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ABSTRACT
A growing set of on-line applications are generating data that can
be viewed as very large collections of small, dense social graphs
— these range from sets of social groups, events, or collabora-
tion projects to the vast collection of graph neighborhoods in large
social networks. A natural question is how to usefully define a
domain-independent ‘coordinate system’ for such a collection of
graphs, so that the set of possible structures can be compactly rep-
resented and understood within a common space. In this work, we
draw on the theory of graph homomorphisms to formulate and an-
alyze such a representation, based on computing the frequencies
of small induced subgraphs within each graph. We find that the
space of subgraph frequencies is governed both by its combinato-
rial properties — based on extremal results that constrain all graphs
— as well as by its empirical properties — manifested in the way
that real social graphs appear to lie near a simple one-dimensional
curve through this space.

We develop flexible frameworks for studying each of these as-
pects. For capturing empirical properties, we characterize a simple
stochastic generative model, a single-parameter extension of Erdős-
Rényi random graphs, whose stationary distribution over subgraphs
closely tracks the one-dimensional concentration of the real so-
cial graph families. For the extremal properties, we develop a
tractable linear program for bounding the feasible space of sub-
graph frequencies by harnessing a toolkit of known extremal graph
theory. Together, these two complementary frameworks shed light
on a fundamental question pertaining to social graphs: what prop-
erties of social graphs are ‘social’ properties and what properties
are ‘graph’ properties?

We conclude with a brief demonstration of how the coordinate
system we examine can also be used to perform classification tasks,
distinguishing between structures arising from different types of
social graphs.

Categories and Subject Descriptors: H.2.8 [Database Manage-
ment]: Database applications—Data mining
Keywords: Social Networks, Triadic Closure, Induced Subgraphs,
Subgraph Census, Graph Homomorphisms.

1. INTRODUCTION
The standard approach to modeling a large on-line social net-

work is to treat it as a single graph with an enormous number of
nodes and a sparse pattern of connections. Increasingly, however,
many of the key problems encountered in managing an on-line so-
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cial network involve working with large collections of small, dense
graphs contained within the network.

On Facebook, for example, the set of people belonging to a group
or attending an event determines such a graph, and considering the
set of all groups or all events leads to a very large number of such
graphs. On any social network, the network neighborhood of each
individual — consisting of his or her friends and the links among
them — is also generally a small dense graph with a rich structure,
on a few hundred nodes or fewer [19]. If we consider the neighbor-
hood of each user as defining a distinct graph, we again obtain an
enormous collection of graphs. Indeed, this view of a large underly-
ing social network in terms of its overlapping node neighborhoods
suggests a potentially valuable perspective on the analysis of the
network: rather than thinking of Facebook, for example, as a single
billion-node network, with a global structure that quickly becomes
incomprehensible, we argue that it can be useful to think of it as
the superposition of a billion small dense graphs — the network
neighborhoods, one centered at each user, and each accessible to a
closer and more tractable investigation.

Nor is this view limited to a site such as Facebook; one can find
collections of small dense graphs in the interactions within a set of
discussion forums [7], within a set of collaborative on-line projects
[20], and in a range of other settings.

Our focus in the present work is on a fundamental global ques-
tion about these types of graph collections: given a large set of
small dense graphs, can we study this set by defining a meaningful
‘coordinate system’ on it, so that the graphs it contains can be repre-
sented and understood within a common space? With such a coor-
dinate system providing a general-purpose framework for analysis,
additional questions become possible. For example, when consid-
ering collections of a billion or more social graphs, it may seem as
though almost any graph is possible; is that the case, or are there
underlying properties guiding the observed structures? And how
do these properties relate to more fundamental combinatorial con-
straints deriving from the extremal limits that govern all graphs?
As a further example, we can ask how different graph collections
compare to one another; do network neighborhoods differ in some
systematic way, for instance, from social graphs induced by other
contexts, such as the graphs implicit in social groups, organized
events, or other arrangements?

The Present Work. In this paper we develop and analyze such a
representation, drawing on the theory of graph homomorphisms.
Roughly speaking, the coordinate system we examine begins by
describing a graph by the frequencies with which all possible small
subgraphs occur within it. More precisely, we choose a small num-
ber k (e.g. k = 3 or 4); then, for each graph G in a collection, we
create a vector with a coordinate for each distinct k-node subgraph



H , specifying the fraction of k-tuples of nodes in G that induce a
copy of H (in other words, the frequency of H as an induced sub-
graph of G). For k = 3, this description corresponds to what is
sometimes referred to as the triad census [5, 6, 21].

With each graph in the collection mapped to such a vector, we
can ask how the full collection of graphs fills out this space of sub-
graph frequencies. This turns out to be a subtle issue, because the
arrangement of the graphs in this space is governed by two distinct
sets of effects: extremal combinatorial constraints showing that cer-
tain combinations of subgraph frequencies are genuinely impos-
sible; and empirical properties, which reveal that the bulk of the
graphs tend to lie close to a simple one-dimensional curve through
the space. We formulate results on both these types of properties,
in the former case building on an expanding body of combinatorial
theory [4, 11] for bounding the frequencies at which different types
of subgraphs can occur in a larger ambient graph.

The fact that the space of subgraph frequencies is constrained in
these multiple ways also allows us to concretely address the follow-
ing type of question: When we see that human social networks do
not exhibit a certain type of structure, is that because such a struc-
ture is mathematically impossible, or simply because human beings
do not create it when they form social connections? In other words,
what is a property of graphs and what is a property of people? Al-
though this question is implicit in many studies of social networks,
it is hard to separate the two effects without a formal framework
such as we have here.

Indeed, our framework offers a direct contribution to one of the
most well-known observations about social graphs: the tendency of
social relationships to close triangles, and the relative infrequency
of what is sometimes called the ‘forbidden triad’: three people with
two social relationships between them, but one absent relationship
[14]. There are many sociological theories for why one would ex-
pect this subgraph to be underrepresented in empirical social net-
works [8]. Our framework shows that the frequency of this ‘forbid-
den triad’ has a non-trivial upper bound in not just social graphs,
but in all graphs. Harnessing our framework more generally, we are
in fact able to show that any k node subgraph that is not a complete
or empty subgraph has a frequency that is bounded away from one.
Thus, there is an extent to which almost all subgraphs are mathe-
matically ‘forbidden’ from occurring beyond a certain frequency.

We aim to separate these mathematical limits of graphs from the
complementary empirical properties of real social graphs. The fact
that real graph collections have a roughly one-dimensional struc-
ture in our coordinate system leads directly to our first main ques-
tion: is it possible to succinctly characterize the underlying back-
bone for this one-dimensional structure, and can we use such a
characterization to usefully describe graphs within our coordinate
system in terms of their deviation from this backbone?

The subgraph frequencies of the standard Erdős-Rényi random
graph [3] Gn,p produce a one-dimensional curve (parametrized by
p) that weakly approximates the layout of the real graphs in the
space, but the curve arising from this random graph model sys-
tematically deviates from the real graphs in that the random graph
contains fewer triangles and more triangle-free subgraphs. This ob-
servation is consistent with the sociological principle of triadic clo-
sure — that triangles tend to form in social networks. As a means of
closing this deviation from Gn,p, we develop a tractable stochastic
model of graph generation with a single additional parameter, de-
termining the relative rates of arbitrary edge formation and triangle-
closing edge formation. The model exhibits rich behaviors, and for
appropriately chosen settings of its single parameter, it produce re-
markably close agreement with the subgraph frequencies observed

in real data for the suite of all possible 3-node and 4-node sub-
graphs.

Finally, we use this representation to study how different col-
lections of graphs may differ from one another. This arises as a
question of basic interest in the analysis of large social media plat-
forms, where users continuously manage multiple audiences [2]
— ranging from their set of friends, to the members of a groups
they’ve joined, to the attendees of events and beyond. Do these au-
diences differ from each other at a structural level, and if so what
are the distinguishing characteristics? Using Facebook data, we
identify structural differences between the graphs induced on net-
work neighborhoods, groups, and events. The underlying basis for
these differences suggests corresponding distinctions in each user’s
reaction to these different audiences with whom they interact.

2. DATA DESCRIPTION
Throughout our presentation, we analyze several collections of

graphs collected from Facebook’s social network. The collections
we study are all induced graphs from the Facebook friendship graph,
which records friendship connections as undirected edges between
users, and thus all our induced graphs are also undirected. The
framework we characterize in this work would naturally extend to
provide insights about directed graphs, an extension we do not dis-
cuss. We do not include edges formed by Facebook ‘subscriptions’
in our study, nor do we include Facebook ‘pages’ or connections
from users to such pages. All Facebook social graph data was ana-
lyzed in an anonymous, aggregated form.

For this work, we extracted three different collections of graphs,
around which we organize our discussion:

• Neighborhoods: Graphs induced by the friends of a single Face-
book user ego and the friendship connections among these indi-
viduals (excluding the ego).
• Groups: Graphs induced by the members of a ‘Facebook group’,

a Facebook feature for organizing focused conversations between
a small or moderate-sized set of users.
• Events: Graphs induced by the confirmed attendees of ‘Face-

book events’, a Facebook feature for coordinating invitations to
calendar events. Users can response ‘Yes’, ‘No’, and ‘Maybe’ to
such invitations, and we consider only users who respond ‘Yes’.

The neighborhood and groups collections were assembled in Oc-
tober 2012 based on monthly active user egos and current groups,
while the events data was collected from all events during 2010 and
2011. For event graphs, only friendship edges formed prior to the
date of the event were used. Subgraph frequencies for four-node
subgraphs were computed by sampling 11,000 induced subgraphs
uniformly with replacement, providing sufficiently precise frequen-
cies without enumeration. The graph collections were targeted at a
variety of different graph sizes, as will be discussed in the text.

3. SUBGRAPH SPACE
In this section, we study the space of subgraph frequencies that

form the basis of our coordinate system, and the one-dimensional
concentration of empirical graphs within this coordinate system.
We derive a model capable of accurately identifying the backbone
of this empirical concentration using only the basic principle of
triadic closure, showing how the subgraph frequencies of empirical
social graphs are seemingly restricted to the vicinity of a simple
one-dimensional structure.

Formally, the subgraph frequency of a k-node graph F in an
n-node graph G (where k ≤ n) is the probability that a random



Figure 1: Subgraph frequencies for three node subgraphs for graphs of size 50, 100, and 200 (left to right). The neighborhoods are
orange, groups are green, and events are lavender. The black curves illustrate Gn,p as a function of p.

k-node subset of G induces a copy of F . It is clear that for any
integer k, the subgraph frequencies of all the k-node graphs sum
to one, constraining the vector of frequencies to an appropriately
dimensioned simplex. In the case of k = 3, this vector is simply the
relative frequency of induced three-node subgraphs restricted to the
4-simplex; there are just four such subgraphs, with zero, one, two,
and three edges respectively. When considering the frequency of
larger subgraphs, the dimension of the simplex grows very quickly,
and already for k = 4, the space of four-node subgraph frequencies
lives in an 11-simplex.

Empirical distribution. In Figure 1, the three-node subgraph fre-
quencies of 50-node, 100-node, and 200-node graph collections are
shown, with each subplot showing a balanced mixture of 17,000
neighborhood, group and event graphs – the three collections dis-
cussed in Section 2, totaling 51,000 graphs at each size. Because
these frequency vectors are constrained to the 4-simplex, their dis-
tribution can be visualized in R3 with three of the frequencies as
axes.

Notice that these graph collections, induced from disparate con-
texts, all occupy a sharply concentrated subregion of the unit sim-
plex. The points in the space have been represented simply as an
unordered scatterplot, and two striking phenomena already stand
out: first, the particular concentrated structure within the simplex
that the points follow; and second, the fact that we can already
discern a non-uniform distribution of the three contexts (neighbor-
hoods, groups and events) within the space — that is, the differ-
ent contexts can already be seen to have different structural loci.
Notice also that as the sizes of the graphs increases – from 50 to
100 to 200 – the distribution appears to sharpen around the one-
dimensional backbone. The vast number of graphs that we are able
to consider by studying Facebook data is here illuminating a struc-
ture that is simply not discernible in previous examinations of sub-
graph frequencies [6], since no analysis has previously considered
a collection near this scale.

The imagery of Figure 1 directly motivates our work, by visually
framing the essence of our investigation: what facets of this curi-
ous structure derive from our graphs being social graphs, and what
facets are simply universal properties of all graphs? We will find,
in particular, that parts of the space of subgraph frequencies are in
fact inaccessible to graphs for purely combinatorial reasons — it is
mathematically impossible for one of the points in the scatterplot
to occupy these parts of the space. But there are other parts of the
space that are mathematically possible; it is simply that no real so-
cial graphs appear to be located within them. Intuitively, then, we
are looking at a population density within an ambient space (the
Facebook graphs within the space of subgraph frequencies), and
we would like to understand both the geography of the inhabited
terrain (what are the properties of the areas where the population

has in fact settled?) and also the properties of the boundaries of the
space as a whole (where, in principle, would it be possible for the
population to settle?).

Also in Figure 1, we plot the curve for the frequencies for 3 node
subgraphs in Gn,p as a function of p. The curves are given simply
by the probability of obtaining the desired number of edges in a
three node graph, ((1 − p)3, 3p(1 − p)2, 3p2(1 − p), p3). This
curve closely tracks the empirical density through the space, with
a single notable discrepancy: the real world graphs systemically
contain more triangles when compared to Gn,p at the same edge
density. We emphasize that it is not a priori clear why Gn,p would
at all be a good model of subgraph frequencies in modestly-sized
dense social graphs such as the neighborhoods, groups, and events
that we have here; we believe the fact that it tracks the data with any
fidelity at all is an interesting issue for future work. Beyond Gn,p,
in the following subsection, we present a stochastic model of edge
formation and deletion on graphs specifically designed to close the
remaining discrepancy. As such, our model provides a means of
accurately characterizing the backbone of subgraph frequencies for
social graphs.

Stochastic model of edge formation. The classic Erdős-Rényi
model of random graphs,Gn,p, produces a distribution over n-node
undirected graphs defined by a simple parameter p, the probability
of each edge independently appearing in the graph. We now in-
troduce and analyze a related random graph model, the Edge For-
mation Random Walk, defined as a random walk over the space of
all unlabeled n-node graphs. In its simplest form, this model is
closely related to Gn,p, and will we show via detailed balance that
the distribution defined by Gn,p on n-node graphs is precisely the
stationary distribution of this simplest version of the random walk
on the space of n-node graphs. We first describe this basic version
of the model; we then add a component to the model that captures a
triadic closure process, which produces a close fit to the properties
we observe in real graphs.

Let Gn be the space of all unlabeled n-node graphs, and letX(t)
be the following continuous time Markov chain on the state space
Gn. The transition rates between the graphs in Gn are defined by
random additions and deletions of edges, with all edges having a
uniform formation rate γ > 0 and a uniform deletion rate δ >
0. Thus the single parameter ν = γ/δ, the effective formation
rate of edges, completely characterizes the process. Notice that
this process is clearly irreducible, since it is possible to transition
between any two graphs via edge additions and deletions.

Since X(t) is irreducible, it possesses a unique stationary dis-
tribution. The stationary distribution of an irreducible continuous
time Markov chain can be found as the unique stable fixed point of
the linear dynamical system X ′(t) = Qn(ν)X(t) that describes
the diffusion of probability mass during a random walk on n-node
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Figure 2: The state transitions diagram for our stochastic graph model with k = 4, where γ is the arbitrary edge formation rate, λ
is the triadic closure formation rate, and δ is the edge elimination rate.

graphs, where Qn(ν) is the generator matrix with transition rates
qij and qii = −

∑
j 6=i qji, all depending only on ν. The stationary

distribution πn then satisfies Qn(ν)πn = 0.
The following proposition shows the clear relationship between

the stationary distribution of this simplest random walk and the fre-
quencies of Gn,p.

PROPOSITION 3.1. The probabilities assigned to (unlabeled)
graphs by Gn,p satisfy the detailed balance condition for the Edge
Formation Random Walk with edge formation rate ν = p/1 − p,
and thus characterizes the stationary distribution.

PROOF. We first describe an equivalent Markov chain based on
labeled graphs: there is a state for each labeled n-node graph; the
transition rate qij from a labelled graph Gi to a labelled graph Gj
is qij = γ if Gj can be obtained from Gi by adding an edge; and
qij = δ if Gj can be obtained from Gi by removing an edge. All
other transition rates are zero. We call this new chain the labeled
chain, and the original chain the unlabeled chain.

Now, suppose there is a transition from unlabeled graph Ha to
unlabeled graph Hb in the unlabeled chain, with transition proba-
bility kγ. This means that there are k ways to add an edge to a
labeled copy of Ha to produce a graph isomorphic to Hb. Now,
let Gi be any graph in the labeled chain that is isomorphic to Ha.
In the labeled chain, there are k transitions out of Gi leading to a
graph isomorphic to Hb, and each of these has probability γ. Thus,
with probability kγ, a transition out of Gi leads to a graph isomor-
phic to Hb. A strictly analogous argument can be made for edge
deletions, rather than edge additions.

This argument shows that the following describes a Markov chain
equivalent to the original unlabeled chain: we draw a sequence of
labeled graphs from the labeled chain, and we output the isomor-
phism classes of these labeled graphs. Hence, to compute the sta-
tionary distribution of the original unlabeled chain, which is what
we seek, we can compute the stationary distribution of the labeled
chain and then sum stationary probabilities in the labeled chain over
the isomorphism classes of labeled graphs.

It thus suffices to verify the detailed balance condition for the dis-
tribution on the labeled chain that assigns probability p|E(Gi)|(1−
p)(

n
2)−|E(Gi)| to each labeled graph Gi. Since every transition of

the labeled walk occurs between two labeled graphs Gi and Gj ,
with |E(Gi)| = |E(Gj)|+1, the only non-trivial detailed balance
equations are of the form:

qijPr[X(t) = Gi] = qjiPr[X(t) = Gj ]

Pr[X(t) = Gi] = νPr[X(t) = Gj ]

Pr[X(t) = Gi] =
p

1− pPr[X(t) = Gj ].

Since the probability assigned to the labeled graph Gi by Gn,p is
simply p|E(Gi)|(1− p)(

n
2)−|E(Gi)|, detailed balance is clearly sat-

isfied.

Incorporating triadic closure. The above modeling framework
provides a simple analog ofGn,p that notably exposes itself to sub-
tle adjustments. By simply adjusting the transition rates between
select graphs, this framework makes it possible to model random
graphs where certain types of edge formations or deletions have
irregular probabilities of occurring, simply via small perturbations
away from the classic Gn,p model. Using this principle, we now
characterize a random graph model that differs fromGn,p by a sin-
gle parameter, λ, the rate at which 3-node paths in the graph tend
to form triangles. We call this model the Edge Formation Random
Walk with Triadic Closure.

Again let Gn be the space of all unlabeled n-node graphs, and let
Y (t) be a continuous time Markov chain on the state space Gn. As
with the ordinary Edge Formation Random Walk, let edges have a
uniform formation rate γ > 0 and a uniform deletion rate δ > 0,
but now also add a triadic closure formation rate λ ≥ 0 for every 3-
node path that a transition would close. The process is still clearly
irreducible, and the stationary distribution obeys the stationary con-
ditions Qn(ν, λ)πn = 0, where the generator matrix Qn now also
depends on λ. We can express the stationary distribution directly
in the parameters as πn(ν, λ) = {π : Qn(ν, λ)π = 0}. For λ = 0
the model reduces to the ordinary Edge Formation Random Walk.

The state transitions of this random graph model are easy to con-
struct for n = 3 and n = 4, and transitions for the case of n = 4
are shown in Figure 2. Proposition 3.1 above tells us that for λ = 0,
the stationary distribution of a random walk on this state space is
given by the graph frequencies of Gn,p. As we increase λ away
from zero, we should therefore expect to see a stationary distribu-
tion that departs from Gn,p precisely by observing more graphs
with triangles and less graphs with open triangles.

The framework of our Edge Formation Random Walk makes it
possible to model triadic closure precisely; in this sense the model
forms an interesting contrast with other models of triangle-closing
in graphs that are very challenging to analyze (e.g. [9, 10]). We
will now show how the addition of this single parameter makes it
possible to describe the subgraph frequencies of empirical social
graphs with remarkable accuracy.

Fitting subgraph frequencies. The stationary distribution of an
Edge Formation Random Walk model describes the frequency of
different graphs, while the coordinate system we are developing fo-
cuses on the frequency of k-node subgraphs within n-node graphs.
For Gn,p these two questions are in fact the same, since the dis-
tribution of random induced k-node subgraphs of Gn,p is simply
Gk,p. When we introduce λ > 0, however, our model departs from
this symmetry, and the stationary probabilities in a random walk
on k node graphs is no longer precisely the frequencies of induced
k-node subgraphs in a single n-node graph.

But if we view this as a model for the frequency of small graphs
as objects in themselves, rather than as subgraphs of a larger am-
bient graph, the model provides a highly tractable parameterization



Figure 3: Subgraph frequencies for 3-node subgraphs in 50-
node graphs, shown as a function of p. The black curves illus-
trate Gn,p, while the yellow curves illustrate the fit model.

that we can use to approximate the structure of subgraph frequen-
cies observed in our families of larger graphs. In doing so, we aim
to fit πk(ν(p, λ), λ) as a function of p, where ν(p, λ) is the rate
parameter ν that produces edge density p for the specific value of
λ. For λ = 0 this relationship is simply ν = p/(1 − p), but for
λ > 0 the relation is not so tidy, and in practice it is easier to fit ν
numerically rather than evaluate the expression.

When considering a collection of graph frequencies we can fit λ
by minimizing residuals with respect to the model. Given a collec-
tion ofN graphs, let y1k, . . . , y

N
k be the vectors of k-node subgraph

frequencies for each graph and p1, . . . , pN be the edge densities.
We can then fit λ as:

λoptk = argmin
λ

N∑
i=1

||πk(ν(pi, λ), λ)− yik||2.

In Figure 3 we plot the three-node subgraph frequencies as a
function of edge density p, for a collection of 300,000 50-node
subgraphs, again a balanced mixture of neighborhoods, groups,
and events. In this figure we also plot (in yellow) the curve re-
sulting from fitting our random walk model with triadic closure,
πk(ν(p, λ

opt
k ), λoptk ), which is thus parameterized as a function of

edge density p. For this mixture of collections and k = 3, the
optimal fit is λopt3 = 1.61. Notice how the yellow line deviates
from the black Gn,p curve to better represent the backbone of nat-
ural graph frequencies. From the figure it is clear that almost all
graphs have more triangles than a sample fromGn,p of correspond-
ing edge density. When describing extremal bounds in Section 4,
we will discuss howGn,p is in fact by no means the extremal lower
bound.

As suggested by Figure 2, examining the subgraph frequencies
for four-node subgraphs is fully tractable. In Figure 4, we fit λ to
the mean subgraph frequencies of our three different collections of
graphs separately. Note that the mean of the subgraph frequencies
over a set of graphs is not necessarily itself a subgraph frequency
corresponding to a graph, but we fit these mean 11-vectors as a
demonstration of the model’s ability to fit an ‘average’ graph. The
subgraph frequency of Gn,p at the edge density corresponding to
the data is shown as a black dashed line in each plot — with poor
agreement — and gray dashed lines illustrate an incremental tran-
sition in λ, starting from zero (when it corresponds to Gn,p) and
ending at λopt.

The striking agreement between the fit model and the mean of
each collection is achieved at the corresponding edge density by
fitting only λ. For neighborhood graphs, this agreement deviates
measurably on only a single subgraph frequency, the four-node star.
The y-axis is plotted on a logarithmic scale, which makes it rather
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Figure 4: The four-node subgraph frequencies for the means
of the 50-node graph collections in Figure 3, and the subgraph
frequency of the model, fitting the triadic closure rate λ to the
mean vectors. As λ increases from λ = 0 to λ = λopt, we see
how this single additional parameter provides a striking fit.

remarkable how precisely the model describes the scarcity of the
four-node cycle. The scarcity of squares has been previously ob-
served in email neighborhoods on Facebook [18], and our model
provides the first intuitive explanation of this scarcity.

The model’s ability to characterize the backbone of the empir-
ical graph frequencies suggests that the subgraph frequencies of
individual graphs can be usefully studied as deviations from this
backbone. In fact, we can interpret the fitting procedure for λ as a
variance minimization procedure. Recall that the mean of a set of
points in Rn is the point that minimizes the sum of squared residu-
als. In this way, the procedure is in fact fitting the ‘mean curve’ of
the model distribution to the empirical subgraph frequencies.

Finally, our model can be used to provide a measure of the tri-
adic closure strength differentially between graph collections, in-
vestigating the difference in λopt for the subgraph frequencies of
different graph collections. In Figure 4, the three different graph
types resulted in notably different ratios of λ/ν — the ratio of the
triadic closure formation rate to the basic process rate — with a
significantly higher value for this ratio in neighborhoods. We can
interpret this as saying that open triads in neighborhoods are more
prone to triadic closure than open triads in groups or events.

4. EXTREMAL BOUNDS
As discussed at the beginning of the previous section, we face

two problems in analyzing the subgraph frequencies of real graphs:
to characterize the distribution of values we observe in practice,
and to understand the combinatorial structure of the overall space in



which these empirical subgraph frequencies lie. Having developed
stochastic models to address the former question, we now consider
the latter question.

Specifically, in this section we characterize extremal bounds on
the set of possible subgraph frequencies. Using machinery from the
theory of graph homomorphisms, we identify fundamental bounds
on the space of subgraph frequencies that are not properties of so-
cial graphs, but rather, are universal properties of all graphs. By
identifying these bounds, we make apparent large tracts of the fea-
sible region that are theoretically inhabitable but not populated by
any of the empirical social graphs we examine.

We first review a body of techniques based in extremal graph
theory and the theory of graph homomorphisms [11]. We use these
techniques to formulate a set of inequalities on subgraph frequen-
cies; these inequalities are all linear for a fixed edge density, an
observation that allows us to cleanly construct a linear program to
maximize and minimize each subgraph frequency within the com-
bined constraints. In this manner, we show how it is possible to map
outer bounds on the geography of all these structural constraints.
We conclude by offering two basic propositions that transcend all
edge densities, thus identifying fundamental limits on subgraph fre-
quencies of all sizes.

4.1 Background on subgraph frequency and
homomorphism density

In this subsection, we review some background arising from the
theory of graph homomorphisms. We will use this homomorphism
machinery to develop inequalities governing subgraph frequencies.
These inequalities allow us to describe the outlines of the space
underlying Figure 1(a) — the first step in understanding which as-
pects of the distribution of subgraph frequencies in the simplex are
the result of empirical properties of human social networks, and
which are the consequences of purely combinatorial constraints.

Linear constraints on subgraph frequency. Let s(F,G) denote
the subgraph frequency of F inG, as defined in the last section: the
probability that a random |V (F )|-node subset of G induces a copy
of F . Note that since s(F,G) is a probability over outcomes, it is
subject to the law of total probability. The law of total probability
for subgraph frequencies takes the following form.

PROPOSITION 4.1. For any graph F and any integer ` ≥ k,
where |V (F )| = k, the subgraph density of F in G, s(F,G) satis-
fies the equality

s(F,G) =
∑

{H:|V (H)|=`}

s(F,H)s(H,G).

PROOF. Let H ′ be a random `-vertex induced subgraph of G.
Now, the set of outcomesH = {H : |V (H)| = `} form a partition
of the sample space, each with probability s(H,G). Furthermore,
conditional upon an `-vertex induced subgraph being isomorphic
to H , s(F,H) is the probability that a random k-vertex induced
subgraph of H is isomorphic to F .

This proposition characterizes an important property of subgraph
frequencies: the vector of subgraph frequencies on k nodes ex-
ists in a linear subspace of the vector of subgraph frequencies on
` > k nodes. Furthermore, this means that any constraint on the
frequency of a subgraph F will also constrain the frequency of any
subgraph H for which s(F,H) > 0 or s(H,F ) > 0.

Graph homomorphisms. A number of fundamental inequalities
on the occurrence of subgraphs are most naturally formulated in

terms of graph homomorphisms, a notion that is connected to but
distinct from the notion of induced subgraphs. In order to describe
this machinery, we first review some basic definitions [4]. if F and
G are labelled graphs, a map f : V (F ) → V (G) is a homomor-
phism if each edge (v, w) of F maps to an edge (f(v), f(w)) ofG.
We now write t(F,G) for the probability that a random map from
V (F ) into V (G) is a homomorphism, and we refer to t(F,G) as a
homomorphism density of F and G.

There are three key differences between the homomorphism den-
sity t(F,G) and the subgraph frequency s(F,G) defined earlier in
this section. First, t(F,G) is based on mappings of F into G that
can be many-to-one — multiple nodes of F can map to the same
node ofG— while s(F,G) is based on one-to-one mappings. Sec-
ond, t(F,G) is based on mappings of F into G that must map
edges to edges, but impose no condition on pairs of nodes in F that
do not form edges: in other words, a homomorphism is allowed to
map a pair of unlinked nodes in F to an edge of G. This is not the
case for s(F,G), which is based on maps that require non-edges
of F to be mapped to non-edges of G. Third, t(F,G) is a fre-
quency among mappings from labeled graphs F to labelled graphs
G, while s(F,G) is a frequency among mappings from unlabeled
F to unlabeled G.

From these three differences, it is not difficult to write down a
basic relationship governing the functions s and t [4]. To do this,
it is useful to define the intermediate notion tinj(F,G), which is the
probability that a random one-to-one map from V (F ) to V (G) is
a homomorphism. Since only an O(1/V (G)) fraction of all maps
from V (F ) to V (G) are not one-to-one, we have

t(F,G) = tinj(F,G) +O(1/|V (G)|). (1)

Next, by definition, a one-to-one map f of F intoG is a homomor-
phism if and only if the image f(F ), when viewed as an induced
subgraph of G, contains all of F ’s edges and possibly others. Cor-
recting also for the conversion from labelled to unlabeled graphs,
we have

tinj(F,G) =
∑

F ′:F⊆F ′

ext(F, F ′) · aut(F ′)
k!

· s(F ′, G), (2)

where aut(F ′) is the number of automorphisms ofF ′ and ext(F, F ′)
is the number of ways that a labelled graph F can be extended (by
adding edges) to form a labelled graph H isomorphic to F ′.

Homomorphism inequalities. There are a number of non-trivial
results bounding the graph homomorphism density, which we now
review. By translating these to the language of subgraph frequen-
cies, we can begin to develop bounds on the simplexes in Figure 1.

For complete graphs, the Kruskal-Katona Theorem produces up-
per bounds on homomorphism density in terms of the edge density
while the Moon-Moser Theorem provides lower bounds, also in
terms of the edge density.

PROPOSITION 4.2 (KRUSKAL-KATONA [11]). For a complete
graph Kr on r nodes and graph G with edge density t(K2, G),

t(Kr, G) ≤ t(K2, G)r/2.

PROPOSITION 4.3 (MOON-MOSER [12, 16]). For a complete
graph Kr on r nodes and graph G with edge density t(K2, G) ∈
[(k − 2)/(k − 1), 1],

t(Kr, G) ≥
r−1∏
i=1

(1− i(1− t(K2, G))).



The Moon-Moser bound is well known to not be sharp, and Razborov
has recently given an impressive sharp lower bound for the homo-
morphism density of the triangle K3 [16] using sophisticated ma-
chinery [15]. We limit our discussion to the simpler Moon-Moser
lower bound which takes the form of a concise polynomial and pro-
vides bounds for arbitrary r, not just the triangle (r = 3).

Finally, we employ a powerful inequality that is known to lower
bound the homomorphism density of any graph F that is either
a forest, an even cycle, or a complete bipartite graph. Stated as
such, it is the solved special cases of the open Sidorenko Conjec-
ture, which posits that the result could be extended to all bipartite
graphs F . We will use the following proposition in particular when
F is a tree, and will refer to this part of the result as the Sidorenko
tree bound.

PROPOSITION 4.4 (SIDORENKO [11, 17]). For a graphF that
is a forest, even cycle, or complete bipartite graph, with edge set
E(F), and G with edge density t(K2, G),

t(F,G) ≥ t(K2, G)|E(F )|.

Using Equations (1) and (2), we can translate statements about
homomorphisms into asymptotic statements about the combined
frequency of particular sets of subgraphs. We can also translate
statements about frequencies of subgraphs to frequencies of their
complements using the following basic fact.

LEMMA 4.5. If for graphs F1, . . . F`, coefficients αi ∈ R, and
a function f ,

α1s(F1, G) + . . .+ α`s(F`, G) ≥ f(s(K2, G)), ∀G,

then

α1s(F 1, G) + . . .+ α`s(F `, G) ≥ f(1− s(K2, G)), ∀G.
PROOF. Note that s(F,G) = s(F ,G). Thus if

α1s(F 1, G) + . . .+ α`s(F `, G) ≥ f(s(K2, G)), ∀G,

then

α1s(F 1, G) + . . .+ α`s(F `, G) ≥ f(s(K2, G)), ∀G,

where s(K2, G) = 1− s(K2, G).

4.2 An LP for subgraph frequency bounds
In the previous section, we reviewed linear constraints between

the frequencies of subgraphs of different sizes, and upper and lower
bounds on graph homomorphism densities with applications to sub-
graph frequencies. We will now use these constraints to assemble a
linear program capable to mapping out bounds on the extremal ge-
ography of the subgraph space we are considering. To do this, we
will maximize and minimize the frequency of each individual sub-
graph frequency, subject to the constraints we have just catalogued.

We will focus our analysis on the cases k = 3, the triad fre-
quencies, and k = 4, the quad frequencies. Let x1, x2, x3, x4 de-
note the subgraph frequencies s(·, G) of the four possible 3-vertex
undirected graphs, ordered by increasing edge count.

PROGRAM 4.6. The frequency xi of a 3-node subgraph in any
graphG with edge density p is bounded asymptotically (in |V (G)|)
by max /minxi subject to xi ≥ 0, ∀i and:

x1 + x2 + x3 + x4 = 1,
1

3
x2 +

2

3
x3 + x4 = p, (3)

x4 ≤ p3/2, x1 ≤ (1− p)3/2, (4)
x4 ≥ p(2p− 1) p ≥ 1/2, (5)

x1 ≥ (1− p)(1− 2p) p ≤ 1/2, (6)

(1/3)x3 + x4 ≥ p2, x1 + (1/3)x2 ≥ (1− p)2. (7)

Here the equalities in (3) derive from the linear constraints, the
constraints in (4) derive from Kruskal-Katona, the constraints (5-
6) derive from Moon-Moser, and the constraints in (7) derive from
the Sidorenko tree bound. More generally, we obtain the following
general linear program that can be used to find nontrivial bounds
for any subgraph frequency:

PROGRAM 4.7. The frequency fF of a k-node subgraph F in
any graph G with edge density p is bounded asymptotically (in
|V (G)|) by max /min fF , subject to AfF = b(p), CfF ≤ d(p),
appropriately assembled.

From Program 1 given above it is possible to derive a simple
upper bound on the frequency of the 3-node-path (sometimes de-
scribed in the social networks literature as the “forbidden triad”, as
mentioned earlier).

PROPOSITION 4.8. The subgraph frequency of the 3-node-path
F obeys s(F,G) ≤ 3/4 + o(1), ∀G.

PROOF. Let x1, x2, x3, x4 again denote the subgraph frequen-
cies s(·, G) of the four possible 3-vertex undirected graphs, ordered
by increasing edge count, where x3 is the frequency of the 3-node-
path. By the linear constraints,

(1/3)x2 + (2/3)x3 + x4 = p,

while by Moon-Moser, x4 +O(1/|V (G)|) ≥ p(2p− 1). Combin-
ing these two constraints we have:

x3 ≤ 3p(1− p) + o(1).

The polynomial in p is maximized at p = 1/2, giving an upper
bound of 3/4 + o(1).

This bound on the “forbidden triad” is immediately apparent from
Figure 5 as well, which shows the bounds constructed via linear
programs for all 3-node and 4-node subgraph frequencies. In fact,
the subgraph frequency of the ‘forbidden” 3-node-path in the bal-
anced complete bipartite graph Kn/2,n/2, which has edge density
p = 1/2, is exactly s(F,G) = 3/4, demonstrating that this bound
is asymptotically tight. (In fact, we can perform a more careful
analysis showing that it is exactly tight for even n.)

Figure 5 illustrates these bounds for k = 3 and k = 4. Notice
that our empirical distributions of subgraph frequencies fall well
within these bounds, leaving large tracts of the bounded area unin-
habited by any observed dense social graph. While the bounds do
not fully characterize the feasible region of subgraph frequencies,
the fact that the bound is asymptotically tight at p = 1/2 for the
complete bipartite graph Kn/2,n/2 is important — practically no
empirical social graphs come close to the boundary, despite this ev-
idence that it is feasibly approachable. We emphasize that an exact
characterization of the feasible space would necessitate machinery
at least as sophisticated as that used by Razborov.

In the next subsection we develop two more general observa-
tions about the subgraph frequencies of arbitrary graphs, the latter
of which illustrates that, with the exception of clique subgraphs and
empty subgraphs, it is always possible to be free from a subgraph.
This shows that the lower regions of the non-clique non-empty fre-
quency bounds in Figure 5 are always inhabitable, despite the fact
that social graphs do not empirically populate these regions.

4.3 Bounding frequencies of arbitrary subgraphs
The upper bound for the frequency of the 3-node-path given in

Proposition 4.8 amounted to simply combining appropriate upper
bounds for different regions of possible edge densities p. In this



Figure 5: Subgraph frequencies for 3-node and 4-node subgraphs as function of edge density p. The light green regions denote the
asymptotically feasible region found via the linear program. The empirical frequencies are as in Figure 3. The black curves illustrate
Gn,p, while the yellow curves illustrate the fit triadic closure model.

section, we provide two general bounds pertaining to the subgraph
frequency of an arbitrary subgraph F . First, we show that any sub-
graph that is not a clique and is not empty must have a subgraph
density bounded strictly away from one. Second, we show that for
every subgraph F that is not a clique and not empty, it is always
possible to construct a family of graphs with any specified asymp-
totic edge density p that contains no induced copies of F .

With regard to Figures 5, the first of the results in this subsection
uses the Sidorenko tree bound to show that in fact no subgraph
other than the clique or the empty graph, not even for large values
of k, has a feasible region that can reach a frequency of 1 − o(1).
The second statement demonstrates that it is always possible to be
free of any subgraph that is not a clique or an empty graph, even if
this does not occur in the real social graphs we observe.

PROPOSITION 4.9. For every k, there exist constants ε and n0

such that the following holds. If F is a k-node subgraph that is not
a clique and not empty, and G is any graph on n ≥ n0 nodes, then
s(F,G) < 1− ε.

PROOF. Let Sk denote the k-node star — in other words the tree
consisting of a single node linked to k− 1 leaves. By Equation (1),
ifG has n nodes, then tinj(Sk, G) ≥ t(Sk, G)−c/n for an absolute
constant c. We now state our condition on ε and n0 in the statement
of the proposition: we choose ε small enough and n0 large enough
so that

(1− ε)k

2
(
k
2

)k−1
> max

(
ε,
c

n

)
. (8)

For a k-node graph F , let P(F ) denote the property that for all
graphs G on at least n0 nodes, we have s(F,G) < 1 − ε. Our

goal is to show that P(F ) holds for all k-node F that are neither
the clique nor the empty graph. We observe that since s(F,G) =
s(F ,G), the property P(F ) holds if and only if P(F ) holds.

The basic idea of the proof is to consider any k-node graph F
that is neither complete nor empty, and to argue that the star Sk
lacks a one-to-one homomorphism into at least one of F or F —
suppose it is F . The Sidorenko tree bound says that Sk must have a
non-trivial number of one-to-one homomorphisms into G; but the
images of these homomorphisms must be places where F is not
found as an induced subgraph, and this puts an upper bound on the
frequency of F .

We now describe this argument in more detail; we start by con-
sidering any specific k-node graph F that is neither a clique nor
an empty graph. We first claim that there cannot be a one-to-one
homomorphism from Sk into both of F and F . For if there is a
one-to-one homomorphism from Sk into F , then F must contain a
node of degree k − 1; this node would then be isolated in F , and
hence there would be no one-to-one homomorphism from Sk into
F . Now, since it is enough to prove that just one of P(F ) or P(F )
holds, we choose one of F or F for which there is no one-to-one
homomorphism from Sk. Renaming if necessary, let us assume it
is F .

Suppose by way of contradiction that s(F,G) ≥ 1 − ε. Let q
denote the edge density of F — that is, q = |E(F )|/

(
k
2

)
. The edge

density p of G can be written, using Proposition 4.1, as

p = s(K2, G) =
∑

{H:|V (H)|=k}

s(K2, H)s(H,G)

≥ s(K2, F )s(F,G) ≥ q(1− ε).



By a k-set of G, we mean a set of k nodes in G. We color the
k-sets of G according to the following rule. Let U be a k-set of
G: we color U blue if G[U ] is isomorphic to F , and we color U
red if there is a one-to-one homomorphism from Sk to G[U ]. We
leave the k-set uncolored if it is neither blue nor red under these
rules. We observe that no k-set U can be colored both blue and
red, for if it is blue, then G[U ] is isomorphic to F , and hence there
is no one-to-one homomorphism from Sk into G[U ]. Also, note
that s(F,G) ≥ 1− ε is equivalent to saying that at least a (1− ε)
fraction of all k-sets are blue.

Finally, what fraction of k-sets are red? By the Sidorenko tree
bound, we have

t(Sk, G) ≥ pk−1 ≥ qk(1− ε)k ≥ (1− ε)k(
k
2

)k−1
,

where the last inequality follows from the fact that F is not the
empty graph, and hence q ≥ 1/

(
k
2

)
. Since tinj(Sk, G) ≥ t(Sk, G)−

c/n, our condition on n from (8) implies that

tinj(Sk, G) ≥ (1− ε)k

2
(
k
2

)k−1
> ε.

Now, let inj(Sk, G) denote the number of one-to-one homomor-
phisms of Sk into G; by definition,

tinj(Sk, G) =
inj(Sk, G)

n(n− 1) · · · (n− k + 1)
=

inj(Sk, G)

k!
(
n
k

) ,

and hence

inj(Sk, G) = k!

(
n

k

)
tinj(Sk, G) > εk!

(
n

k

)
.

Now, at most k! different one-to-one homomorphisms can map Sk
to the same k-set of G, and hence more than ε

(
n
k

)
many k-sets of

G are red. It follows that the fraction of k-sets that are red is > ε;
but this contradicts our assumption that at least a (1 − ε) fraction
of k-sets are blue, since no k-set can be both blue and red.

PROPOSITION 4.10. Assume F is not a clique and not empty.
Then for each edge density p there exists a sequence Gp1, G

p
2, . . .

of asymptotic edge density p for which F does not appear as an
induced subgraph in any Gpi . Equivalently, s(F,Gpi ) = 0, ∀i.

PROOF. We call H a near-clique if it has at most one connected
component of size greater than one, and this component is a clique.
For any p ∈ [0, 1], it is possible to construct an infinite sequence
Hp

1 , H
p
2 , . . . of near-cliques with asymptotic density p, by simply

taking the non-trivial component of each Hp
i to be a clique of the

appropriate size.
Now, fix any p ∈ [0, 1], and let F be any graph that is nei-

ther a clique nor an empty graph. If F is not a near-clique, then
the required sequence Gp1, G

p
2, . . . is the sequence of near-cliques

Hp
1 , H

p
2 , . . ., since all the induced subgraphs of a near-clique are

themselves near-cliques.
On the other hand, if F is a near-clique, then since F is neither

a clique nor an empty graph, the complement of F is not a near-
clique. It follows that the required sequence Gp1, G

p
2, . . . is the se-

quence of complements of the near-cliques H1−p
1 , H1−p

2 , . . ..

Note that it is possible to take an F -free graph with asymptotic
density p and append nodes with local edge density p and random
(Erdős-Rényi) connections to obtain a graph with any intermedi-
ate subgraph frequency between zero and that of Gn,p. The same
blending arguement can be applied to any graph with a subgraph

frequency above Gn,p to again find graphs with intermediate sub-
graph frequencies. In this way we see that large tracts of the sub-
graph frequency simplex are fully feasible for arbitrary graphs, yet
by Figure 5 are clearly not inhabited by any real world social graph.

5. CLASSIFICATION OF AUDIENCES
The previous two sections characterize empirical and extremal

properties of the space of subgraph frequencies, providing two com-
plementary frameworks for understanding the structure of social
graphs. In this section, we conclude our work with a demonstra-
tion of how subgraph frequencies can also provide a useful tool for
distinguishing between different categories of graphs. The Edge
Formation Random Walk model introduced in Section 3 figures no-
tably, providing a meaningful baseline for constructing classifica-
tion features, contributing to the best overall classification accuracy
we are able to produce.

Thus, concretely our classification task is to take a social graph
and determine whether it is a node neighborhood, the set of peo-
ple in a group, or the set of people at an event. This is a specific
version of a broader characterization problem that arises generally
in social media — namely how social audiences differ in terms of
social graph structure [1]. Each of the three graph types we dis-
cuss — neighborhoods, groups, and events — define an audience
with which a user may choose to converse. The defining feature
of such audience decisions has typically been their size — as users
choose to share something online, do they want to share it pub-
licly, with their friends, or with a select subgroup of their friends?
Products such as Facebook groups exist in part to address this audi-
ence problem, enabling the creation of small conversation circles.
Our classification task is essentially asking: do audiences differ in
meaningful structural ways other than just size?

In Figure 1 and subsequently in Figure 5, we saw how the three
types of graphs that we study — neighborhoods, groups, and events
— are noticeably clustered around different structural foci in the
space of subgraph frequencies. Figure 5 focused on graphs con-
sisting of exactly 50-nodes, where it is visibly apparent that both
neighborhoods and events tend to have a lower edge density than
groups of that size. Neighborhood edge density — equivalent to
the local clustering coefficient — is known to generally decrease
with graph size [13, 19], but it is not clear that all three of the graph
types we consider here should decrease at the same rate.

In Figure 6, we see that in fact the three graph types do not de-
crease uniformly, with the average edge density of neighborhoods
decreasing more slowly than groups or events. Thus, small groups
are denser than neighborhoods while large groups are sparser, with
the transition occurring at around 400 nodes. Similarly, small event
graphs are denser than neighborhoods while large events are much
sparser, with the transition occurring already at around 75 nodes.

The two crossing points in Figure 6 suggest a curious challenge:
are their structural features of audience graphs that distinguish them
from each other even when they exhibit the same edge density?
Here we use the language of subgraph frequencies developed in
this work to formulate a classification task for classifying audience
graphs based on subgraph frequencies. We compare our classifi-
cation accuracy to the accuracy achieved when also considering a
generous vector of much more sophisticated graph features. We
approach this classification task using a simple logistic regression
model. While more advanced machine learning models capable of
learning richer relationships would likely produce better classifica-
tion accuracies, our goal here is to establish that this vocabulary
of features based on subgraph frequencies can produce non-trivial
classification results even in conjunction with simple techniques
such as logistic regression.
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Figure 6: Edge densities of neighborhoods, groups, and events
as a function of size, n. When n < 400, groups are denser
then neighborhoods. When n < 75, events are denser then
neighborhoods.

When considering neighborhood graphs, recall that we are not
including the ego of the neighborhoods as part of the graph, while
for groups and events the administrators as members of their graphs.
As such, neighborhoods without their ego deviate systematically
from analogous audience graphs created as groups or as events. In
Figure 6 we also show the average edge density of neighborhoods
with their ego, adding one node and n − 1 edges, noting that the
difference is small for larger graphs.

Classification features. Subgraph frequencies has been the mo-
tivating coordinate system for the present work, and will serve as
our main feature set. Employing the Edge Formation Random Walk
model from Section 3, we additionally describe each graph by its
residuals with respect to a backbone — described by the parameter
λ — fit to the complete unclassified training set.

Features based on subgraph frequencies are local features, com-
putable by examining only a few local nodes of the graph at a
time. Note that the subgraph frequencies of arbitrarily large graphs
can be accurately approximated by sampling a small number of in-
duced graphs. Comparatively, it is relevant to ask: can these simple
local features do as well as more sophisticated global graph fea-
tures? Perhaps the number of connected components, the size of
the largest component, or other global features provide highly in-
formative features for graph classification.

To answer this question, we compare our classification accu-
racy using subgraph frequencies with the accuracy we are able to
achieve using a set of global graph features. We consider:

• Size of the k largest components, for k = 1, 2.
• Size of the k-core, for k = 0, 1, 2, 3.
• Number of components in the k-core, for k = 0, 1, 2.
• Degeneracy, the largest k for which the k-core is non-empty.
• Size of the k-brace [18], for k = 1, 2, 3.
• Number of components in the k-brace, for k = 1, 2, 3.

These features combine linearly to produce a rich set of graph
properties. For example, the number of components in the 1-core
minus the number of components in the 0-core yields the number
of singletons in the graph.

Classification results. The results of the classification model are
shown in Table 1, reported in terms of classification accuracy —
the fraction of correct classifications on the test data – measured
using five-fold cross-validation on a balanced set of 10,000 in-
stances. The classification tasks were chosen to be thwart classifi-
cation based solely on edge density, which indeed performs poorly.

Model Features N vs. E, n = 75 N vs. G, n = 400

Edges 0.487 0.482
Triads 0.719 0.647
Triads + RG 0.737 0.673
Triads + Rλ 0.736 0.668
Quads 0.751 0.755
Quads + RG 0.765 0.769
Quads + Rλ 0.765 0.769
Global + Edges 0.694 0.763
Global + Triads 0.785 0.766
Global + Triads + RG 0.784 0.766
Global + Triads + Rλ 0.789 0.767
Global + Quads 0.797 0.812
Global + Quads + RG 0.807 0.815
Global + Quads + Rλ 0.809 0.820

Table 1: Classification accuracy for N(eighborhoods),
G(roups), and E(vents) on different sets of features. RG
and Rλ denote the residuals with respect to a Gn,p and
stochastic graph model baseline, as described in the text.

Using only 4-node subgraph frequencies and residuals, an accuracy
of 77% is achieved in both tasks.

In comparison, classification based on a set of global graph fea-
tures performed worse, achieving just 69% and 76% accuracy for
the two tasks. Meanwhile, combining global and subgraph fre-
quency features performed best of all, with a classification accu-
racy of 81−82%. In each case we also report the accuracy with
and without residuals as features. Incorporating residuals with re-
spect to either a Gn,p or Edge Formation Random Walk baseline
consistently improved classification, and examining residuals with
respect to either baseline clearly provides a useful orientation of the
subgraph coordinate system for empirical graphs.

6. CONCLUSION
The modern study of social graphs has primarily focused on

the examination of the sparse large-scale structure of human re-
lationships. This global perspective has led to fruitful theoretical
frameworks for the study of many networked domains, notably the
world wide web, computer networks, and biological ecosystems
[13]. However, in this work we argue that the locally dense struc-
ture of social graphs admit an additional framework for analyzing
the structure of social graphs.

In this work, we examine the structure of social graphs through
the coordinate system of subgraph frequencies, developing two com-
plementary frameworks that allow us to identify both ‘social’ struc-
ture and ‘graph’ structure. The framework developed in Section 3
enables us to characterize the apparent social forces guiding graph
formation, while the framework developed in Section 4 character-
izes fundamental limits of all graphs, delivered through combina-
torial constraints. Our coordinate system and frameworks are not
only useful for developing intuition, but we also demonstrate how
they can be used to accurately classify graph types using only these
simple descriptions in terms of subgraph frequency.

Distribution note. Implementations of the Edge Formation Ran-
dom Walk equilibrium solver and the subgraph frequency extremal
bounds optimization program are available from the first author’s
webpage.
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