all auxiliary subgoals created by \(\text{tac}_1 \)
- \(\text{tac}_1 \ \text{THENW} \ \text{tac}_2 \): Apply \(\text{tac}_2 \) to all wf subgoals created by \(\text{tac}_1 \)

- \(\text{tac}_1 \ \text{ORELSE} \ \text{tac}_2 \): Apply \(\text{tac}_1 \). If this fails apply \(\text{tac}_2 \) instead

- \(\text{Try} \ \text{tac} \): Apply \(\text{tac} \). If this fails leave the proof unchanged

- \(\text{Complete} \ \text{tac} \): Apply \(\text{tac} \) only if this completes the proof

- \(\text{Progress} \ \text{tac} \): Apply \(\text{tac} \) only if that causes the goal to change

- \(\text{Repeat} \ \text{tac} \): Repeat \(\text{tac} \) until it fails
 - \(\text{RepeatFor} \ i \ \text{tac} \): Repeat \(\text{tac} \) exactly \(i \) times

- \(\text{AllHyps} \ \text{tac} \): Try to apply \(\text{tac} \) to all hypotheses
- \(\text{OnSomHyp} \ \text{tac} \): Apply \(\text{tac} \) to the first possible hypotheses
Supplying Parameters to Tactics

- Position of a hypothesis to be used: \text{NthHyp} \(i \)
- Names for newly created variables: \text{New} \(\{x\} \) (D 0)
- Type of some subterm in the goal: \text{With} \(x:S \rightarrow T \) (MemD 0)
- Term to instantiate a variable: \text{With} \(s \) (D 0)
- Universe level of a type: \text{At} \(j \) (D 0)
- Dependency of a term instance \(C[z] \) on a variable \(z \): \text{Using} \([z,C] \) (D 0)
Advanced Tactics: (Inductive) Analysis

• Induction
 - NatInd \(i \): standard natural-number induction on hypothesis \(i \)
 - IntInd, NSubsetInd, ListInd: induction on \(\mathbb{Z}, \mathbb{N} \) subranges, lists
 - CompNatInd \(i \): complete natural-number induction on hypothesis \(i \)

• Case Analysis
 - BoolCases \(i \): case split over boolean variable in hypothesis \(i \)
 - Cases \([t_1;\ldots;t_n]\): \(n \)-way case split over terms \(t_i \)
 - Decide \(P \): case split over (decidable) proposition \(P \) and its negation
Advanced Tactics: Chaining

- **Instantiating Facts**
 - InstHyp \([t_1; \ldots; t_n]\) \(i\): instantiate hypothesis \(i\) with terms \(t_1 \ldots t_n\)
 - InstLemma \(name\) \([t_1; \ldots; t_n]\): instantiate lemma \(name\) with terms \(t_1 \ldots t_n\)

- **Forward Chaining**
 - FHyp \(i\) \([h_1; \ldots; h_n]\): forward chain through hypothesis \(i\) matching its antecedents against any of the hypotheses \(h_1 \ldots h_n\)
 - FLemma \(name\) \([h_1; \ldots; h_n]\): forward chain through lemma \(name\)

 Optional argument \(Sel\) \(n\)

- **Backward Chaining**
 - BHyp \(i\): backward chain through hypothesis \(i\) matching its consequent against the conclusion of the proof
 - BLemma \(name\): backward chain through lemma \(name\)
 - Backchain \(bc_names\): backchain repeatedly through lemmas and hypotheses

 Optional argument \(Using\) \(binding\)
Running Nuprl from a Unix machine

Copy the file `nuprl/utils/profile/nuprl.config.cs671` to `~/.nuprl.config`
Edit `.nuprl.config` and change the entries
(iam "YourNameHere")
(sockets 1289 1980)
You may change the 0 to any number between 1-9. DO NOT change 1289!
In an xterm execute
xset fp+ nuprl/fonts/bdf
xset fp rehash
xhost +baldwin
rsh baldwin /usr/bin/X11/xterm -display ‘hostname’:0 -ls
Using baldwin makes sure that there are no memory issues. You may have to adjust the
-display setting. You also may want to add `~ nuprl/bin` to your path, e.g. by typing (in csh)
set path = (`nuprl/bin $path`) into the new window.
On baldwin execute nuprl/bin/emacs nuprl
In emacs type (m-x)nuprl
This should run for a minute then pop up the Nuprl windows on the display.
In the navigator, go into the directories theories, then users, click MkTHY*, enter your name
into [token], click OK* and work only in the newly created theory
To quit, type stop. into the emacs shell after the ML[(ORB)]> prompt.