CS 671 Automated Reasoning

Introduction to NuPRL

1. NuPRL Features
2. NuPRL Architecture
3. Interactive Theorem Proving in NuPRL
 - Decomposition & Computation
 - Defining new constructs
THE NUPRL SYSTEM

● Beginnings in 1984
 – Nuprl 1 (Symbolics): proof & program refinement in Type Theory
 – Book: Implementing Mathematics ...
 – Nuprl 2: Unix Version

● Nuprl 3: Mathematical Problem Solving
 – Machine proof for unsolved problems (Girard’s paradox) (Howe 1987)
 – Higman’s Lemma (Murthy 1990)

● Nuprl 4: System Verification and Optimization
 – Verification of a logic synthesis tool (Aagaard & Leeser 1993)
 – Verification of the SCI cache coherency protocol (Howe 1996)
 – Optimization of the Ensemble group communication system (Kreitz, Hayden & Hickey 1999)
 – Verification of Ensemble protocol layers (Bickford 1999)
Nuprl 4 System Features

- Interactive Proof Editor → readable proofs
- Flexible definition mechanism → user-defined terms
- Customizable Term Display → flexible notation
- Structure Editor for Terms → no ambiguities
- Tactics → user-defined inferences
- Decision Procedures
- Proof objects, Program Extraction → program synthesis
- Program Evaluation
- Library mechanism → user-theories
 - Large mathematical libraries
 - Large tactics collection
- HTML output generator → web accessibility
Nuprl 5: An Open Logical Environment

Platform for Cooperating Reasoning Systems
Nuprl 5: **Additional System Features**

- **Collection of Cooperating Processes**
 - Centered around a common knowledge base
 - Refiners, interfaces, evaluators, etc. connect as independent processes
 - Processes can connect and disconnect at any time

- **Ability to Connect to External Systems**
 - MetaPRL, JProver, HOL, ...

- **Library Organized as Persistent Data Base**
 - Transaction model + Version control + Dependency tracking

- **Reflective System Structure**
 - System designed within the system’s library \(\sim\) customizable structure

- **Cooperating Inference Engines**
 - Asynchronous and distributed theorem proving

- **Multiple User Interfaces**
 - Structure editor, Web front end, ...
Refinement Rules for Natural Numbers

\[H \vdash \mathbb{N} \text{ type} \]

\[H \vdash 0 = 0 \in \mathbb{N} \]

\[H \vdash \text{suc}(e) = \text{suc}(e') \in \mathbb{N} \]

\[H \vdash e = e' \in \mathbb{N} \]

\[H \vdash \text{ind}(e; \text{base}; n, x. \text{up}) = \text{ind}(e'; \text{base}'; n', x'. \text{up'}) \in T \]

\[H_1, x : T, H_2 \vdash x = x \in T \]

\[H \vdash \text{ind}(0; \text{base}; n, x. \text{up}) = e' \in T \]

\[H \vdash \text{base} = e' \in T \]

\[H \vdash \text{ind}(\text{suc}(e); \text{base}; n, x. \text{up}) = e' \in T \]

\[H \vdash \text{up}[e, \text{ind}(e; \text{base}; x.n, \text{up}) / n, x] = e' \in T \]
Refinement Rules for Function Spaces

\[H \vdash S \rightarrow T \text{ type} \] \hspace{1cm} \text{funR}

\[H \vdash S \text{ type} \]
\[H \vdash T \text{ type} \]

\[H \vdash \lambda x. e = \lambda x'. e' \in S \rightarrow T \] \hspace{1cm} \text{lamR}

\[H, x : S \vdash e = e'[x/x'] \in T \]
\[H \vdash S \text{ type} \]

\[H \vdash f e = f' e' \in T \] \hspace{1cm} \text{appR } S \rightarrow T

\[H \vdash f = f' \in S \rightarrow T \]
\[H \vdash e = e' \in S \]

\[H \vdash (\lambda x. e) e' = e^* \in T \] \hspace{1cm} \text{compute 1}

\[H \vdash e'[e/x] = e^* \in T \]

Note: \(e = e \in T \) is usually abbreviated by \(e \in T \)
Refinement Rules for First-Order Logic

<table>
<thead>
<tr>
<th>left</th>
<th>right</th>
</tr>
</thead>
<tbody>
<tr>
<td>andL i</td>
<td>(H, A \land B, H' \vdash G)</td>
</tr>
<tr>
<td></td>
<td>(H, A, B, H' \vdash G)</td>
</tr>
<tr>
<td>orL i</td>
<td>(H, A \lor B, H' \vdash G)</td>
</tr>
<tr>
<td></td>
<td>(H, A, H' \vdash G)</td>
</tr>
<tr>
<td>impL i</td>
<td>(H, A \implies B, H' \vdash G)</td>
</tr>
<tr>
<td></td>
<td>(H, A \implies B, H' \vdash A)</td>
</tr>
<tr>
<td>notL i</td>
<td>(H, \neg A, H' \vdash G)</td>
</tr>
<tr>
<td></td>
<td>(H, \neg A, H' \vdash A)</td>
</tr>
<tr>
<td>exL i</td>
<td>(H, \exists x : T . B, H' \vdash G)</td>
</tr>
<tr>
<td></td>
<td>(H, x : T, B, H' \vdash G)</td>
</tr>
<tr>
<td>allL i t</td>
<td>(H, \forall x : T . B, H' \vdash G)</td>
</tr>
<tr>
<td></td>
<td>(H, \forall x : T . B, B[t/x], H' \vdash G)</td>
</tr>
</tbody>
</table>

Note: an unlabelled hypotheses A is an abbreviation for \(\% : A \)