Appendix A

The Basic Nuprl Type Theory

A.1 Syntax

Nuprl terms have the form $\text{opid}\{p_1:F_1, \ldots, p_k:F_k\}(x_1^{m_1}, \ldots, x_i^{n_i}, \ldots; x_1^{m_1}, \ldots, x_n^{m_n}, t_i)$. We name the parts of a term as follows:

- $\text{opid}\{p_1:F_1, \ldots, p_k:F_k\}$ is the operator.

 The parts of the operator are:
 - opid is the operator identifier.
 - $p_j:F_j$ is the j-th parameter. p_j is the parameter value and F_j is the parameter type.

- The tuple (m_1, \ldots, m_n), where $m_j \geq 0$ is the arity of the term.

- $s_i = x_1^{m_1}, \ldots, x_i^{n_i}, t_i$ is the i-th bound-term of the term, which binds free occurrences of the variables $x_1^{m_1}, \ldots, x_i^{n_i}$ in t_i.

When writing terms, we sometimes omit the $\{\}$ brackets around the parameter list if it is empty. Note that parameters are separated by commas while subterms are separated by semicolons.

A.1.1 Operator Identifiers

Operator identifiers are character strings drawn from the alphabet1 $a-z A-Z 0-9 _ - !$. An $!$ at the start of a character string indicates that the term does not belong to Nuprl’s object language. Operator identifiers are implemented using ML type tok. Valid operators are listed in Nuprl’s operator table, which contains the basic operators2 given in Table A.1 as well as conservative language extensions defined by abstractions in the library.

1We distinguish between the ASCII character - and the character range $x-y$, indicating the characters from x to y.

2Note that the operator identifier of a term is not always identical to the name a user has to type into Nuprl’s term editor in order to generate the corresponding display template. The latter depends only on the information provided in the display form while the abstract name can only be used to enter terms in the abstract (expanded) mode. Different names are, for instance, used for the simple inductive types (\texttt{simp|erec} instead of \texttt{rec}) and the less\texttt{than} predicate (\texttt{lt} instead of \texttt{less_than}). A complete list of display forms for the basic terms can be found in the system’s core\texttt{l} theory.
<table>
<thead>
<tr>
<th>Canonical</th>
<th>(Types)</th>
<th>(Members)</th>
<th>noncanonical</th>
</tr>
</thead>
<tbody>
<tr>
<td>var {x:v} ()</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>function { } (S; x . T)</td>
<td>lambda { } (x . t)</td>
<td>apply { } (f ; t)</td>
<td></td>
</tr>
<tr>
<td>e</td>
<td></td>
<td>(f \mid t)</td>
<td></td>
</tr>
<tr>
<td>product { } (S; x . T)</td>
<td>pair { } (s ; t)</td>
<td>spread { } (e ; x ; y . u)</td>
<td></td>
</tr>
<tr>
<td>e</td>
<td></td>
<td>let ((x , y) = e) in u</td>
<td></td>
</tr>
<tr>
<td>product { } (S; x . T)</td>
<td>sum { } (s , t)</td>
<td>dec { } (e ; x . u ; y . v)</td>
<td></td>
</tr>
<tr>
<td>e</td>
<td></td>
<td>case (e) of (\text{inl}(x) \mapsto u \mid \text{inr}(y) \mapsto v)</td>
<td></td>
</tr>
<tr>
<td>union { } (S; T)</td>
<td>inl { } (s) , inr { } (t)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S + T</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>equal { } (s ; t ; T)</td>
<td>Ax</td>
<td>any { } (e)</td>
<td></td>
</tr>
<tr>
<td>s = t (\in) T</td>
<td></td>
<td>any(e)</td>
<td></td>
</tr>
<tr>
<td>void { } ()</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Axiom { } ()</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atom { } ()</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Token { } (token ; t) ()</td>
<td></td>
<td>atom_eq { } (u ; v ; s ; t) ()</td>
<td></td>
</tr>
<tr>
<td>“token”</td>
<td></td>
<td>if (u = v) then (s) else (t)</td>
<td></td>
</tr>
<tr>
<td>Int { } ()</td>
<td>natural_number { u : n } ()</td>
<td>ind { } (v ; u , f ; x ; s ; base , y , f ; y ; t) ()</td>
<td></td>
</tr>
<tr>
<td>(n)</td>
<td></td>
<td>ind ((v ; u , f ; x ; s ; base , y , f ; y ; t))</td>
<td></td>
</tr>
<tr>
<td>minus { } (natural_number ; n ; n) ()</td>
<td></td>
<td>minus ({ u ; v }) , add ({ } (u ; w)) , sub ({ } (u ; v))</td>
<td></td>
</tr>
<tr>
<td>(- n)</td>
<td></td>
<td>(- u) , (u + v) , (u - v)</td>
<td></td>
</tr>
<tr>
<td>less_than { } (u ; v)</td>
<td></td>
<td>mut ({ } (u ; v)) , div ({ } (u ; v)) , rem ({ } (u ; v))</td>
<td></td>
</tr>
<tr>
<td>u < v</td>
<td></td>
<td>(u) , (v) , (u) , rem ((u ; v))</td>
<td></td>
</tr>
<tr>
<td>list { } (T)</td>
<td>nil { } (), cons { } (t ; l)</td>
<td>list_ind { } (s ; base , x , l , f ; x , t)</td>
<td></td>
</tr>
<tr>
<td>f</td>
<td>l</td>
<td>list_ind ((s ; base , x , l , f ; x , t))</td>
<td></td>
</tr>
<tr>
<td>rec { } (X . T ; X)</td>
<td></td>
<td>rec_ind { } (e ; f ; x , t)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>let (f (x) = e) in (f (e))</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>rec_type (X = T)</td>
<td>members defined by unrolling (T)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>set { } (S ; x . T)</td>
<td>members of (S) that satisfy (P)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>{ x ; S \</td>
<td>T } , { S \</td>
<td>T }</td>
<td></td>
</tr>
<tr>
<td>intersect { } (S ; x . T)</td>
<td>Terms that belong to all (T)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\cap x : S . T)</td>
<td>(x , y : T \mid E)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>quotient { } (T ; x , y . E)</td>
<td>members of (T) , new equality</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table A.1: Basic operators of Nuprl’s Type Theory. Terms are divided into canonical and noncanonical terms. Principal arguments in noncanonical terms are marked by a box. Standard display forms of terms are written below the abstract representation. The distinction between types and members is not a part of Nuprl’s syntax.
A.1.2 Parameters

Parameters $p:F$ consist of a parameter name p and a parameter family F. The current parameter families and associated values are:

variable: Names of variables, implemented using the ML data type var. Acceptable names are generated by the regular expression $[a-z A-Z 0-9 _ - \%]^{+}$. The $\%$ character has a special use.

natural: Natural numbers (including 0), implemented using the ML data type int. Acceptable numbers are generated by the regular expression $0+[1-9][0-9]^*$.

token: Character strings, implemented using the ML data type tok. Acceptable strings can draw from any non-control characters in Nuprl’s font.

string: Character strings, implemented using the ML data type string. Acceptable strings can draw from any non-control characters in Nuprl’s font.

level-expression: Universe level expressions, implemented using the ML data type level_exp. Universe level expressions are used to index universe levels in Nuprl’s type theory. Their syntax is described by the grammar $L::=v\mid k\mid L\cdot L'\mid[L]\cdots[L]$ where v denotes a level-expression variable (alphanumeric string), k a level expression constant (positive integer), and i a level expression increment (non-negative integer).

Level-expression variables are implicitly quantified over all positive integer levels. The expression $L\cdot i$ is interpreted as standing for levels $L+i$. L' is an abbreviation for $L\cdot 1$. The expression $[L_1]\cdots[L_n]$ is interpreted as being the maximum of expressions $L_1\cdots L_n$.

The names of parameter types are usually abbreviated to their first letters.

A.1.3 Binding Variables

Binding variables are character strings drawn from the same alphabet as variable parameters. To express terms without bindings, the empty string can be used as null variable. Null variables never bind. Binding variables are implemented using ML type var.

A.1.4 Injection of Variables and Numbers

In Nuprl, we consider variables and terms to be distinct. We have a special term kind, $\text{variable}\{v\}$ for injecting variables into the term type. When we talk of the variable x as a term, we really mean the term $\text{variable}\{x:v\}$. In a similar way, when we talk of the number n as a term, we really mean the term $\text{natural}_\text{number}\{n:n\}$.

The injection is often made implicitly when it is clear from the context. Nuprl’s editor automatically converts variables and numbers into terms when they are typed into templates for terms.

A.1.5 Term Display

The display of NUPRL terms is not necessarily identical to their abstract form. Usually, they are presented in a more conventional notation, which is created by the display forms described in Chapter 7.2. In Table A.1 we present the standard display of NUPRL terms immediately below their abstract form.
A.2 Semantics

A.2.1 Evaluation

Nuprl’s semantics is based on a notion of values. Terms are divided into canonical forms, i.e. values, and noncanonical forms, i.e. terms that need to be evaluated. Evaluation in Nuprl is lazy: whether a term is canonical or not depends solely on its operator identifier but not on its subterms. In noncanonical forms, certain subterms are marked as principal arguments. If a principal argument is instantiated with a matching canonical form, the expression becomes reducible (i.e. a redex) and can be evaluated to its contractum, defined in a redex–contracta table.

Nuprl’s evaluation mechanism first computes the values of all principal arguments of a noncanonical expression. If an argument does not have a value or if the resulting expression is not reducible, evaluation stops: the expression has no value. Otherwise the expression will be reduced according to redex–contracta table and the resulting term will be evaluated.

Canonical forms and noncanonical forms together with their principal arguments are given in Table A.1. The corresponding redex–contracta table is given in Table A.2.
The meaning of type theoretical expressions is given in the form of **judgments** about essential properties of the terms. Judgments are assertions of certain truths that form the foundation of type theory. We distinguish 4 types of judgments: **Typehood** (T Type), **Type Equality** ($S=T$), **Membership** ($t \in T$), and **Member Equality** ($s=t \in T$). The precise meaning of these judgments is defined as follows.

T Type
if $T=T$.

$S=T$ if there are canonical terms S' and T' such that $S \xrightarrow{*} S'$, $T \xrightarrow{*} T'$ and $S'=T'$ follows from the **type semantics table**.

$t \in T$ if $t=t \in T$.

$s=t \in T$ if there are canonical terms s', t' and T' such that $s \xrightarrow{*} s'$, $t \xrightarrow{*} t'$, $T=T'$, and $s'=t' \in T'$ follows from the **member semantics table**.

Nuprl's type semantics table is given in Table A.3 and its member semantics table in Table A.4.
\[
\lambda x_1 t_1 = \lambda x_2 t_2 \in x : S \rightarrow T \quad \text{if } x : S \rightarrow T \text{ Type and } t_1[x_1 / x] = t_2[x_2 / x] \in T[x_1 / x]
\]
for all \(s_1, s_2 \) with \(s_1 = s_2 \in S \).

\[
(s_1, s_2) \in x : S \times T
\]
if \(x : S \times T \text{ Type and } s_1 = s_2 \in S \), and \(t_1 = t_2 \in T[x_1 / x] \).

\[
\text{inl}(s) = \text{inl}(s_2) \in S + T
\]
if \(S + T \text{ Type and } s_1 = s_2 \in S \).

\[
\text{inr}(t) = \text{inr}(t_2) \in S + T
\]
if \(S + T \text{ Type and } t_1 = t_2 \in T \).

\[
\text{Ax} = \text{Ax} \in s : t \in T
\]
if \(s = t \in T \).

\[
s = t \in \text{void}
\]
never holds!

\[
\text{"token" = "token"} \in \text{Atom}
\]
\[
i = i \in \mathbb{Z}
\]
\[
\text{Ax} = \text{Ax} \in s << t
\]
if \(s \stackrel{\ast}{\longrightarrow} i \text{ and } t \stackrel{\ast}{\longrightarrow} j \) for some integers \(i, j \) with \(i < j \).

\[
\{ \} \in T \text{ list if } T \text{ Type}
\]
\[
t_1 :: t_2 :: t_3 \in T \text{ list if } T \text{ Type, } t_1 = t_2 \in T \text{, and } l_1 = l_2 \in T \text{ list}
\]
\[
s = t \in \text{ rectype } X = T_X
\]
if \(\text{ rectype } X = T_X \text{ Type and } s = t \in T_X \text{ rectype } X = T_X / X \).

\[
s = t \in \{ x : S \mid T \}
\]
if \(\{ x : S \mid T \} \text{ Type and } s = t \in S \text{, and there is some term } p \in T[s / x] \).

\[
t_1 = t_2 \in \cap x : S.T
\]
if \(\cap x : S.T \text{ Type and } t_1 = t_2 \in T[s / x] \) for all \(s \in S \).

\[
s = t \in x, y : T \text{//E}
\]
if \(x, y : T \text{//E Type, } s \in T \), \(t \in T \),
and there is some term \(p \in E[s, t / x, y] \).

\[
x_1 : S_1 \rightarrow T_1 = x_2 : S_2 \rightarrow T_2 \in U_j
\]
if \(S_1 = S_2 \in U_j \) and \(T_1[x_1 / x] = T_2[x_2 / x] \in U_j \)
for all \(s_1, s_2 \) with \(s_1 = s_2 \in S_1 \).

\[
T = S_2 \rightarrow T_2 \in U_j
\]
if \(T = x_2 : S_2 \rightarrow T_2 \in U_j \) for some variable \(x_2 \).

\[
S_1 \rightarrow T_1 = T \in U_j
\]
if \(S_1 = S_2 \rightarrow T_1 = T \in U_j \) for some variable \(x_2 \).

\[
x_1 : S_1 \times T_1 = x_2 : S_2 \times T_2 \in U_j
\]
if \(S_1 = S_2 \in U_j \) and \(T_1[x_1 / x] = T_2[x_2 / x] \in U_j \)
for all \(s_1, s_2 \) with \(s_1 = s_2 \in S_1 \).

\[
T = S_2 \times T_2 \in U_j
\]
if \(T = x_2 : S_2 \times T_2 \in U_j \) for some variable \(x_2 \).

\[
S_1 \times T_1 = T \in U_j
\]
if \(S_1 = S_2 \times T_1 = T \in U_j \) for some variable \(x_2 \).

\[
S_1 + T_1 = S_2 + T_2 \in U_j
\]
if \(S_1 = S_2 \in U_j \) and \(T_1 = T_2 \in U_j \).

\[
s \cap t_1 \in T_i \cap s \cap t_2 \in T_2 \cap U_j
\]
if \(T_i = T_2 \in U_j \), \(s_1 = s_2 \in T_i \), and \(t_1 = t_2 \in T_2 \).

\[
\cap x : S \cup T_1 \cup U_j
\]
if \(j_1 = j_2 < j \) (as natural number).

\[
\text{Atom} = \text{Atom} \in U_j
\]
\[
\emptyset \in \text{ Atom} \in U_j
\]
\[
i \in s_j \in i \in s_2 \in \text{ U_j}
\]
if \(i_1 = i_2 \in \mathbb{Z} \) and \(j_1 = j_2 \in \mathbb{Z} \).

\[
T_1 \text{ list} \in T_2 \text{ list} \in U_j
\]
if \(T_1 = T_2 \in U_j \).

\[
\text{ rectype } X = T_1 \cap \text{ rectype } X = T_2 \in U_j
\]
if \(T_1[x_1 / x] = T_2[x_2 / x] \in U_j \) for all \(X \in U_j \).

\[
\{ x_1 : S_1 \mid T_1 \} \cap \{ x_2 : S_2 \mid T_2 \} \in U_j
\]
if \(S_1 = S_2 \in U_j \) and there are terms \(p_1, p_2 \) and a variable \(x \),
which occurs neither in \(T_1 \cap T_2 \) such that \(p_1 \in \forall x : S_1 \; T_1[x / x] \Rightarrow T_2[x_2 / x] \) and
\(p_2 \in \forall x : S_2 \; T_2[x_2 / x] \Rightarrow T_1[x_1 / x] \).

\[
T = \{ x_1 : S_1 \mid T_1 \} \in U_j
\]
if \(T = \{ x_1 : S_1 \mid T_1 \} \in U_j \) for some variable \(x_1 \).

\[
\{ x_1 : S_1 \mid T_1 \} \cap \text{ T_1 } \in U_j
\]
if \(\{ x_1 : S_1 \mid T_1 \} \in U_j \) for some variable \(x_1 \).

\[
\cap x : S_1 \cap T_1 \cap x_2 : S_2 \cap T_2 \cap U_j
\]
if \(S_1 = S_2 \in U_j \) and \(T_1[x_1 / x] = T_2[x_2 / x] \in U_j \)
for all \(s_1, s_2 \) with \(s_1 = s_2 \in S_1 \).

\[
\{ x_1, y_1 : E_1 = x_2, y_2 : E_2 \in U_j
\]
if \(T_1 = T_2 \in \mathbb{Z} \) and there are terms \(p_1, p_2, r, s, t \) and variables \(x, y, z, \) which occur neither in \(E_1 \) nor in \(E_2 \) such that \(p_1 \in \forall x : T_1 \cap \forall y : T_1 \) \(E_1[x, y / x, y_1] \Rightarrow E_2[x, y / x, y_2] \),
\(p_2 \in \forall x : T_1 \cap \forall y : T_1 \) \(E_2[x, y / x, y_2] \Rightarrow E_1[x, y / x_1, y_1] \),
\(r \in \forall x : T_1 \cap \forall y : T_1 \) \(E_1[x, x / x, x_1, y_1] \),
\(s \in \forall x : T_1 \cap \forall y : T_1 \cap E_1[x, y / x_1, y_1] \Rightarrow E_1[y, z / x_1, y_1] \), and \(t \in \forall x : T_1 \cap \forall y : T_1 \cap \forall z : T_1 \),
\(E_1[x, y / x, y_1] \Rightarrow E_1[y, z / x_1, y_1] \Rightarrow E_1[x, z / x_1, y_1] \).

Table A.4: Member semantics table for Nuprl
A.3 Inference rules

Nuprl’s inference rules describe the top-down refinement of proof sequents (see Chapter 6) and the bottom-up construction of extract terms. Rules are written in a top-down fashion, showing the goal sequent above the rule name and the subgoal sequents below it.

For each type there are rules for type formation and type equality, formation and equality of canonical members, equality of noncanonical forms, type decomposition in hypotheses (elimination), computation rules, and possibly additional rules. In addition to the rule name, a rule may need certain arguments (see Section 8.1.2) such as

- The position of a hypothesis to be used as in `hypothesis i`
- Names for newly created variables as in `functionEquality x`
- The universe level of a type as in `lambdaEquality j x'`
- A term that instantiates a variable as in `dependent.pairFormation j s x'`
- The type of some subterm in the goal as in `applyEquality x:S!T`
- The dependency of a term $C[z]$ from a variable z as in `decideEquality z C S+T s t y`

Most of the elementary inference rules are subsumed by the one-step decomposition tactics `D`, `MemCD`, `EqCD`, `MemHD`, `EqHD`, `MemTypeCD`, `EqTypeCD`, `MemTypeHD`, `EqTypeHD`. These tactics try to determine the parameters of the corresponding rules from the context unless they are explicitly provided with the tacticals `New`, `At`, `With`, or `Using` (see Section 8.2.2). A user may choose to use these tacticals to support the tactics in situations where appropriate parameters cannot be found automatically or in order to enforce the use of, for instance, particular names for newly created variables.

In the following we present the basic inference rules of Nuprl’s type theory as well as the tactics that can be used to perform the same one-step decomposition of proof goals. For the latter we describe both the minimal form, which only lists tactics that are needed for injecting required arguments, and a maximal form with all tacticals that may have an effect on the execution of the tactic. Some rules that are now considered obsolete are not covered by tactics and have to be converted explicitly into tactics using the function `refine` (see Section 8.1.3).

For integer and list induction we use the abstract terms instead of the lengthy display forms. Goals of the form $a\in T$ always abbreviate $a=a\in T$. $\neg P$ stands for $P\rightarrow \text{void}$, $s\neq t$ for $-(s=t\in \mathbb{Z})$, and $s\leq t$ for $-(t<s)$.
A.3.1 Functions

\[\Gamma \vdash \mathbf{U}_j \text{ext} x : S \rightarrow T \]

by dependent_functionFormation \(x \) \(S \)
\[\Gamma \vdash S \in \mathbf{U}_j [\alpha] \]
\[\Gamma, x : S \vdash \mathbf{U}_j \text{ext} T \]
\[\Gamma \vdash x_i : S_1 \rightarrow T_1 = x_j : S_2 \rightarrow T_2 \in \mathbf{U}_j [\alpha] \]

by functionEquality \(x \)
\[\Gamma \vdash S_1 = S_2 \in \mathbf{U}_j [\alpha] \]
\[\Gamma, x : S_1 \vdash T_1[x/x_1] = T_2[x/x_2] \in \mathbf{U}_j [\alpha] \]

\[\Gamma \vdash \lambda x, t_i = \lambda x, t_2 \in x : S \rightarrow T [\alpha] \]

by lambdaEquality \(j \) \(x' \)
\[\Gamma, x' : S \vdash t_1[x'/x_1] = t_2[x'/x_2] \in T[x'/x] [\alpha] \]
\[\Gamma \vdash S \in \mathbf{U}_j [\alpha] \]
\[\Gamma \vdash f, t \in f_1, t \in x : S \rightarrow T [\alpha] \]

by applyEquality \(x : S \rightarrow T \)
\[\Gamma \vdash f_1 = f_2 \vdash x : S \rightarrow T [\alpha] \]
\[\Gamma \vdash t_1 = t_2 \in S [\alpha] \]
\[\Gamma \vdash f, x : S \rightarrow T, \Delta \vdash C [\text{ext} t[f, s, y, z]] \]

by dependent_functionElimination \(i \) \(s \) \(y \) \(z \)
\[\Gamma, f, x : S \rightarrow T, \Delta \vdash s \in S [\alpha] \]
\[\Gamma, f, x : S \rightarrow T, y : T[s/x], z : y = f s \in T[s/x], \Delta \vdash C \text{ext} t_1 \]
\[\Gamma \vdash (\lambda x, t) s = t_2 \in T [\alpha] \]

by applyReduce
\[\Gamma \vdash t[s/x] = t_2 \in T [\alpha] \]
\[\Gamma \vdash f, x \in x : S \rightarrow T \text{ext} t_1 \]

by functionExtensionality \(j \) \(x_i : S_1 \rightarrow T_1 x_j : S_2 \rightarrow T_2 x' \)
\[\Gamma, x' : S \vdash f, x' = f_1 x' \in T[x'/x] \text{ext} t_1 \]
\[\Gamma \vdash S \in \mathbf{U}_j [\alpha] \]
\[\Gamma \vdash f_1 \in x_i : S_1 \rightarrow T_1 [\alpha] \]
\[\Gamma \vdash f_2 \in x_j : S_2 \rightarrow T_2 [\alpha] \]

Basic Inference Rule

<table>
<thead>
<tr>
<th>Corresponding Tactic</th>
<th>with required arguments with optional tactics</th>
</tr>
</thead>
<tbody>
<tr>
<td>dependent_functionFormation (x) (S)</td>
<td>---</td>
</tr>
<tr>
<td>independent_functionFormation</td>
<td>---</td>
</tr>
<tr>
<td>functionEquality (x)</td>
<td>EqCD</td>
</tr>
<tr>
<td>independent_functionEquality</td>
<td>---</td>
</tr>
<tr>
<td>lambdaEquality (j) (x')</td>
<td>EqCD</td>
</tr>
<tr>
<td>lambdaFormation (j) (x')</td>
<td>D 0</td>
</tr>
<tr>
<td>applyEquality (x : S \rightarrow T)</td>
<td>EqCD</td>
</tr>
<tr>
<td>independent_functionElimination (i) (s) (y) (z)</td>
<td>D (i)</td>
</tr>
<tr>
<td>dependent_functionElimination (i) (s) (y) (z)</td>
<td>D (i)</td>
</tr>
<tr>
<td>applyReduce</td>
<td>ReduceEquands 0</td>
</tr>
<tr>
<td>functionExtensionality (j) (x_i : S_1 \rightarrow T_1) (x_j : S_2 \rightarrow T_2) (x')</td>
<td>EqExtWith</td>
</tr>
</tbody>
</table>
A.3.2 Products

Γ ⊢ \(U_j \ ext x:S \times T \)
 \(\text{by dependent_productFormation } x \ S \)
 Γ ⊢ S ∈ \(U_j \ [a] \)
 Γ, x:S ⊢ \(U_j \ ext T \)

Γ ⊢ \(x_1 S_1 \times T_1 = x_2 S_2 \times T_2 \in U_j \ [a] \)
 \(\text{by productFormation } x' \)
 Γ ⊢ S_1 = S_2 ∈ \(U_j \ [a] \)
 Γ, x':S_1 ⊢ T_1[x'/x_1] = T_2[x'/x_2] ∈ \(U_j \ [a] \)

Γ ⊢ \(\langle s_1, t_1 \rangle = \langle s_2, t_2 \rangle ∈ x:S \times T \ [a] \)
 \(\text{by dependent_pairEquality } j \ x' \)
 Γ ⊢ s_1 = s_2 ∈ S \ [a]
 Γ ⊢ t_1 = t_2 ∈ T \ [a]
 Γ, x':S ⊢ \(T[x'/x] \in U_j \ [a] \)

Γ ⊢ \(\langle s_1, t_1 \rangle = \langle s_2, t_2 \rangle ∈ x:S \times T \ [a] \)
 \(\text{by independent_pairEquality} \)
 Γ ⊢ s_1 = s_2 ∈ S \ [a]
 Γ ⊢ t_1 = t_2 ∈ T \ [a]

Γ ⊢ \(\langle x_1, y_1 \rangle = e_1 \in t_1 = \langle x_2, y_2 \rangle = e_2 \in t_2 \in C[e_1/z] \ [a] \)
 \(\text{by spreadEquality } z \ C \ x:S \times T \ s \ t \ y \)
 Γ ⊢ e_1 = e_2 ∈ x:S \times T \ [a]
 Γ, s:S, t:T[s/x], y:e = \(s, t \in x:S \times T + t_1[s, t/x_1, y_1] = t_2[s, t/x_2, y_2] \in C[s, t/z] \ [a] \)

Γ, z:x:S \times T, Δ ⊢ C \ ext \ let \ (s, t) = z \ in \ u \)
 \(\text{by productElimination } i \ s \ t \)
 Γ ⊢ z:x:S \times T, s:S, t:T[s/x] \ Δ[s, t]/z \ ⊢ C[s, t/z] \ ext \ u \)

Γ ⊢ \(\langle x, y \rangle = \langle s, t \rangle \in u \)
 \(\text{by spreadReduce} \)
 Γ ⊢ u[s, t/x, y] = t_2 ∈ T \ [a]

Basic Inference Rule

<table>
<thead>
<tr>
<th>Corresponding Tactic</th>
</tr>
</thead>
<tbody>
<tr>
<td>\text{dependence_productFormation } x \ S</td>
</tr>
<tr>
<td>\text{independence_productFormation}</td>
</tr>
<tr>
<td>\text{productEquality } x'</td>
</tr>
<tr>
<td>\text{independence_productEquality}</td>
</tr>
<tr>
<td>\text{dependence_pairEquality } j \ x'</td>
</tr>
<tr>
<td>\text{dependence_pairEquality2 } j \ x'</td>
</tr>
<tr>
<td>\text{dependence_pairFormation } j \ s \ x'</td>
</tr>
<tr>
<td>\text{independence_pairEquality}</td>
</tr>
<tr>
<td>\text{independence_pairFormation}</td>
</tr>
<tr>
<td>\text{spreadEquality } z \ C \ x:S \times T \ s \ t \ y</td>
</tr>
<tr>
<td>\text{productElimination } i \ s \ t</td>
</tr>
<tr>
<td>\text{spreadReduce}</td>
</tr>
</tbody>
</table>

with required arguments with optional tacticals

At \(U_j \) (With s (New \([x']\) (D 0)))
A.3.3 Disjoint Union

\[\Gamma \vdash \bigcup_j j \in S \rightarrow T \]

by unionFormation
\[\Gamma \vdash \bigcup_j \text{ext } S \]
\[\Gamma \vdash \bigcup_j \text{ext } T \]

by unionEquality
\[\Gamma \vdash S_1 + T_1 = S_2 + T_2 \in \bigcup_j (\alpha \beta \gamma) \]
\[\Gamma \vdash S_1 = S_2 \in \bigcup_j \alpha \beta \gamma \]
\[\Gamma \vdash T_1 = T_2 \in \bigcup_j \alpha \beta \gamma \]

by inrEquality
\[\Gamma \vdash \text{inl}(s_j) = \text{inl}(s_j) \in S + T \]
\[\Gamma \vdash s_j \in S \]
\[\Gamma \vdash T \in \bigcup_j \alpha \beta \gamma \]

by inlFormation
\[\Gamma \vdash \text{inr}(t_j) = \text{inr}(t_j) \in S + T \]
\[\Gamma \vdash t_j \in T \]
\[\Gamma \vdash S \in \bigcup_j \alpha \beta \gamma \]

by decideEquality
\[\Gamma \vdash \text{case } e_j \text{ of } \text{inl}(x_j) \mapsto u_j \mid \text{inr}(y_j) \mapsto v_j \in \text{inl}(x_j) \]
\[\Gamma \vdash e_j = e_j \in S + T \]
\[\Gamma, s : S, y : e_j = \text{inl}(s) \in S + T \vdash u_1[s/x_1] = u_2[s/x_2] \in C[\text{inl}(s)/z] \]
\[\Gamma, t : T, y : e_j = \text{inr}(t) \in S + T \vdash v_1[t/y_1] = v_2[t/y_2] \in C[\text{inr}(t)/z] \]

by decideReduceLeft
\[\Gamma \vdash \text{case } \text{inl}(s) \text{ of } u \mid \text{inr}(y) \rightarrow v \in T \]
\[\Gamma \vdash u[s/x] = t_2 \in T \]

by decideReduceRight
\[\Gamma \vdash \text{case } \text{inr}(t) \text{ of } u \mid \text{inr}(y) \rightarrow v \in T \]
\[\Gamma \vdash v[t/y] = t_2 \in T \]

<table>
<thead>
<tr>
<th>Basic Inference Rule</th>
<th>Corresponding Tactic with required arguments with optional tactials</th>
</tr>
</thead>
<tbody>
<tr>
<td>unionFormation</td>
<td>---</td>
</tr>
<tr>
<td>unionEquality</td>
<td>EqCD</td>
</tr>
<tr>
<td>inlEquality j</td>
<td>EqCD</td>
</tr>
<tr>
<td>inlFormation j</td>
<td>Sel 1 D 0</td>
</tr>
<tr>
<td>inrEquality j</td>
<td>EqCD</td>
</tr>
<tr>
<td>inrFormation j</td>
<td>Sel 2 D 0</td>
</tr>
<tr>
<td>decideEquality z C S+T s t y</td>
<td>EqCD Using [z,C] (With S+T (New s t y EqCD))</td>
</tr>
<tr>
<td>decideReduceLeft</td>
<td>ReduceEquands 0 ReduceAtAddr [2] 0</td>
</tr>
<tr>
<td>decideReduceRight</td>
<td>ReduceEquands 0 ReduceAtAddr [2] 0</td>
</tr>
</tbody>
</table>
A.3.4 Universes

\[\Gamma \vdash \bigcup_k \text{ ext } \bigcup_j \]
\[\text{by universeFormation } j \]
\[\Gamma \vdash \bigcup_j = \bigcup_j \in \bigcup_k \]
\[\text{by universeEquality } \]

\[\Gamma \vdash T \in \bigcup_k \]
\[\text{by cumulativity } j \]
\[\Gamma \vdash T \in \bigcup_j \]
\[\text{proviso } j < k \]

<table>
<thead>
<tr>
<th>Basic Inference Rule</th>
<th>Corresponding Tactic</th>
</tr>
</thead>
<tbody>
<tr>
<td>universeFormation (j)</td>
<td>D 0</td>
</tr>
<tr>
<td>universeEquality</td>
<td>EqCD</td>
</tr>
<tr>
<td>cumulativity (j)</td>
<td>Cumulativity (j)</td>
</tr>
</tbody>
</table>

*: proviso \(j < k \)
A.3.5 Equality

<table>
<thead>
<tr>
<th>Basic Inference Rule</th>
<th>Corresponding Tactic with required arguments with optional tacticals</th>
</tr>
</thead>
<tbody>
<tr>
<td>equalityFormation (T)</td>
<td>---</td>
</tr>
<tr>
<td>equalityEquality</td>
<td>EqCD</td>
</tr>
<tr>
<td>axiomEquality</td>
<td>EqCD</td>
</tr>
<tr>
<td>equalityElimination (i)</td>
<td>D (i)</td>
</tr>
<tr>
<td>hypothesisEquality (i)</td>
<td>Declaration (NthDecl) (i)</td>
</tr>
<tr>
<td>substitution (j) (s=t \in T) (x) (C)</td>
<td>Subst (s=t \in T) (0) At (j) ((BasicSubst \ s=t \in T) (x) (C))</td>
</tr>
<tr>
<td>equality</td>
<td>Eq</td>
</tr>
</tbody>
</table>

Decision procedure for elementary equalities
A.3.6 Void

\[\Gamma \vdash \text{void} \in \bigcup_j \text{ext void}_j \]
by voidFormation

\[\Gamma \vdash \text{void} = \text{void} \in \bigcup_j \text{void}_j \]
by voidEquality

\[\Gamma \vdash \text{any}(s) = \text{any}(t) \in T_{\text{void}} \]
by anyEquality

\[\Gamma \vdash s = t \in \text{void} \]
by voidElimination

<table>
<thead>
<tr>
<th>Basic Inference Rule</th>
<th>Corresponding Tactic</th>
</tr>
</thead>
<tbody>
<tr>
<td>voidFormation</td>
<td>---</td>
</tr>
<tr>
<td>voidEquality</td>
<td>EqCD</td>
</tr>
<tr>
<td>anyEquality</td>
<td>EqCD</td>
</tr>
<tr>
<td>voidElimination (i)</td>
<td>D (i)</td>
</tr>
</tbody>
</table>

Basic Inference Rule with required arguments with optional tacticals
A.3.7 Atom

\[\Gamma \vdash \bigcup_j \text{ext} \text{Atom} \]

by atomFormation

\[\Gamma \vdash \text{Atom} = \text{Atom} \in \bigcup_j \text{Atom} \]

by atomEquality

\[\Gamma \vdash "\text{token}" = "\text{token}" \in \text{Atom} \]

by tokenEquality

\[\Gamma \vdash \text{ext} "\text{token}" \]

by tokenFormation "token"

\[\Gamma \vdash \text{if } u_1 = v_1 \text{ then } s_1 \text{ else } t_1 = \text{if } u_2 = v_2 \text{ then } s_2 \text{ else } t_2 \in \text{T} \]

by atom_eqEquality

\[\Gamma \vdash u_1 = u_2 \in \text{Atom} \]

\[\Gamma \vdash v_1 = v_2 \in \text{Atom} \]

\[\Gamma, v: u_1 = v_1 \in \text{Atom} \vdash s_1 = s_2 \in \text{T} \]

\[\Gamma, v: \neg(u_1 = v_1 \in \text{Atom}) \vdash t_1 = t_2 \in \text{T} \]

\[\Gamma \vdash \text{if } u = v \text{ then } s \text{ else } t = t_2 \in \text{T} \]

by atom_eqReduceTrue

\[\Gamma \vdash u = v \in \text{Atom} \]

\[\Gamma \vdash \neg(u = v \in \text{Atom}) \]

by atom_eqReduceFalse

Basic Inference Rule Corresponding Tactic

atomFormation	---
atomEquality	EqCD
tokenEquality	EqCD
tokenFormation "token"	D 0
atom_eqEquality	EqCD
atom_eqReduceTrue	PrimReduceFirstEquand 'true' PrimReduceEquands 'true' [1]
atom_eqReduceFalse	PrimReduceFirstEquand 'false' PrimReduceEquands 'false' [1]
A.3.8 Integers

\[\Gamma \vdash \mathbb{U}_j \text{ext } \mathbb{Z} \]
by intFormation

\[\Gamma \vdash n = n \in \mathbb{Z} \]
by intEquality

\[\Gamma \vdash -s_1 = -s_2 \in \mathbb{Z} \]
by minusEquality

\[\Gamma \vdash s_1 \cdot t_1 = s_2 \cdot t_2 \in \mathbb{Z} \]
by addEquality

\[\Gamma \vdash s_1 = s_2 \in \mathbb{Z} \]
\[\Gamma \vdash t_1 = t_2 \in \mathbb{Z} \]

\[\Gamma \vdash s_1 \cdot t_1 = s_2 \cdot t_2 \in \mathbb{Z} \]
by subtractEquality

\[\Gamma \vdash s_1 = s_2 \in \mathbb{Z} \]
\[\Gamma \vdash t_1 = t_2 \in \mathbb{Z} \]
\[\Gamma \vdash t_1 \neq 0 \]

\[\Gamma \vdash s \text{ rem } t_1 = s \text{ rem } t_2 \in \mathbb{Z} \]
by remainderEquality

\[\Gamma \vdash s_1 \cdot t_1 = s_2 \cdot t_2 \in \mathbb{Z} \]
by multiplyEquality

\[\Gamma \vdash s_1 = s_2 \in \mathbb{Z} \]
\[\Gamma \vdash t_1 = t_2 \in \mathbb{Z} \]
\[\Gamma \vdash t_1 \neq 0 \]

\[\Gamma \vdash 0 \leq s \text{ rem } t \land s \text{ rem } t < t \]
by remainderBounds1

\[\Gamma \vdash 0 \leq s \]
\[\Gamma \vdash t < 0 \]

\[\Gamma \vdash s \text{ rem } t \leq 0 \lor s \text{ rem } t > t \]
by remainderBounds3

\[\Gamma \vdash s \leq 0 \]
\[\Gamma \vdash t < 0 \]

\[\Gamma \vdash s = (s \div t) \cdot t + (s \text{ rem } t) \]
by divideRemainderSum

\[\Gamma \vdash 0 \leq s \text{ rem } t \land s \text{ rem } t < -t \]
by remainderBounds2

\[\Gamma \vdash 0 \leq s \]
\[\Gamma \vdash t < 0 \]

\[\Gamma \vdash s \text{ rem } t \leq 0 \lor s \text{ rem } t > -t \]
by remainderBounds4

\[\Gamma \vdash s \leq 0 \]
\[\Gamma \vdash t < 0 \]
\(\Gamma \vdash \text{ind}(u; x_1, f_{x_1}, s; \text{base}_1; y_1, f_{y_1}, t_1) = \text{ind}(u; x_2, f_{x_2}, s; \text{base}_2; y_2, f_{y_2}, t_2) \in T[u_1/z_{\alpha}] \) by \text{indEquality} \[z \xrightarrow{T} x \xrightarrow{f_{x}} v \]

\(\Gamma, u = u_2 \in \mathbb{Z}_{\alpha} \)
\(\Gamma, x: \mathbb{Z}, v: x < 0, f_x: T[(x+1)/z] \vdash s_1[x, f_x/x_1, f_{x_1}] = s_2[x, f_x/x_2, f_{x_2}] \in T[x/z]_{\alpha} \)
\(\Gamma, v: \text{base}_1 = \text{base}_2 \in T[0/z]_{\alpha} \)
\(\Gamma, x: \mathbb{Z}, v: 0 < x, f_x: T[(x-1)/z] \vdash t_1[x, f_x/y_1, f_{y_1}] = t_2[x, f_x/y_2, f_{y_2}] \in T[x/z]_{\alpha} \)

\(\Gamma, z: \mathbb{Z}, \Delta \vdash C \xrightarrow{\text{ext}} \text{ind}(z; x, f_x, s[A_x/v]; \text{base}; x, f_x, t[A_x/v]) \)
by \text{intElimination} \[i \xrightarrow{x} f_{x} v \]
\(\Gamma, z: \mathbb{Z}, \Delta, x: \mathbb{Z}, v: x < 0, f_x: C[(x+1)/z] \vdash C[x/z]_{\alpha} \)
by \text{ext s} \[\text{ext base} \]
\(\Gamma, z: \mathbb{Z}, \Delta, x: \mathbb{Z}, v: 0 < x, f_x: C[(x-1)/z] \vdash C[x/z]_{\alpha} \)
by \text{ext t} \]

\(\Gamma \vdash \text{ind}(i; x, f_x, s; \text{base}; y, f_y, t) = t_2 \in T_{\alpha} \)
by \text{indReduceDown} \[t[i, \text{ind}(i+1; x, f_x, s; \text{base}; y, f_y, t)/x, f_x] = t_2 \in T_{\alpha} \]
\(\Gamma \vdash i < 0_{\alpha} \)

\(\Gamma \vdash \text{ind}(i; x, f_x, s; \text{base}; y, f_y, t) = t_2 \in T_{\alpha} \)
by \text{indReduceUp} \[t[i, \text{ind}(i-1; x, f_x, s; \text{base}; y, f_y, t)/y, f_y] = t_2 \in T_{\alpha} \]
\(\Gamma \vdash 0 < i_{\alpha} \)

\(\Gamma \vdash \text{ind}(i; x, f_x, s; \text{base}; y, f_y, t) = t_2 \in T_{\alpha} \)
by \text{indReduceBase} \[\text{base} = t_2 \in T_{\alpha} \]
\(\Gamma \vdash i = 0_{\alpha} \)

\(\Gamma \vdash \text{if } u_1 = v_1 \text{ then } s_1 \text{ else } t_1 = \text{if } u_2 = v_2 \text{ then } s_2 \text{ else } t_2 \in T_{\alpha} \)
by \text{int-eqEquality} \[\text{if } u_1 = v_1 \text{ then } s_1 \text{ else } t_1 = t_2 \in T_{\alpha} \]
by \text{int-eqReduceTrue} \[\text{if } u_1 = v_1 \text{ then } s_1 \text{ else } t_1 = t_2 \in T_{\alpha} \]
by \text{int-eqReduceFalse} \[\text{if } u_1 = v_1 \text{ then } s_2 \text{ else } t_2 \in T_{\alpha} \]

\(\Gamma \vdash \text{if } u < v_1 \text{ then } s \text{ else } t = \text{if } u_2 < v_2 \text{ then } s_2 \text{ else } t_2 \in T_{\alpha} \)
by \text{lessEquality} \[\text{if } u < v_1 \text{ then } s \text{ else } t = t_2 \in T_{\alpha} \]
by \text{lessReduceTrue} \[\text{if } u < v_1 \text{ then } s \text{ else } t = t_2 \in T_{\alpha} \]
by \text{lessReduceFalse} \[\text{if } u < v_2 \text{ then } s \text{ else } t = t_2 \in T_{\alpha} \]
by \text{lessTrue} \[\text{if } u < v \text{ then } s \text{ else } t = t_2 \in T_{\alpha} \]
by \text{lessFalse} \[\text{if } u < v \text{ then } s \text{ else } t = t_2 \in T_{\alpha} \]
by \text{lessFalse} \[\text{if } u < v \text{ then } s \text{ else } t = t_2 \in T_{\alpha} \]
by \text{lessFalse} \[\text{if } u < v \text{ then } s \text{ else } t = t_2 \in T_{\alpha} \]
\[\Gamma \vdash C \quad \text{ext} \quad t_j \]
\[\text{by \, arith} \quad j \]
\[\Gamma \vdash s_i \in Z \quad \text{[A]} \]

Decision procedure for elementary arithmetic

- subgoals for all non-arithmetical expressions \(s_i \) in \(C \) -

<table>
<thead>
<tr>
<th>Basic Inference Rule</th>
<th>Corresponding Tactic</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>with required arguments</td>
</tr>
</tbody>
</table>

intFormation	---
intEquality	EqCD
natural_numberEquality	EqCD
natural_numberFormation	\(n \) With \(n \) (D 0)
minusEquality	EqCD
addEquality	EqCD
addFormation	---
subtractEquality	EqCD
subtractFormation	---
multiplyEquality	EqCD
multiplyFormation	---
divideEquality	EqCD
divideFormation	---
remainderEquality	EqCD
remainderFormation	---
remainderBounds1	
remainderBounds2	
remainderBounds3	
remainderBounds4	
divideRemainderSum	
indEquality \(z T x f_x v \)	StrongEqCD
intElimination \(i x f_x v \)	D \(i \)
indReduceDown	PrimReduceFirstEquand ‘down’ PrimReduceEquands ‘down’ [1]
indReduceUp	PrimReduceFirstEquand ‘up’ PrimReduceEquands ‘up’ [1]
indReduceBase	PrimReduceFirstEquand ‘base’ PrimReduceEquands ‘base’ [1]
int_eqEquality	EqCD
int_eqReduceTrue	PrimReduceFirstEquand ‘true’ PrimReduceEquands ‘true’ [1]
int_eqReduceFalse	PrimReduceFirstEquand ‘false’ PrimReduceEquands ‘false’ [1]
lessEquality	EqCD
lessReduceTrue	PrimReduceFirstEquand ‘true’ PrimReduceEquands ‘true’ [1]
lessReduceFalse	PrimReduceFirstEquand ‘false’ PrimReduceEquands ‘false’ [1]
arith \(j \)	Arith
A.3.9 Less-Than Proposition

\[
\begin{align*}
\Gamma & \vdash s_1 < t_1 = s_2 < t_2 \in U_j \ |_{A_0} \quad \Gamma' \vdash \text{ext } s < t_j \\
\text{by } \text{less_thanEquality} & \quad \text{by } \text{less_thanFormation} \\
\Gamma & \vdash s_1 = s_2 \in Z \ |_{A_0} \quad \Gamma' \vdash Z \ |_{\text{ext } s_j} \\
\Gamma & \vdash t_1 = t_2 \in Z \ |_{A_0} \quad \Gamma' \vdash Z \ |_{\text{ext } t_j} \\
\Gamma & \vdash A \in s < t \ |_{A_0} \\
\text{by } \text{less_thanMember} & \\
\Gamma & \vdash s < t \ |_{A_0}
\end{align*}
\]

<table>
<thead>
<tr>
<th>Basic Inference Rule</th>
<th>Corresponding Tactic</th>
</tr>
</thead>
<tbody>
<tr>
<td>less_thanEquality</td>
<td>EqCD</td>
</tr>
<tr>
<td>less_thanFormation</td>
<td>---</td>
</tr>
<tr>
<td>less_thanMember</td>
<td>EqCD</td>
</tr>
</tbody>
</table>

Basic Inference Rule (with required arguments with optional tacticals)
A.3.10 Lists

\[\Gamma \vdash T \text{list} \]
\[\Gamma \vdash \text{listFormation} \]
\[\Gamma \vdash T \text{list} \in \Gamma \]
\[\Gamma \vdash \text{listEquality} \]
\[\Gamma \vdash \text{nilFormation} \]
\[\Gamma \vdash T \in \Gamma \]

\[\Gamma \vdash \text{listElimination} \]
\[\Gamma \vdash T \text{list} \]
\[\Gamma \vdash T \text{list} \]

\[\text{Basic Inference Rule} \]
with required arguments with optional tacticals

<table>
<thead>
<tr>
<th>Inference Rule</th>
<th>Corresponding Tactic</th>
</tr>
</thead>
<tbody>
<tr>
<td>listFormation</td>
<td>---</td>
</tr>
<tr>
<td>listEquality</td>
<td>EqCD</td>
</tr>
<tr>
<td>nilEquality j</td>
<td>EqCD</td>
</tr>
<tr>
<td>nilFormation j</td>
<td>D 0</td>
</tr>
<tr>
<td>consEquality</td>
<td>EqCD</td>
</tr>
<tr>
<td>consFormation</td>
<td>---</td>
</tr>
<tr>
<td>list_indEquality z T S list x l f x l</td>
<td>EqCD</td>
</tr>
<tr>
<td>listElimination i f x l x l</td>
<td>D i</td>
</tr>
<tr>
<td>list_indReduceBase</td>
<td>ReduceEquands 0 ReduceAtAddr [2] 0</td>
</tr>
<tr>
<td>list_indReduceUp</td>
<td>ReduceEquands 0 ReduceAtAddr [2] 0</td>
</tr>
</tbody>
</table>
A.3.11 Inductive Types

\[\Gamma \vdash \text{rectype } X = T_{X1} = \text{rectype } X = T_{X2} \in \bigcup_j \{A_j\} \]

by \text{recEquality } X

\[\Gamma, X : \bigcup_j \vdash T_{X1}[X/X1] = T_{X2}[X/X2] \in \bigcup_j \{A_j\} \]

\[\Gamma \vdash s = t \in \text{rectype } X = T_{X} \quad \text{by recEquality } j \]

\[\Gamma, X : \bigcup_j \vdash T_{X}[\text{rectype } X = T_{X}/X] \quad \text{by recMemberFormation } j \]

\[\Gamma \vdash \text{rectype } X = T_{X} \in \bigcup_j \{A_j\} \quad \text{by recMemberFormation } j \]

\[\Gamma \vdash \text{rectype } X = T_{X} \quad \text{by recIndEquality } j \]

\[\Gamma, X : \bigcup_j \vdash T_{X}[\text{rectype } X = T_{X}/X] \quad \text{by recMemberFormation } j \]

\[\Gamma \vdash \text{rectype } X = T_{X} \in \bigcup_j \{A_j\} \quad \text{by recMemberFormation } j \]

\[\Gamma \vdash \text{let } f, (x, y) = t_i \text{ in } f_s(e_1, e_2) = f_1(e_1) = f_2(e_2) \in T[e_1/z] \quad \text{by recIndEquality } j \]

\[\Gamma \vdash \text{let } f, (x, y) = t_i \text{ in } f_s(e_1, e_2) = f_1(e_1) = f_2(e_2) \in T[e_1/z] \quad \text{by recMemberFormation } j \]

\[\Gamma, P : \{\text{rectype } X = T_{X}/j \rightarrow \mathbb{P}_j\}, f : \{x : \text{rectype } X = T_{X}/P(x) \rightarrow T[y/z]\}, \]

\[x : T_{X}[\{x : \text{rectype } X = T_{X}/P(x)\}/X] \vdash t_i[f, x/f_1, x_1] = t_i[f, x/f_2, x_2] \in T[x/z] \quad \text{by recElimination } i \]

\[\Gamma, z : \text{rectype } X = T_{X}, \Delta \vdash C[x/z] \quad \text{by recElimination } i \]

\[\Gamma, z : \text{rectype } X = T_{X}, \Delta \vdash C[x/z] \quad \text{by recUnrollElimination } i \]

<table>
<thead>
<tr>
<th>Basic Inference Rule</th>
<th>Corresponding Tactic</th>
</tr>
</thead>
<tbody>
<tr>
<td>recEquality X</td>
<td>---</td>
</tr>
<tr>
<td>recMemberEquality j</td>
<td>EqTypeCD</td>
</tr>
<tr>
<td>recMemberFormation j</td>
<td>---</td>
</tr>
<tr>
<td>recIndEquality z T</td>
<td>---</td>
</tr>
<tr>
<td>recElimination i j P</td>
<td>RecTypeInduction i</td>
</tr>
<tr>
<td>recUnrollElimination i j x v</td>
<td>D i</td>
</tr>
</tbody>
</table>
A.3.12 Subset

\begin{align*}
\Gamma \vdash \bigcup_j \text{ext}\{x:S \mid T\}_j \\
&\text{by dependent_setFormation} S \, x \\
\Gamma \vdash S \in \bigcup_j \text{ext} \{x:S \mid T\}_j \\
\Gamma, \text{ } x:S \vdash \bigcup_j \text{ext}\{x:S \mid T\}_j \\
\Gamma \vdash \{x:S_1 \mid T_1\} = \{x:S_2 \mid T_2\} \in \bigcup_j \text{ext} \{x:S \mid T\}_j \\
&\text{by setEquality } x \\
\Gamma \vdash S_1 = S_2 \in \bigcup_j \text{ext} \{x:S \mid T\}_j \\
\Gamma, \text{ } x:S_1 \vdash T_1[x/x_1] = T_2[x/x_2] \in \bigcup_j \text{ext} \{x:S \mid T\}_j \\
\Gamma \vdash s = t \in \{x:S \mid T\}_j \\
&\text{by dependent_set_memberEquality } j \ x' \\
\Gamma \vdash s = t \in S \mid T[j] \\
\Gamma \vdash T[s/x] \mid T[j] \\
\Gamma, \text{ } x':S \vdash T[x'/x] \in \bigcup_j \text{ext} \{x:S \mid T\}_j \\
\Gamma \vdash s = t \in \{S \mid T\}_j \\
&\text{by independent_set_memberEquality} \\
\Gamma \vdash s = t \in S \mid T[j] \\
\Gamma \vdash T[s/x] \mid T[j] \\
\Gamma, \text{ } x':S \vdash T[x'/x] \in \bigcup_j \text{ext} \{x:S \mid T\}_j \\
\Gamma, \text{ } z:\{x:S \mid T\}, \Delta \vdash C \text{ext} (\lambda y.t) \ z \\
&\text{by setElimination } i \ y \ v \\
\Gamma, \text{ } z:\{x:S \mid T\}, y:S, \llbracket v \rrbracket :T[y/x], \Delta[y/z] \vdash C[y/z] \text{ext} t_j
\end{align*}

<table>
<thead>
<tr>
<th>Basic Inference Rule</th>
<th>Corresponding Tactic</th>
</tr>
</thead>
<tbody>
<tr>
<td>dependent_setFormation S x</td>
<td>EqCD</td>
</tr>
<tr>
<td>independent_setFormation</td>
<td>EqCD</td>
</tr>
<tr>
<td>setEquality x</td>
<td>EqCD</td>
</tr>
<tr>
<td>dependent_set_memberEquality j x'</td>
<td>EqTypeCD</td>
</tr>
<tr>
<td>dependent_set_memberFormation j s x'</td>
<td>D 0</td>
</tr>
<tr>
<td>independent_set_memberEquality</td>
<td>EqTypeCD</td>
</tr>
<tr>
<td>independent_set_memberFormation</td>
<td>D 0</td>
</tr>
<tr>
<td>setElimination i y v</td>
<td>D i</td>
</tr>
</tbody>
</table>

167
A.3.13 Intersection

\[\Gamma \vdash \bigcup_j \text{ext} \cap x:S.T \]

by isectFormation \(x \ S \)

\[\Gamma \vdash S \in \bigcup_j \text{ext} \]

\[\Gamma, x:S \vdash \bigcup_j \text{ext} T \]

\[\Gamma \vdash t_1 = t_2 \in \cap x:S.T \]

by isect_memberEquality \(j \ x' \)

\[\Gamma, x':S \vdash t_1 = t_2 \in T[x'/x] \]

\[\Gamma \vdash S \in \bigcup_j \text{ext} \]

\[\Gamma \vdash f_1 = f_2 \in T[t/x] \]

by isect_member_caseEquality \(\cap x:S.T \ t \)

\[\Gamma \vdash f_1 = f_2 \in \cap x:S.T \]

\[\Gamma \vdash t \in S \]

\[\Gamma, f: \cap x:S.T, \Delta \vdash C \text{ ext } t[f, \text{Ax/y}, z] \]

by isectElimination \(i \ s \ y \ z \)

\[\Gamma, f: \cap x:S.T, \Delta \vdash s \in S \]

\[\Gamma, f: \cap x:S.T, y:T[s/x], z:y=f \in T[s/x], \Delta \vdash C \text{ ext } t \]

<table>
<thead>
<tr>
<th>Basic Inference Rule</th>
<th>Corresponding Tactic</th>
</tr>
</thead>
<tbody>
<tr>
<td>isectFormation (x \ S)</td>
<td>---</td>
</tr>
<tr>
<td>isectEquality (x)</td>
<td>EqCD</td>
</tr>
<tr>
<td>isect_memberEquality (j \ x')</td>
<td>EqTypeCD</td>
</tr>
<tr>
<td>isect_memberFormation (j \ x')</td>
<td>D 0</td>
</tr>
<tr>
<td>isect_member_caseEquality (\cap x:S.T \ t)</td>
<td>GenTypeCD (t = x \in S)</td>
</tr>
<tr>
<td>isectElimination (i \ s \ y \ z)</td>
<td>With (s \ (D \ i))</td>
</tr>
</tbody>
</table>
A.3.14 Quotient Type

Γ ⊨ \text{ext } x, y : T | E \quad T \quad x, y, z, v, v'

by quotientFormation

Γ ⊨ T \in \bigcup_j \tau_j

Γ, x : T, y : T ⊨ E \in \bigcup_j \tau_j

Γ, x : T, y : T, v : E[x, y/x, y] ⊨ E[y, x/x, y] \quad \tau_j

Γ, x : T, y : T, z : T, v : E[x, y/x, y], v' : E[y, z/x, y] ⊨ E[x, z/x, y] \quad \tau_j

Γ ⊨ x_1, y_1 : T_1 \rightarrow E_1 = x_2, y_2 : T_2 \rightarrow E_2 \in \bigcup_j \tau_j

by quotientWeakEquality

Γ ⊨ T_1 = T_2 \in \bigcup_j \tau_j

Γ, x : T_1, y : T_1 ⊨ E_1[x, y/x, x_1, y_1] = E_2[x, y/x, x_1, y_1] \quad \tau_j

Γ, x : T_1, y : T_1, v : E_1[x, y/x, y_1, y_1] ⊨ E_1[x, y/x, y_1, y_1] \quad \tau_j

Γ, x : T_1, y : T_1, z : T_1, v : E_1[x, y/x, y_1, y_1], v' : E_1[y, z/x, y_1, y_1] ⊨ E_1[x, z/x, y_1, y_1] \quad \tau_j

Γ ⊨ s = t \in x, y : T | E \quad s = t \in x, y : T | E \quad \text{ext } t

by quotientMemberWeakEquality

Γ ⊨ x, y : T | E \in \bigcup_j \tau_j

Γ ⊨ s = t \in T \quad \text{ext } t

Γ ⊨ s = t \in x, y : T | E \quad \text{ext } u_j

by quotientMemberEquality

Γ, v : s=t \in x, y : T | E, \Delta ⊨ C \quad \text{ext } u_j

by quotientEqualityElimination

Γ, v : s=t \in x, y : T | E, \Delta \models E[s, t/x, y], \Delta \models C \quad \text{ext } u_j

Γ, v : s = t \in x, y : T | E, \Delta \models E[s, t/x, y] \in \bigcup_j \tau_j

Γ, z : x, y : T | E, \Delta \models s = t \in S \quad \tau_j

by quotientElimination

Γ, z : x, y : T | E, \Delta, x' : T, y' : T \models E[x', y'/x, y] \in \bigcup_j \tau_j

Γ, z : x, y : T | E, \Delta \models s \in \bigcup_j \tau_j

Γ, z : x, y : T | E, \Delta, x' : T, y' : T, v : E[x', y'/x, y] ⊨ s[x'/z] = t[y'/z] \in S[x'/z] \quad \tau_j
\[
\Gamma, z : x, y : T/E, \Delta \vdash s = t \in S_{x,y} \quad \text{by quotientElimination}_2 \ i \ j \ x' \ y' \ v
\]
\[
\Gamma, z : x, y : T/E, \Delta, x' : T, y' : T \vdash E[x', y'/x, y] \in \mathbb{U}_j \quad \text{\textit{with}} \quad \textit{optional tacticals}
\]
\[
\Gamma, z : x, y : T/E, x' : T, y' : T, v : E[x', y'/x, y], \Delta[x'/z] \vdash s[x'/z] = t[y'/z] \in S[x'/z]_{x,y} \quad \text{\textit{with}} \quad \textit{optional tacticals}
\]

<table>
<thead>
<tr>
<th>Basic Inference Rule</th>
<th>Corresponding Tactic</th>
</tr>
</thead>
<tbody>
<tr>
<td>quotientFormation (T \ E x y z v v')</td>
<td>--</td>
</tr>
<tr>
<td>quotientWeakEquality (x y z v v')</td>
<td>EqCD</td>
</tr>
<tr>
<td>quotientEquality</td>
<td>QuotEqCD</td>
</tr>
<tr>
<td>quotient_memberWeakEquality (j)</td>
<td>WeakEqTypeCD</td>
</tr>
<tr>
<td>quotient_memberFormation (j)</td>
<td>D 0</td>
</tr>
<tr>
<td>quotient_memberEquality (j)</td>
<td>EqTypeCD</td>
</tr>
<tr>
<td>quotient_equalityElimination (i j v')</td>
<td>EqTypeD (i)</td>
</tr>
<tr>
<td>quotientElimination (i j x' y' v)</td>
<td>D (i)</td>
</tr>
<tr>
<td>quotientElimination_2 (i j x' y' v)</td>
<td>QuotD (i)</td>
</tr>
<tr>
<td></td>
<td>QuotientHD' ([x';y']) (i)</td>
</tr>
</tbody>
</table>
A.3.15 Direct Computation

\[\Gamma \vdash C \ext t \]
\[\text{by } \text{direct computation } \tag{C} \]
\[\Gamma \vdash C \uparrow \tag{C} \ext t \]

\[\Gamma \vdash C \ext t \]
\[\text{by } \text{reverse direct computation } \tag{C} \]
\[\Gamma \vdash C \uparrow \tag{C} \ext t \]

\[\Gamma, z: T, \Delta \vdash C \ext t \]
\[\text{by } \text{direct computation hypothesis } \tag{T} \]
\[\Gamma, z: T \downarrow \tag{T}, \Delta \vdash C \ext t \]

\[\Gamma, z: T, \Delta \vdash C \ext t \]
\[\text{by } \text{reverse direct computation hypothesis } \tag{T} \]
\[\Gamma, z: T \downarrow \tag{T}, \Delta \vdash C \ext t \]

<table>
<thead>
<tr>
<th>Basic Inference Rule</th>
<th>Corresponding Tactic</th>
</tr>
</thead>
<tbody>
<tr>
<td>\text{direct computation } \tag{C}</td>
<td>ComputeWithTaggedTerm \tag{C} 0</td>
</tr>
<tr>
<td>\text{reverse direct computation } \tag{C}</td>
<td>RevComputeWithTaggedTerm \tag{C} 0</td>
</tr>
<tr>
<td>\text{direct computation hypothesis } \tag{T}</td>
<td>ComputeWithTaggedTerm \tag{T} i</td>
</tr>
<tr>
<td>\text{reverse direct computation hypothesis } \tag{T}</td>
<td>RevComputeWithTaggedTerm \tag{T} i</td>
</tr>
</tbody>
</table>
A.3.16 Miscellaneous

\[
\begin{align*}
\Gamma, x : T, \Delta \vdash T & \text{ by hypothesis } i \\
\Gamma, \Delta \vdash C & \text{ by thin } i \\
\Gamma, \Delta \vdash C & \text{ by cut } i \\
\Gamma, \Delta \vdash \text{ext } t \text{ by introduction } t \\
\Gamma, z : T, \Delta \vdash C & \text{ by hyp replacement } i \\
\Gamma, z : S, \Delta \vdash C & \text{ by cut } i \\
\Gamma, z : T, \Delta \vdash T = S & \in \cup j \text{ by hyp replacement } i \\
\Gamma \vdash T & \text{ by lemma } "\text{theorem-name}" \\
\Gamma \vdash t \in T & \text{ by extract } "\text{theorem-name}" \\
\Gamma \vdash C & \text{ by instantiate } \sigma \\
\Gamma' \vdash C' & \text{ by rename } y \text{ by } x \\
\Gamma \vdash C & \text{ by because } \sigma
\end{align*}
\]

<table>
<thead>
<tr>
<th>Basic Inference Rule</th>
<th>Corresponding Tactic with required arguments</th>
<th>with optional tacticals</th>
</tr>
</thead>
<tbody>
<tr>
<td>hypothesis (i)</td>
<td>Hypothesis</td>
<td>NthHyp (i)</td>
</tr>
<tr>
<td>thin (i)</td>
<td>Thin (i)</td>
<td></td>
</tr>
<tr>
<td>cut (i) (T) (x)</td>
<td>Assert (T)</td>
<td>AssertDeclAtHyp (i) (T) (x)</td>
</tr>
<tr>
<td>introduction (t)</td>
<td>UseWitness (t)</td>
<td>UseWitness (t)</td>
</tr>
<tr>
<td>hyp replacement (i) (S) (j)</td>
<td>SubstClause (S)</td>
<td></td>
</tr>
<tr>
<td>lemma "\text{theorem-name}"</td>
<td>Lemma "\text{theorem-name}"</td>
<td>Lemma "\text{theorem-name}"</td>
</tr>
<tr>
<td>extract "\text{theorem-name}"</td>
<td></td>
<td></td>
</tr>
<tr>
<td>instantiate (\Gamma') (C') (\sigma)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>rename (y) (x)</td>
<td>RenameVar (x) (i) *</td>
<td></td>
</tr>
<tr>
<td>because (\sigma)</td>
<td>Fiat (i)</td>
<td>Fiat (i)</td>
</tr>
</tbody>
</table>

\(* \): \(y \) is the variable declared in hypothesis \(i \).