
CS 486: Applied Logic Lecture 21, April 10, 2003

21 Axiomatizing Integer Arithmetic

In the previous lecture we have presented the axioms of a variety of algebraic structures and
looked at certain domains and operations that satisfy these axioms. Of particular interest for
us is the domain of integers and its associated operations, since a complete axiomatization
of that domain would allow us to reason about arithmetic in first-order logic and to get hold
of the foundations of real analysis and a major chunk of mathematics.

Axiomatizing mathematics in a logical framework has been the dream of mathematicians
for more than a hundred years, since this would provide a machinery for writing and checking
mathematical proofs without having to rely on semantical arguments, which may or may
not be flawed in some subtle way. Unfortunately, Gödel’s incompleteness theorem, which we
will discuss briefly at the end of this course, put an end to this dream – but not completely.
There is still a significant part of mathematics that we can express in first-order logic and
we can use formal proof systems to prove and verify a lot of interesting results. Today, we’re
going to look at Integer Arithmetic - let’s see how far we get.

21.1 Ordered Integral Domain with Induction

From our investigation of algebraic structures we know that the integers as we know them
are an integral domain, but not a field. An integral domain is a domain with two associative
and commutative operations + and *, neutral elements for both of them, which we will call
0 and 1 from now on, inverse elements for +, such that the distributivity law and the law of
no zero divisors holds.

Integral Domain ≡ L(=,+,*,0,1; ref, sym, trans, subst, distrib, Z
functionality+, assoc+, ident+, inv+, comm+,
functionality∗, assoc∗, ident∗, comm∗ )

where the axioms are as follows

ref: (∀x) x=x
sym: (∀x,y) (x=y ⊃ y=x)
trans: (∀x,y,z) ((x=y ∧ y=z) ⊃ x=z)
subst: (∀x,y) (x=y ⊃ P(.,x,.) ⊃ P(.,y,.)) for every predicate symbol

functionality+: (∀x,y)(∃!z) x+y = z
comm+: (∀x,y,z) (x+y = z ⊃ y+x = z))
assoc+: (∀x,y,z,t) ((x+y)+z = t ⊃ x+(y+z) = t)
ident+: (∀x)( x+0 = x ∧ 0+x = x)
inv: (∀x)(∃x̄)( x+x̄ = 0 ∧ x̄+x = 0)
functionality∗: (∀x,y)(∃!z) x*y = z
comm∗: (∀x,y,z) (x*y = z ⊃ y*x = z))
assoc∗: (∀x,y,z,t) ((x*y)*z = t ⊃ x*(y*z) = t)
ident∗: (∀x)( x*1 = x ∧ 1*x = x)
distrib: (∀x,y,z)( x*(y+z) = x*y + x*z ∧ (x+y)*z = x*z + y*z)
Z: (∀x,y)( x*y = 0 ⊃ (x=0 ∨ y=0))
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Recall that n-ary functions are represented by (n+1)-ary predicates and that the above
presentation of the axioms is an abbreviation for the ones that are really used. The associa-
tivity law for +, for instance, really reads as

assoc: (∀x,y,z,s,t,w) (R+(x,y,s) ⊃ R+(s,z,w) ⊃ R+(y,z,t) ⊃ R+(x,t,w))

and there is an instance of the substitution axiom for each of the three arguments of R+.

Integral domains, as we have seen, are not sufficient to characterize the integers. There
are quite a few other models for integral domains that have nothing to do with the integers
we know. What is missing is that the integers are arranged in an infinite strict linear order,
that this order interacts with 0, 1, +, and * in certain ways, and that there is a method to
count the integers. Let us begin with axiomatizing the order relation.

The less-than order on integers is a strict ordering relation < that is linear , discrete, and
relates 0 and 1, and is monotone wrt. addition and (nonnegative) multiplication. This leads
to the following axioms (which may be redundant).

lt-asym: (∀x,y) (x<y ⊃ ∼(y<x))
lt-trans: (∀x,y,z) ((x<y ∧ y<z) ⊃ x<z)
lt-linear: (∀x,y) (x<y ∨ y<x ∨ x=y)
lt-discrete: (∀x,y) ∼(x<y ∧ y<x+1)
lt-0-1: 0<1
lt-mono-+: (∀x,y,z)(x<y ⊃ x+z < y+z)
lt-mono-*: (∀x,y,z)((0<z ∧ x<y) ⊃ x*z < y*z)

The standard domain of integers 〈Z, =, <, +, *〉 is certainly a model of these axioms, but
the factorization domains are not, because they violate the monotonicity laws. They do,
however, satisfy all the other axioms.
Here is an example of a proof based on the above axioms. We want to prove x<y ⊃ ȳ<x̄

(1) lt-mono-+ x<y ⊃ x+ȳ < y+ȳ
(2) comm+ x+ȳ=ȳ+x
(3) subst<, (2) x+ȳ < y+ȳ ⊃ ȳ+x < y+ȳ
(4) inv y+ȳ = 0
(5) subst<, (4) ȳ+x < y+ȳ ⊃ ȳ+x < 0
(6) lt-mono-+ ȳ+x < 0 ⊃ (ȳ+x)+x̄ < 0+x̄
(7) assoc+ (ȳ+x)+x̄ = ȳ+(x+x̄)
(8) lt-mono-+ (ȳ+x)+x̄ < 0+x̄ ⊃ ȳ+(x+x̄) < 0+x̄
(9) inv x+x̄ = 0

(10) subst<, (9) ȳ+(x+x̄) = ȳ+0
(11) ident+ ȳ+0 = ȳ
(12) subst<, (11) ȳ+(x+x̄) = ȳ
(13) subst<, (12) ȳ+(x+x̄) < 0+x̄ ⊃ ȳ < 0+x̄
(14) ident+ 0+x̄ = x̄
(15) subst<, (14) ȳ < 0+x̄ ⊃ ȳ < x̄
Chain (1),(3),(5),(6),(8),(13),(15): x<y ⊃ ȳ < x̄

This proof structure only tells us where and how axioms have to be instantiated. In a tableau
proof all steps would have to be assembled into one large chain of application of implications.

The above axioms are almost sufficient to uniquely characterize integers. In fact, it is
difficult to construct a model different from the standard integers that satisfies all the axioms.
Because of linearity, discreteness, and monotonicity of < wrt. addition, and the property that
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we just proved, the elements of the domain must be arranged in a linear order

... ¯1+1 < 1̄ < 0 < 1 < 1+1 < 1+1+1 ...

and, as we will see, the recursive definition of addition is expressed in the identity and as-
sociativity axioms. However, there is still some freedom for defining multiplication differently
from the standard multiplication. Although x*(y+1)=(x*y)+x follows from distributivity
and identity, we are not forced to define x*0=0 for x 6=0.

Furthermore, we have no means to guarantee the existence of other recursively defined
functions, because there is still one axiom missing – the induction principle. It states that
the domain has to be organized in a way that all properties of a number can be iteratively
reduced to a property of zero. Since we allow both positive and negative integers, the
induction has to go both ways.

ind: (P(0) ∧ (∀x)(0<x⊃P(x-1)⊃P(x)) ∧ (∀x)(x<0⊃P(x+1))⊃P(x)) ⊃ (∀x)P(x)

Like substitution, the induction principle is an axiom scheme. It has to be instantiated for
every predicate that is used in the set of formulas under consideration.

All these axioms taken together turn out to be equivalent to those that we know from
more direct formalizations of integers, as we will show next.

21.2 Inductively Ordered Integral Domain vs Peano Arithmetic

Most axiomatizations of arithmetic are based on the Peano axioms. These axioms charac-
terize the natural numbers together with the operations + and *. If we include the axioms
of equality, then Peano Arithmetic can be defined as

Peano Arithmetic ≡ L(=,+,*,0,1; ref, sym, trans, subst,
not-surjective, injective, induction,
functionality+, add-base, add-step,
functionality∗, mul-base, mul-step )

where the axioms are as follows

Equality Axioms
ref: (∀x) x=x
sym: (∀x,y) (x=y ⊃ y=x)
trans: (∀x,y,z) ((x=y ∧ y=z) ⊃ x=z)
subst: (∀x,y) (x=y ⊃ P(.,x,.) ⊃ P(.,y,.)) for every P
Successor Axioms
non-surjective (∀x) ∼(x+1 = 0)
injective (∀x,y) (x+1=y+1 ⊃ x=y)
induction (P(0) ∧ (∀x)(P(x) ⊃ P(x+1)) ) ⊃ (∀x)P(x) for every P
Addition Axioms
add-base (∀x) (x+0 = x)
add-step (∀x,y) (x+(y+1) = (x+y)+1)
Multiplication Axioms
mul-base (∀x) (x*0 = 0)
mul-step (∀x,y) (x*(y+1) = (x*y)+x)

If we drop multiplication and its axioms, we get a very simple arithmetical theory called
Presburger Arithmetic, which is quite expressive but still decidable. However, it cannot cap-
ture all of arithmetic, since this includes the set of computable functions, which are known
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to be undecidable. Once we include multiplication, however, all of arithmetic can be repre-
sented, as we will show later. In the following we will show that the two characterizations
do in fact express the same, provided we restrict ourselves to natural numbers.

21.2.1 Inductively Ordered Integral Domains satisfy the Peano Axioms

The equality axioms ref, sym, trans, and subst and the functionality laws of addition
and multiplication are the same in both formalizations of arithmetic. For the remaining
Peano axioms we have to add the restriction nat(x) to every quantifier, where nat(x) is
defined as nat(x) ≡ 0<x ∨ x=0.

non-surjective: Here is a tableau-like derivation of the law of non-surjectivity from the
axioms of inductively ordered integral domains.

FZ-Ax ⊃ (∀x)(nat(x) ⊃ ∼(x+1 = 0))
TZ-Ax)
F(∀x)(nat(x) ⊃ ∼(x+1 = 0))
F(nat(a) ⊃ ∼(a+1 = 0))
T0<a ∨ a=0
F∼(a+1 = 0)
T(a+1 = 0)

T0<a Ta=0
T0<1 T0<1 lt-0-1
T0+0<a+1 T0+1=0 lt-mono subst
T0<a+1 T1=0 ident,subst
T0<0 T0<0 subst
T∼(0<0) T∼(0<0) irref, derived from asym
F0<0 F0<0
× ×

For the remaining proofs we will use a more conventional reasoning style, as the formal
proofs become quite tedious. It should be noted, however, that all the laws can be derived
by purely logical reasoning from the axioms. No semantical reasoning or knowledge about
the integers is involved.

injective: The law (∀x,y) (x+1=y+1 ⊃ x=y) can be proven as follows.

x+1=y+1
⊃ (x+1)+1̄ = (y+1)+1̄ functionality
⊃ x+(1+1̄) = y+(1+1̄) assoc
⊃ x+0 = y+0 inv, subst
⊃ x = y ident+, subst

induction: The law (P(0) ∧ (∀x)(P(x) ⊃ P(x+1)) ) ⊃ (∀x)P(x) for every P is
a special instance of the induction axiom ind, restricted to natural numbers.

add-base: (∀x) (x+0 = x) is an instance of ident+

add-step: (∀x,y) (x+(y+1) = (x+y)+1) is an instance of assoc+
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mul-base: (∀x) (x*0 = 0) This actually requires an inductive proof. We use the already
proven law of induction from Peano Arithmetic for this purpose.

The base case uses ident+, ident∗, and distrib

0*0 = 0*0 + 0 = 0*0 + 0*1 = 0*(0+1) = 0*1 = 0

In the step case we prove x*0 = 0 ⊃ (x+1)*0 = 0 as follows.

x*0 = 0 ⊃ (x+1)*0 = x*0 + 1*0 = 0+0 = 0

mul-step: (∀x,y) (x*(y+1) = (x*y)+x) can be shown using distrib, ident∗, and subst.

x*(y+1) = (x*y) + (x*1)= (x*y) + x

Thus all inductively ordered integral domains must satisfy the Peano Axioms.

21.2.2 Algebraic laws of Peano Arithmetic

Proving the laws of inductively ordered integral domains from the Peano axioms is possible,
but quite tedious. One has to proceed in a particular order, since otherwise the proofs
become very difficult. We give a few examples

Equality and functionality laws are the same in both cases. functional notation

assoc+: (∀x,y,z) ((x+y)+z = x+(y+z)) has to be proven by induction.

((x+y)+0 = x+y = x+(y+0) add-base, subst

(x+y)+z = x+(y+z) ⊃ (x+y)+(z+1) = ((x+y)+z)+1 add-base
= (x+(y+z))+1 subst
= x+((y+z)+1) add-base
= x+(y+(z+1)) add-base, subst

ident+: The first part of (∀x)( x+0 = x ∧ 0+x = x) corresponds to the axiom add-base,
the second is proven by induction.

0+0 = 0
0+x = x ⊃ 0+(x+1) = (0+x)+1 = x+1

comm+: (∀x,y) (x+y = y+x) needs a double induction. The base case is an instance of
ident+. For the step case we first prove (∀x) (x+1 = 1+x).

0+1 = 1 = 1+0
x+1 = 1+x ⊃ (x+1)+1 = (1+x)+1 = 1+(x+1)

We then use the law in the remaining argument.

x+y = y+x ⊃ x+(y+1) = (x+y)+1 = (y+x)+1 = 1+(y+x) = (1+y)+x = (y+1)+x

inv: This law does not hold for natural numbers

assoc∗, ident∗, comm∗: similar to the laws for addition.
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distrib: The first part of (∀x,y,z)( x*(y+z) = x*y + x*z ∧ (x+y)*z = x*z + y*z) im-
plies the second since we have commutativity for both addition and multiplication. Again
we need induction

x*(y+0) = x*y = x*y + 0 = x*y + x*0

x*(y+z) = x*y + x*z ⊃ x*(y+(z+1)) = x*((y+z)+1))
= (x*(y+z)) + x
= (x*y + x*z) + x
= x*y + (x*z + x)
= x*y + (x*(z+1))

Z: To prove (∀x,y)( x*y = 0 ⊃ (x=0 ∨ y=0) we first show a generalization of the non-
surjectivity axiom: (∀x,y)(x+y=0 ⊃ y=0). Again we use induction.

x+0 = 0 ⊃ 0 = 0
x+(y+1) = 0 ⊃ (x+y)+1 = 0 ∧ ∼((x+y)+1 = 0) ⊃ False ⊃ (y+1) = 0

We use this law in the induction step.

x*0 = 0 ⊃ 0=0
(x*y = 0 ⊃ (x=0 ∨ y=0)) ⊃ x*(y+1) = 0

⊃ (x*y)+x = 0
⊃ x = 0
⊃ (x=0 ∨ (y+1)=0)

For the discrete linear order we define x<y ≡ (∃z)(x+z+1 =y). The seven axioms can
then be proven by induction.

21.3 Nonstandard Integers

A few weeks ago we have proven the compactness of first-order logic, which means that a
denumerable set S of first-order formulas is uniformly satisfiable in a denumerable domain if
all finite subsets of S are satisfiable. In other words, an infinite set of axioms has a model if
all its finite subsets have one. This observation allows us to construct a non-standard model
of integers.

Consider the set
S = Peano Axioms ∪ {, ∼(a0=0), ∼(a0=1), ∼(a0=1+1), ∼(a0=1+1+1), ...}.

Clearly every finite subset of S has a model, since we can always pick a constant that is greater
than all the (interpretations of) numbers mentioned in that finite set. By compactness,
the whole set S must be satisfiable, that is there is a model 〈D,=,+,*,0,1〉 where D is a
enumerable set that contains N and a constant a0 that is different from, or greater than, all
the natural numbers.

Since the operations + and * are defined on all elements of D there must also be elements
a0+1, a0+1+1, a0+1+1, . . . and we can go on defining a set S1 that yields a constant,
which is greater than all these values, and define set S2, S3, . . . to go on further. We call the
elements created this way nonstandard numbers because they do behave like numbers but
are infinitely large. The laws of logic guarantee that such numbers must exist. We may even
go on and diagonalize over the sets Si to get even larger constants than that, but we must
remain in the realm of denumerable sets to use the compactness argument.
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