
Network Bucket Testing

Lars Backstrom
Facebook, Inc.

1601 University Ave.
Palo Alto, CA 94304.

Jon Kleinberg∗
Dept. of Computer Science

Cornell University
Ithaca, NY 14853.

ABSTRACT
Bucket testing, also known as A/B testing, is a practice that is
widely used by on-line sites with large audiences: in a simple ver-
sion of the methodology, one evaluates a new feature on the site
by exposing it to a very small fraction of the total user population
and measuring its effect on this exposed group. For traditional uses
of this technique, uniform independent sampling of the population
is often enough to produce an exposed group that can serve as a
statistical proxy for the full population.

In on-line social network applications, however, one often wishes
to perform a more complex test: evaluating a new social feature
that will only produce an effect if a user and some number of his
or her friends are exposed to it. In this case, independent uniform
draws from the population on their own will be unlikely to produce
a group that contains users together with their friends, and so the
construction of the sample must take the network structure into ac-
count. This leads quickly to challenging combinatorial problems,
since there is an inherent tension between producing enough corre-
lation to select users and their friends, but also enough uniformity
and independence that the selected group is a reasonable sample of
the full population.

Here we develop an algorithmic framework for bucket testing
in a network that addresses these challenges. First we describe a
novel walk-based sampling method for producing samples of nodes
that are internally well-connected but also approximately uniform
over the population. Then we show how a collection of multiple
independent subgraphs constructed this way can yield reasonable
samples for testing. We demonstrate the effectiveness of our algo-
rithms through computational experiments on large portions of the
Facebook network.

Categories and Subject Descriptors
H.4.m [Information Systems]: Miscellaneous

Keywords
Social networks, Bucket testing, A/B testing, Random walks
∗Supported in part by a MacArthur Foundation Fellowship, a
Google Research Grant, a Yahoo! Research Alliance Grant, and
NSF grants IIS-0705774, IIS-0910664, and CCF-0910940.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

1. INTRODUCTION
Bucket testing, also known as A/B testing, is a practice that is

widely used by on-line sites with large audiences. In a simple ver-
sion of bucket testing, the site’s administrators want to determine
the effect of a proposed new feature on the site’s users, so they ex-
pose this feature to a small randomly selected fraction of the user
population and measure its effects. We call this sampled subset
the test set for the feature. A canonical example is the scenario in
which a search engine wants to evaluate a planned change to the
way in which it presents its results; to decide if the new presen-
tation increases clickthrough rates, it is shown to a small random
test set, and the clickthrough rates on this test set are compared to
those on the remainder of the population (who continue to see the
standard presentation).

In on-line social network applications, however, one often wishes
to perform a more complex test: evaluating a new social feature
that will only produce an effect on a user u if both u and some
number of u’s friends are exposed to it. There are a range of such
features, including invitations, targeted messages or ads with a so-
cial component, and pieces of information that are displayed on a
user’s page for the purpose of being shown to their friends. In all
such cases, we may believe that a user u experiences a weak effect
from the feature each time u interacts with a friend in the test set;
in order to determine the effectiveness of the feature, we thus need
for multiple friends of u’s to belong to this test set. For simplicity,
we’ll assume there is a parameter d > 0 such that a user u in the
test set is only relevant to the test — in other words, we’ll only be
able to assess the effectivness of the new feature on u — if at least
d of u’s friends are also in the test set.1 We’ll also assume a budget
k such that the size of the test set should be at most k.

This is the fundamental constraint imposed by testing features in
social applications — that a test set should contain individuals to-
gether with several of their friends — and it greatly complicates the
problem of constructing a test set. The traditional approach, choos-
ing a subset of k nodes independently and uniformly at random,
does not work well in the network context, since when we choose
a test set that is small relative to the full population, it is unlikely
that the friends of a test set member will also be in the test set. In-
stead, we are faced with a fundamental algorithmic problem based
on the following tension: we need to correlate the choices of users
across the network structure, to ensure that users appear in the test
set together with a sufficient number of friends, but we still need to
sample approximately uniformly from the population.

1There are other ways of requiring u to have friends in the test
set, such as assuming a probabilistic model for the effectiveness of
the feature in the style of [1, 6], but the present formulation via a
threshold of d is sufficient to expose the underlying issues in the
problem.

Network Bucket Testing: Formulating the Problem. Although
these issues are implicit in the sampling of audiences as it arises
in practice, it is a problem that to our knowledge has not been pre-
cisely formulated or systematically studied. Our main contribu-
tions here are to give a concrete formulation of the network bucket
testing problem, and to describe a set of algorithmic approaches
to network bucket testing that improve over a sequence of increas-
ingly sophisticated baselines that we use as bases for comparison.

First we present the formulation of the problem. We are given an
n-node graph G = (V,E), representing a social network on a set
of users. Our goal is to estimate, as accurately as possible, the ex-
pected sum of a distribution of values across the nodes (represent-
ing their response to the feature being tested). For simplicity, we
will assume the case of responses that take binary values, though
our framework easily extends to more general sets of values. Thus,
we assume there is a 0-1 random variable Xu associated with each
node u, each with unknown and possibly distinct distributions, and
our goal is to estimate the expectation of the sum X =

P
u∈V Xu.

We assume that the random variables {Xu : u ∈ V } are mutually
independent, although neighboring nodes in G may have distribu-
tions that are very similar to each other.2 All our methods will
produce unbiased estimators of the expectation E [X], but these
methods will generally differ in the variance of the estimator they
produce; this variance is the objective function that we wish to min-
imize.

We consider methods that estimate E [X] using a test set of
nodes in G. Recall our basic premise that a node in the test set
is only useful for our estimation if it also has at least d neighbors in
the test set. Thus, our methods will work by first sampling a set of
nodes fromG, forming a core set C on which the random variables
will be evaluated, and then adding to this a disjoint fringe set F
designed to raise the degrees of nodes in C up to our threshold of
d. Formally, then, a test set T consists of a pair of disjoint sets of
nodes (C,F) — the core and the fringe — with the property that
each u ∈ C has at least d distinct neighbors in the union C ∪ F .
As we will see, a number of basic approaches to the construction
of test sets naturally produce multisets in which elements might be
repeated, so we allow T to be a multiset. In determining the size
of the multiset T , we count the number of distinct nodes, and we
impose the constraint that this size must be at most the budget k.

Finally, a testing procedure is a randomized algorithm that pro-
duces a distribution over size-k test sets T = (C,F). It draws a
sample (C,F) from this distribution, in which nodes u in C may
appear with multiplicities lu > 1. The nodes in C are the users
who will be targeted by the test, and so we observe the outcomes of
their random variables {luXu : u ∈ C}. The procedure then uses
a natural unbiased estimator, described in Section 3, to estimate
E [X] from the outcomes of these random variables. The variance
of this estimator depends on the way the test set is constructed, and
our goal is a testing procedure — and hence a distribution over test
sets — for which the variance is as small as possible.

Designing an Algorithm for Network Bucket Testing. To de-
velop a sense for how we can design good test sets, we discuss a
sequence of general approaches, together with the trade-offs among
them, that will build up to the methods we develop in the paper.

Perhaps the simplest approach is to build the core set C by mak-
ing k′ independent draws, for a parameter k′ < k, uniformly and

2This is an important point: our formulation takes into account
homophily — the tendency of neighbors in a network to behave
similarly — through the fact that if (u, v) is an edge of G, then Xu
and Xv may be close in distribution, even though the values drawn
from Xu and Xv are independent.

independently from the node set V . We then construct the fringe
F by adding up to d nodes for each u ∈ C. The problem with
this approach is that when we sample a small set C independently
and uniformly from V , we will generally need d distinct nodes in
the fringe for every u ∈ C; there are very few opportunities to
use a single fringe node to raise the degree of multiple core nodes.
Thus, to respect the overall size budget of k, we will need to have

a core of size only about k′ =
k

d+ 1
; most nodes in the test set

are “wasted” in the constructon of the fringe. Since the variance
of our estimate is improved by basing it on many distinct random
variables, having a very small core set leads a higher variance.

To avoid wasting many nodes on the construction of the fringe,
therefore, we instead pursue approaches that try to build core setsC
with the property that each u ∈ C has many neighbors in C. This
way, we need to add fewer nodes to the fringe; for example, if each
u ∈ C had at least d neighbors in C, then in fact we could have
a fringe F equal to the empty set. Additionally, if the set C forms
a tight cluster-like structure in the graph, then we will generally
be able to find fringe nodes that can raise the degrees of multiple
nodes in C, again resulting in a smaller fringe.

There are two basic challenges in making this kind of approach
work, and our algorithms in the paper can be viewed informally
as providing methods for overcoming both of them. First, it is not
enough to find a single core set C with this property of high in-
ternal connectivity; we need a distribution over such sets C with
the additional property that each node of G has an approximately
uniform probability of appearing in C. Without some approximate
uniformity guarantee, the variance in our estimate of E [X] will be
very large.3 It is computationally intractable to do this perfectly;
we can show that it is NP-hard to decide whether G has a distribu-
tion over k-node sets C such that (i) each C in the support of the
distribution has internal node degrees at least some fixed bound d,
and (ii) each node in V has a uniform probability of appearing in a
C sampled from this distribution. As a result, we will need to use
heuristics to produce approximate forms of such guarantees.

Second, even if we could sample such a densely connected sub-
set C with near-uniform probability across nodes, we would still
have the following problem: nodes u and v that are connected in G
may have similar distributions forXu andXv , and so a highly con-
nected set C will produce a set of random variables {Xu : u ∈ C}
whose distributions are not representative of the full set of distribu-
tions. This homophily bias is another effect that increases the esti-
mate variance. Thus we will need to build a setC with a more com-
plex structure, consisting of multiple well-connected pieces that are
globally “spread out” across the network.

Viewed in light of these difficulties, one can appreciate how ef-
fortlessly independent sampling of isolated individuals solves the
problem of constructing a test set in the absence of a network con-
straint: in this easier case, (i) all nodes are relevant to the test, re-
gardless of how many neighhbors they have in the test set, so there
are no “wasted” nodes, and (ii) the test set is a perfect sample of the
full population. In a sense, the challenge is to achieve something
that works approximately as well when the network is present, deal-
ing with the problems of wasted nodes, non-uniform sampling, and
homophily bias as indicated above.

3Note: even though each node u individually should have approxi-
mately the same probability of appearing in the sample, it is clearly
the case that the appearance of two neighboring nodes u and v can-
not be independent. Nor would we want them to be; the goal in this
style of network bucket testing is indeed to correlate the appearance
of a node with its neighbors, but to do so in a way that the marginal
probability of any one node’s appearance is nearly uniform.

Walk-Based Methods. Our approach to constructing test sets, mo-
tivated by these issues, is to use algorithms based on random walks.
For any given random walk there is a natural way to define a test
set: we define the core set C to be the first h nodes visited by the
walk, and then use a greedy set-cover heuristic to construct a fringe
F for C, where h is selected in such a way that the size of C ∪ F
is at most k. The advantage of using a random walk is that it auto-
matically produces core setsC where each node inC other than the
start and end of the walk has at least two neighbors in C — corre-
sponding to the two adjacent nodes in the walk — and potentially
more to the extent that the walks revisits points close to where it
has been. Moreover, this internal connectivity generally makes it
possible for individual fringe nodes to raise the degrees of multiple
core nodes, allowing for a smaller fringe.

Since the degrees in G are not all the same, a random walk with
uniform edge transition probabilities will produce a non-uniform
distribution over nodes, which increases the variance of the esti-
mate. Standard approaches to restore uniformity to such a walk
involve having the walk “stall” so as to repeat low-degree nodes [2,
3, 4, 5], but this produces a very large amount of repetition in the
multiset of sampled nodes, reducing the number of distinct nodes
and actually providing very little improvement in variance relative
to the walk with uniform transitions. Instead, we find that a signifi-
cant reduction in variance is possible when we build core sets from
a different random walk, with non-uniform transition probabilities
computed by an iterative re-weighting scheme based on the work
of Linial et al. on matrix scaling [7] and also related to work of
Boyd et al. on the fastest mixing Markov chain problem [3].

Even these weighted random walks, however, tend to proceed
through the network without coming close to places they’ve already
been; as a result, while they reduce the variance well below that
of standard walk-based approaches, they are still inefficient in the
sense that the internal degrees of most nodes in C are only slightly
above 2. We therefore introduce a further strengthening, running a
random walk that operates on the edges of the graph rather than the
vertices, and which is designed to transition from edge to edge in a
way that tends to “loop back” to neighbors of nodes it has already
visited. Combined with a re-weighting scheme that preserves near-
uniformity in the sampling of nodes, these triangle-closing walks
produce sets that are highly internally connected, with large inter-
nal degrees among their nodes.

Given the long history of random walks in the context of sam-
pling [8], it is important to emphasize what random walks are ac-
complishing in our case and what they aren’t. To begin with, ran-
dom walks on large networks such as the Web graph or on-line
social networks have typically been used in prior work for the prob-
lem of generating individual uniformly random nodes from a graph
to which one does not have direct access [2, 4, 5]. In our case,
on the other hand, we assume that the bucket testing is being per-
formed by the administrators of the site, who can directly select
individual nodes uniformly at random from their user population.
Thus, random walks are not needed for this purpose, nor would they
be of use if the goal were simply to perform independent sampling
of nodes. Rather, random walks are used in our case to produce sets
in which each node has an approximately uniform marginal proba-
bility of appearing, but which are highly connected internally; and
we find that the types of random walks one needs for this purpose
are quite different from those that have appeared in the prior litera-
ture on near-uniform sampling of individual nodes [2, 4, 5].

Overcoming Homophily Bias: The Bag-of-Coins Problem. Fi-
nally, we need algorithms that deal effectively with the issue of
homophily bias discussed earlier. In particular, suppose that we run

a triangle-closing random walk for a fixed number of steps, produc-
ing a set that is internally well-connected. Because the walk will
tend to be concentrated in a specific portion of the network, under-
sampling other parts, it will lead to a set of sampled random vari-
ables {Xu : u ∈ C} that have similar distributions to each other
and that may not be representative of the full population. This will
increase the variance, relative to a comparably-sized set of random
variables whose distributions were more representative. To deal
with this, we adapt our approach so that we run multiple, shorter
walks with independently selected starting points. This leads to the
following trade-off: longer walks produce sets with better internal
connectivity, which reduces the variance by requiring fewer fringe
nodes; but shorter walks produce more representative sets of ran-
dom variables, which also reduces the variance.

This basic trade-off applies more generally than just to the ques-
tion of walk length in our setting, and so it is useful to understand
the basic optimization at a more general level. For this purpose, we
abstract the trade-off in the following stylized problem.

• Suppose you are given a population of coins of different biases,
and you want to estimate the overall mean bias.
• The coins are grouped into bags, with all the coins in a single

bag having the same bias (corresponding to the fact that a single
walk tends to produce nodes u with similar distributions Xu).
• There is a sublinear function g(t) such that if you select a bag

of coins of size t, then g(t) coins are “wasted” and you can only
flip t − g(t). (This corresponds to the fact that walks of dif-
ferent length result in different numbers of nodes wasted on the
construction of the fringe.)

If you are allowed to choose bags of a fixed size totaling k coins,
what is the best bag size to pick if you want to minimize the vari-
ance in your estimate? In a simple form, this captures the trade-off
we experience in our walks. Choosing a few large bags takes advan-
tage of “economies of scale” (fewer coins are wasted), but there is
extensive sharing of biases among the coins. Choosing many small
bags allows for a good mix of biases, but it wastes many coins.

We will see in Section 2 that this bag-of-coins model has an ap-
pealing solution in which an interior optimum naturally emerges
for the best bag size — balanced between the extremes of bags that
are too small and those that are too large. We find a surprisingly
accurate reflection of this interior optimum when evaluating our al-
gorithms on real networks; the variance is minimized by dividing
the walk into independent segments of length h, for an h balanced
between walks that are too long (visiting too many nodes of similar
distribution) and too short (wasting too many nodes on the fringe).

Evaluating our Methods. This completes the high-level descrip-
tion of our full method for constructing test sets. We build the
sets by performing triangle-closing random walks, with transition
weights computed in a way that gives each node an approximately
uniform probability of being visited by the walk. We restart the
walk from a randomly chosen node every h steps, for a value of h
chosen to optimize the variance of the resulting estimate.

To evaluate our methods, and to supplement the theoretical ar-
guments justifying the basic ingredients of the walks, we perform
experiments in which we estimate random values distributed across
nodes in a large subgraph of the Facebook network. We find that
each of the components in our approach leads to a significant im-
provement in the quality of the estimate: re-weighted walks are
more effective than traditional “uniformized” walks with stalling;
triangle-closing walks are more effective still because they create
high internal connectivity in the sampled set; and restarting the
walk at optimally timed intervals reduces the variance by creating
random variables that better represent the full population.

2. A MODEL OF OPTIMAL WALK LENGTH
We begin by analyzing the stylized probabilistic model described

in Section 1, using bags of coins of different sizes to abstractly cap-
ture the trade-off between taking a few long walks that are more ef-
ficient in their use of fringe nodes, and taking many short walks that
better represent the set of possible distributions in the population.

In our simple model, there is a large universe of coins of types
1, 2, . . . ,m. Coins of type i have a probability pi of coming up
“heads,” and an fi fraction of all coins are of type i, where

Pm
i=1 fi =

1. We do not know the values {pi} or {fi}, but we would like to
estimate the probability of heads,

Pm
i=1 fipi, by flipping a set of

coins and using the observed number of heads as an estimate.
In our model, we have a fixed budget k, and we can request s

bags of coins of size t each, where we can choose s and t subject
to the constraint st ≤ k. When we receive a bag of coins, they all
have the same type; type is i with probability fi. We cannot flip
all t coins in the bag, however; instead, for a function g(·), we can
flip et = t − g(t) coins. Let Xj be a random variable equal to the
number of heads observed among flips from the jth bag we select,
and let X =

Ps
j=1Xj . We want to choose t (and hence s) so that

Pr [(X > (1 + ε)E [X]) ∪ (X < (1 + ε)E [X])]

is minimized. Since this probability is approximately controlled by√
Var[X]

E[X]
, we will seek t to minimize this expression.

As noted in Section 1, this is not exactly the problem we face
in the graph G, but it is a stylized abstraction of it; the function
g(t) roughly corresponds to the “waste” of nodes due to the fringe
around a walk segment of length t, and the shared type of all coins
in a bag roughly corresponds to the similarity in distributions of
nodes on the same walk segment. In Section 4, we will see that this
analogy is close enough to permit strong numerical agreement.

Analysis for Two Types. We describe how to analyze this bag-of-
coins model in the simple case when there are two types of coins,
of bias p1 = a and p2 = b > a, and of equal prevalence f1 =
f2 = 1

2
in the population. We then summarize how to generalize

the analysis to an arbitrary set of types.
We begin the analysis with a basic calculation about variances,

which is useful in the analysis. Suppose we have a random variable
Z defined in terms of two other random variables Z1 and Z2 as
follows. With probability 1

2
we draw a value from Z1, and with

probability 1
2

we draw a value from Z2. Let E1 be the event that we
draw from Z1 in determining Z, and E2 be the event that we draw
from Z2. Then we have

Var [Z] = E
ˆ
Z2˜− E [Z]2

= E
ˆ
Z2 | E1

˜
· Pr [E1] + E

ˆ
Z2 | E2

˜
· Pr [E2]

−1

4
(E [Z1] + E [Z2])2

=
1

2
(E
ˆ
Z2

1

˜
+ E

ˆ
Z2

2

˜
)− 1

4
(E [Z1] + E [Z2])2

=
1

2
(E
ˆ
Z2

1

˜
+ E

ˆ
Z2

2

˜
)

−1

4
(E [Z1])2 + 2E [Z1]E [Z2] + E [Z2]2)

=
1

2
(E
ˆ
Z2

1

˜
− E [Z1])2) +

1

2
(E
ˆ
Z2

2

˜
− E [Z2])2)

+
1

4
(E [Z1])2 − 2E [Z1]E [Z2] + E [Z2]2)

=
1

2
Var [Z1] +

1

2
Var [Z2] +

„
E [Z2]− E [Z1]

2

«2

Now, recall thatXj is the number of heads observed among coin
flips from the jth bag we select. To compute the variance of Xj ,
we can set Z = Xj and use our formula for Var [Z] from above,
with Z1 corresponding to the case in which draw et coins of mean a,
and Z2 corresponding to the case in which draw et coins of mean b.
Also, let c = (a+ b)/2 and d = (a− b)/2. We have E [Z1] = eta,
E [Z2] = etb, Var [Z1] = eta(1− a) and Var [Z2] = etb(1− b), so

1
2
Var [Z1] + 1

2
Var [Z2]et = c− 1

2
(a2 + b2)

= c− 1

2
((c− d)2 + (c+ d)2)

= c− (c2 + d2)

= c(1− c)− d2.

Writing v = c(1− c), we have

Var [Xj] = Var [Z] = etv − etd2 + et2d2 = etv + (et2 − et)d2.

Finally,

Var [X] = Var

"
sX
j=1

Xj

#
= s(etv + (et2 − et)d2)

=
ket(v + (et− 1)d2)

t

and

E [X] = setc =
ketc
t
.

(For simplicity in the analysis, and to permit closed-form expres-
sions, in the above we use an approximation where we drop integer
constraints on s and t. Our numerical experiments indicate that this
does not cause any significant source of error.)

Minimizing

p
Var [X]

E [X]
is the same as minimizing

Var [X]

E [X]2
, and

we can write the latter as

f(t) =
t

ketc2 ˆv +
`et− 1

´
d2˜ =

t

kc2

»
vet +

„
1− 1et

«
d2

–
.

Now the point is that for functions g(t) that are monotone increas-
ing and grow as o(t), we should typically expect to see this function
f(t) achieve an interior optimum strictly between 1 and k. If g(t)
is differentiable, then we can investigate the value of this optimal t
by considering the equation f ′(t) = 0.

As an illustration of this, let’s consider the simple case in which
g(t) = r, so that et = t− r. For notational simplicity, we also writeev = v − d2, which we note is positive by the definition of c and d.

For this choice of g(t), we have

f ′(t) =
1

kc2

»
d2t

t− r −
r

(t− r)2 (ev + d2(t− r))
–
.

Setting f ′(t) = 0, we get (when t > r)

d2t =
rev
t− r + rd2.

It follows that

(t− r)2 =
rev
d2

and hence

t = r +

√ev
d
·
√
r = r +

r
v

d2
− 1 ·

√
r.

The conclusion is somewhat surprising: when g(t) is a constant, the
optimal grouping strategy chooses to waste asymptotically almost
all of the samples so as to produce a relatively large number of
distinct groups — that is, it loses r samples in order to produce a
group with O(

√
r) usable samples.

Now we consider what happens when we carry out the optimiza-
tion for more general functions g(t). We have

f(t) =
t

kc2

»
vet +

„
1− 1et

«
d2

–
and

f ′(t) =
1

kc2

»evet + d2 − tet′evet2
–
.

Setting f ′(t) = 0 and assuming et > 0, we have

ev + etd2 =
tet′evet .

Now substituting in et = t− g(t)

ev + (t− g(t))d2 =
t(1− g′(t))ev
t− g(t)

.

We can rearrange to find

g(t)− tg′(t)
(t− g(t))2

=
d2ev .

If we assume that g(t) = βt+ h(t), with h′(t) going to 0 (as in
g(t) = βt + γtδ with δ < 1, for example), then we can substitute
t = g(t) + C

p
g(t) and find that

d2ev =
g(t)− (g(t) + C

p
g(t))g′(t)

C2g(t)

=
1− g′(t)
C2

− g′(t)

C
p
g(t)

=
1− β − h′(t)

C2
− β + h′(t)

C
p
g(t)

≈ 1− β
C2

When h′(t) and β+h′(t)

C
√
g(t)

are both converging to 0, we find thatC ≈
√ev

d
√

1−β , and that the optimal value of t occurs when t ≈ g(t) +
√ev

d
√

1−β

p
g(t). This is a natural generalization of the earlier special

case when g(t) = r, and with the same qualitative conclusion.

Larger Sets of Types. With an arbitrary set of types, the analogue
of our calculation for Var [Z] can be derived from the Law of Total
Variance, which tells us that for random variables Z and Y , we
have Var [Z] = E [Var [Z|Y]] + Var [E [Z|Y]]. We denote the
first of the terms in this sum by E(V), and the second term by
V (E).

Thus, when we sample s buckets of cost t gaining et coins each,
we get a variance of

Var [X] =
k

t
(etE(V) + et2V (E))

This gives us

f(t) =
Var [X]

E [X]2
=
t(E(V) + etV (E))

ketE [X]2

and hence

ket2E [X]2 f ′(t) = etE(V) + et2V (E) + tetet′V (E)

−tet′E(V)− tetet′V (E)

= (t− g(t))E(V) + (t− g(t))2V (E)

−t(1− g′(t))E(V)

= −g(t)E(V) + (t− g(t))2V (E) + tg′(t)E(V)

Setting the derivative to 0, we find that

g(t)E(V) = (t− g(t))2V (E) + tg′(t)E(V)

This provides an equation that can be solved for the optimal t. The
form of the solution will depend on the specific parameters, but we
can check for example that this equation includes our previous two-
type special case with g(t) equal to a constant r. In this case we
have E(V) = c(1 − c) − d2 = ev and V (E) = d2, and hence
rev = (t− r)2d2 as before.

From bags of coins to core sets. For assembling a core set from
random walk segments of length t, this bag-of-coins model thus
provides a way of reasoning about how the variance depends on
the choice of t, and hence how to find an optimal value for t. How-
ever, the composition of the bag itself — the analogue of the set of
nodes sampled by each walk segment — is treated in a “black box”
fashion by this simple model. We can see from the expression for
Var [Z] at the beginning of this section that reducing the variance
of the overall estimate involves reducing the variance within the
bag of coins selected, but the model itself does not provide guid-
ance on how to sample nodes to accomplish this. Accordingly, in
the next section we consider how to perform a random walk of a
given length so as to select a set of nodes for which the variance of
the resulting estimate is low.

3. ALGORITHMS
Given the abstract framework developed when considering the

bags-of-coins problem, we now move on to develop algorithms
which in essence, construct the bags of coins. Now though, each
coin reprsents a vertex in the graph, and each bag respresents a
multiset of vertices, which are related in some way by the network.
Similar to the bags-of-coins problem, we have a fixed budget of
nodes who we may expose to the test condition that we are evaluat-
ing. However, we can only evaluate the feature on nodes who have
at least d neighbors also exposed to the test condition.

Recall the tradeoff between the two extremes in the introduction;
at one extreme we could sample k

d+1
isolated nodes, spending the

rest of our budget on a fringe to bring them up to a minimum degree
of d, while at the other extreme we could sample a single group of
k well-connected nodes, avoiding the use of many fringe nodes but
at the cost of potential non-uniformity and overlap in node selec-
tion. Our algorithms will walk a middle ground between these two
extremes. We strive to come up with algorithms which are effi-
cient in the sense that they test on a large fraction of the budget, but
also have enough uniformity and independence to provide a low-
variance estimate of X .

One general way to do this it to attempt to sample many small
connected groups of nodes (in the style of our bags-of-coins model).
The hope here is that if we sample a connected group of nodes, we
will be able to choose their neighors in such a way that we cover
them more efficiently, and waste less than d additional nodes per
core-set node. To take the simplest example, we could sample a pair
of connected nodes u and v. In this case, we start with both u and
w having degree 1. We could then add all w such that (u,w) ∈ E

and (v, w) ∈ E. If there were j such w, then we could add those j
nodes, which each increase the degrees of both v and w, along with
2(d− j − 1) other nodes that only each increase the degree of one
of v or w. This would bring the degrees of u and v up to d, and so
we could evaluate the test on two nodes at a cost of 2d − j, which
is more efficient than evaluating on one node at a cost of d+ 1.

There are two potential problems with this approach. The first
stems from the fact that u and v are likely to be related, but this
is precisely the issue addressed in Section 2, and we have seen
that under the right conditions, the increase in variance due to this
relationship is more than offset by the decrease in variance due to
increased efficiency. The other problem is that this method does
not sample nodes uniformly, and if we were to naively take the
observed average, we would not have an unbiased estimate.

More specifically, if we were to sample a uniform edge, we
would expect a node u to appear with probability proportional to
its degree. In order to make this sampling method an unbiased esti-
mator of X , we need to take into account the expected observation
frequency of each node imparted by our sampling strategy. The
correct way to do this is simply to divide each observation by its
expected frequency, pi. Thus, if our budget allowed us to sample
t edges ut, vt, along with their supporting 2d − jt neighbors, we
would estimate X as

C
X
i

„
Xui

dui

+
Xvi

dvi

«
where C is a normalizing constant that depends on |V |, t, and |E|.

This brings us to a more general approach, which we will use in
two of our baseline methods, along with the three algorithms we
develop. A single edge can be thought of as a walk of length 1,
which has some known bias to select some nodes more frequently
than others. We can generalize this to walks of length greater than 1
which may also be biased to visit some nodes more frequently than
others, but in a way that we can correct for. Thus, our approach is to
take a number of random walks according to some strategy, which
imparts an expected visitation distribution on the nodes. We will
measure X for all of the nodes visited, and then use a correction
similar to what we outlined above to obtain an unbiased estimate of
X . Whereas sampling a single edge causes a node to appear with
probability proportional to its degree, various walk strategies will
cause nodes to occur with other distributions.

In general, we will estimate X based on t independent random
walks. In these t random walks we will encounter a set of nodes U ,
and an individual node u will appear lu times, while, given a walk
strategy, it was expected to appear pu times. Our final estimate of
X will thus be

|V |
|U |

X
u∈U

Xulu
pu

For each of the t walks, we need to increase the degrees of the
core test nodes to at least d. To do this, we perform a greedy cover-
ing algorithm after each walk. If the set of nodes in the walk is U ,
and U ′ ⊆ U of them have degree less than d, then we repeatedly
select a node w such that |N(w) ∩ U ′| is maximized; that is we
select w to increase the degree of as many nodes in U ′ as possible.
In this way we obtain the set of core nodes which are found in the
walk, and a set of supporting fringe nodes whose role is simply to
increase the degrees of the core nodes to d. We will only measure
X on the core nodes.

In the rest of this section, we introduce three baselines to com-
pare against, and then develop algorithms which outperform all
of these baselines. A guiding motivation underlying these algo-
rithms, even the more elaborate ones, is that they should all be able

to construct the distributions needed for the random walk by itera-
tive methods that update weights through local computations across
nodes and edges; in this way, they can be made to scale up to graphs
that are the size of large on-line social networks.

3.1 Baselines
We first describe the baseline methods; the third one is in fact

often used by state-of-the-art methods for node sampling, but in
the context of our problem it will be a point relative to which our
subsequent algorithms will improve significantly.

1. Isolated Sampling. This strategy samples nodes uniformly, and
for each sampled node we pick d of its neighbors. To estimate the
entire populationX , we simply multiply the outcome in our sample
by |V |(d+1)

k
. This makes the overall variance of the method scale

as Var [X] |V |(d+1)
k

.

2. Unweighted Random Walk. An unweighted random walk starts
at a random node, and at each step advances to a neighbor of the
current node. The stationary probability of a node u in such a walk
— the long-run probability of being at a u after many hops – is
proportional to the degree du. However, in this version we start
at a node selected uniformly at random. While this means that pu
does not have a simple closed form, we can compute it as

P
l p
l
u,

where plu is the probability of being at u after l hops in the walk.
plu can be computed with dynamic programming as p0

u = 1
|V | and

pl+1
u =

P
(v,u)∈E

pl
v
dv

. We note that this computation can be done
in O(|E|L), and is readily distributed and parallelizable.

3. Metropolis Sampling Random Walk. One way to avoid the
bias towards high-degree nodes is by using Metropolis sampling
when taking the random walk [3, 4]. As in the unweighted random
walk, we will select a neighbor uniformly at random from amongst
all neighbors. However, if we are currently at u and we select v as
the next hop, but dv > du then we will, instead of hopping, stay
at u with probability du

dv
. This sampling method ensures that all

nodes are equally likely at every step of the walk.
However, the obvious drawback here is that the walks tend to

have fewer unique nodes in them. One might think that we could
simply run this algorithm until l unique nodes had been visited for
some l, but this introduces the bias that p is no longer uniform
(indeed, it would be a sort of interpolation toward the unweighted
walk just discussed). Thus, we will take walks of length l with the
expectation that many of the nodes will have multiplicity lu > 1.

3.2 Our methods

Algorithm 1. Weighted Walks. The unweighted random walk
had the nice property that we rarely visited the same node more than
once, giving nodes low multiplicity, which is good insofar as the
variance of the estimate is concerned. However, the bias it imparted
increased the variance. On the other hand, Metropolis sampling had
no bias that needed to be corrected, but the high multiplicity is bad
for the variance. In this approach we attempt to achieve the best of
these two methods. We will take a random walk, with no stalling,
but we will weight the edges in such a way that this does not bias
towards high-degree nodes.

In the ideal case, we would end up with a distribution on the
outgoing edge weights 0 ≤ wu,v , such that

P
u wu,v = 1 andP

v wu,v = 1. Doing so would ensure that we were at each node
with equal probability at each step in a random walk, but we hope it

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1 10 100

U
ni

qu
e

F
ra

ct
io

n

Hops

Fraction of Uniq Nodes in Walk

A
B
C

Unweighted
Metropolis

Figure 1: Fraction of nodes that are unique in a walk.

would not have the multiplicity drawback of Metropolis sampling.
Finding such a set of weights is not possible for all graphs, but if
we can come close, we can correct for any non-uniformity by using
the appropriate distribution p.

One approach to finding a set of weights is to view the above as
a set of linear constraints, and use standard methods for finding a
solution. However, this becomes infeasible for large graphs with
millions or billions of edges.

Instead, we take an iterative approach which converges to such a
set of weights if one exists. The approach is one that is employed by
Linial et al. [7] for a problem they call matrix scaling, and is based
on earlier work of Sinkhorn [9]. In each iteration, we perform the
following two steps:

1: w′u,v ←
wu,vP
u wu,v

2: wu,v ←
w′u,vP
v w
′
u,v

In other words, we repeatedly normalize the incoming weight of
each node so that it sums to 1, and then normalize the outgoing
weight of each node so that it sums to 1.

We find that this algorithm converges rapidly in practice, and
after running this algorithm for a number of rounds (100 in our
experiments) the probability distribution over nodes after t steps is
very nearly uniform.

Algorithm 2. Weighted Triangle-Closing Walks. While the weighted
walks achieve near-uniformity and low multiplicity, they are still
not very efficient. Though internal nodes other than endpoints have
degree at least 2 after the walk (ignoring the occasional repitition),
they still tend to need many nodes added to the fringe to bring the
induced degree of the core nodes up to d.

One approach to correcting this is to attempt to make the walks
more compact, and a simple way to do this is to bias it towards
closing triangles. More specifically, when we are at node u, we
remember the previous node in the walk s. If (s, v) ∈ E, we bias
the walk towards v. The hope is that by doing this we will end up
with walks that have higher internal degrees among the nodes they
visit and which are more compact, requiring fewer additional fringe
nodes, and hence making more efficient usage of our budget.

In detail, we learn the weights for this algorithm in the same way
we did for Algorithm 1. We start the walk at a node u0 chosen
uniformly at random, and take the first hop to u1 as in Algorithm
1. Beyond that we use the current node ui and the previous node
ui−1 to weight ui’s neighbors. A node v is chosen with proba-

 0

 1

 2

 3

 4

 5

 6

 7

 8

 1 10 100

F
rin

ge
 N

od
es

 R
eq

ui
re

d

Hops

Fringe Nodes Required per Unique Walk Node

A
B
C

Unweighted
Metropolis

Figure 2: Number of nodes required to give everyone degree at
least 10.

bility proportional to wui,v if (ui−1, v) /∈ E and with probability
proportional to αwui,v if (ui−1, v) ∈ E, for some constant α.
In other words, steps that close triangles get multiplicitive boosts
to their weight. Another way of thinking about this is that it is a
Markov process where the state is now an edge instead of a node,
and the transition weights between states are computed based on
the weights w.

It is important to note that even if the weights learned in Al-
gorithm 1 gave us uniformity over nodes, this bias toward closing
triangles breaks that. Thus, to make this algorithm an unbiased es-
timator, we must compute pu for all nodes. While this is bad in
some sense, since non-uniformity increases variance, a walk where
many hops close triangles will give interior nodes larger initial de-
grees, before the fringe is added. (For example, if every step closed
a triangle and all nodes were distinct, the degrees of all interior
nodes would be at least 4.) The process will also tend to give sets
of nodes that are more compact and hence can be supported by
a smaller set of fringe nodes. We will find that this trade-off be-
tween non-uniformity and compactness works out in favor of this
triangle-closing rule.

Algorithm 3. Uniformized Triangle-Closing Walks. The trian-
gle walk is appealing in that it creates compact sets of nodes with
high internal degrees. However, it is clearly biased towards high-
degree nodes. Could we come up with a weighting on the edges
such that the triangle closing walk was more nearly uniform? In
the weighted walk, we were able to correct for the bias towards
high-degree nodes through an iterative approach, and we now show
that it is possible to do the same thing here for the triangle-closing
walk.

An intial attempt at this would be to apply the same approach
as in the weighted algorithm. In this case it would work slightly
differently, however, as we would like to assume that we are at a
random node, and then take two hops, and somehow adjust all the
weights so that the walk becomes more nearly uniform. We have a
problem here though: the walk is biased to close triangles, and so
we can not simply take two hops from a random node, as the first
hop depends on the predecessor.

To account for that, we will correct our iterative procedure to
learn a distribution over predecessor nodes as it is updating the
weights on the edges. As before, we imagine that there are weights
wu,v on all the edges, and at step i in a walk u0, u1, ..., ui, we se-
lect node v with probability proportional to to (1+α1((ui−1, v) ∈

E))wui,v , where 1((ui−1, v) ∈ E)) is 1 if ui−1, v ∈ E and 0
otherwise. This weights triangle-closing steps by a factor of α. For
notational simplicity, we will write the probability of a walk going
from y to z, given that it came from x as

wx,y,z =
(1 + α1((x, z) ∈ E))wy,zP
z′(1 + α1((y, z′) ∈ E))wy,z′

.
Given this process, there is some stationary distribution of pre-

decssor nodes. That is, if we walk for many hops and are at cur-
rently at node ui, what is the distribution over ui−1. We will define
this probability distribution qv,u = P (ui−1 = u|ui = v). We next
develop an algorithm of the same flavor as the weighted walk al-
gorithm. Assume that we are at each node u with probability 1

|V | ,
and that the predecessor of u is s with probability qu,s. We can
now compute the probability distribution over nodes in the next
two hops.

If we are currently at u, the probability that the next hop will
take us to v is pv(u) =

P
s qu,sws,u,v . Having computed the

probability distribution over this first hop, we can go one step fur-
ther, computing the probability of being at node x after two hops as
p′x(u) =

P
v pvwu,v,x. To summarize, given the probability dis-

tribution over the predecessor node s, we compute the probability
distribution over the next two hops to v and x. Finally, we can com-
pute p̄x =

P
u

1
2
(px(u) + p′x(u)), the amount that node x appears

overall in these two hops, summed over all u.
The final point is how we compute the predecessor distribution

qu,v . We don’t want to have to do an expensive computation here
to compute the stationary distribution every time we update the
weights, so instead we update it iteratively along with the weights.
In each iteration, we update q based on the currentw and on the cur-
rent estimate of q. Having done this, we then update the weights in
a way that is analogous to the weighted walk, increasing weights to
the nodes which receive too few visits (with respect to uniform vis-
itation) and decreasing the weights to nodes that receive too many
visits.
1: q′v,u ←

P
s qu,sws,u,v

2: qv,u ←
q′v,uP
u′ q′v,u′

3: pv(u)←
P
s qu,sws,u,v .

4: p′x(u)←
P
v pvwu,v,x

5: p̄x ←
P
u(px(u) + p′x(u))/2

6: w′u,v ←
wu,v
p̄v

7: wu,v ←
w′u,vP
v w
′
u,v

4. RESULTS
To evaluate these algorithms, we turn to a small subset of the

entire Facebook social graph. All of the data used here was used
anonymously. We would like to evaluate these methods on a por-
tion of the graph that is manageable enough that rapid cycles of
experimentation are feasible, but large enough that it captures the
micro and macro structures of the full graph. One way to do this is
to take the subgraph induced by the population of a single country,
or a small set of countries. As one would expect, most of a typical
individual’s friends live in the same country as them, and the result
of this is that taking the country subgraph does not remove a very
large fraction of the edges incident to the nodes in that country.

In our experiments we pick four small but well-connected Cen-
tral American countries: Guatemala (GT), Honduras (HN), El Sal-
vador (SV) and Nicaragua (NI). For ease of experimentation, we
use the state of the graph in July 2008, giving a smaller and more

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 10 100

P
ro

ba
bi

lit
y

Hops

Probability that typei = type0
Types defined by country

Baseline
A
B
C

Uniform
Metropolis

Figure 3: Probability of being in the start country.

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 1 10 100

P
ro

ba
bi

lit
y

Hops

Probability that typei = type0
Types defined by degree quartile

Baseline
A
B
C

Uniform
Metropolis

Figure 4: Probability of being in the same degree quartile.

manageable dataset. As a final pre-processing step, we take the 10-
core of the graph (iteratively remove nodes with degree less than
10). We define d = 10 as the threshold; if we did not take the
10-core there would be nodes that could not ever achieve this.

The resulting graph has 117576 nodes, and 9406734 edges, over
90% of which have both end points in the same country.

Country Nodes Avg. Degree Internal
GT 50102 84.2 93.1%
NI 11379 69.9 91.9%
HN 26075 80.8 92.3%
SV 30020 76.1 91.2%

In evaluating our algorithms, we first assign a type to each node
according to one of two schemes. The first assignment scheme is
based on the country the node is in. The second is based on which
quartile the node’s degree falls in. Each of these is a simplified,
and stylized, simulation of the kind of variation one might find in a
real test — with the variation based on geography in the first case,
and based on the level of structural involvement in Facebook, as
measured by degree, in the second case. (Clearly in real applica-
tions the sources of variation would be more complex, but these
are both very natural parameters to use in our experiments.) Hav-
ing assigned a type to each node, we next imagine that each type
is associated with some coin bias, which defines the distributions
Xu of the nodes u with this type. We evaluate two different sets of
coin biases. First, we assign biases 4%, 5%, 6% and 7% to the four

different types. Second we assign biases 40%, 50%, 60% and 70%.
Assigning all of the nodes to a type, and hence a coin bias to

each node, provides the test conditions for the algorithms. We then
use the algorithms to sample nodes (both the core set and the sup-
porting fringe) until our budget is exhausted. In our experiments
we use a budget of 1000 users, or about 1% of all nodes. It is im-
portant to point out here that none of the sampling algorithms make
explicit use of the type assignment; this is the unknown that has to
be estimated, as it would need to be in a real test. They sample
based only on properties of the network, while the type assignment
independently assigns biases to the sampled nodes.

Having sampled a multiset of nodes, we randomly flip all of
the coins according to their biases. We then estimate the overall
population mean as

P Xulu
pu

/
P lu

pu
. We perform this operation

one million times for each algorithm (except for isolated sampling,
where we can compute directly), and report the variance in our es-
timates over these one million trials. Because all of our estimates
are unbiased, the mean of the estimates converges to the true popu-
lation mean E [X].

Variations on the testing procedure. We have also tried a varia-
tion on the model in which the nodes in the core set must have at
least d neighbors in the fringe — that is, core-set nodes cannot con-
tribute to the degree of other core-set nodes for purposes of meeting
the degree threshold of d. Such a constraint is relevant to settings
in which we plan to apply a new feature to members of the fringe,
but withhold it from members of the core set, so as to separate the
“senders” of the feature (the fringe nodes) from the measured “re-
cipients” (the core nodes). We find that the relative performance
of the different methods is essentially the same in this experimental
treatment, with the main difference that the optimal lengths of walk
segments is significantly shorter here. For the rest of the section,
we discuss the standard experimental set-up, where we do count
edges between nodes in the core toward the degree thresholds.

4.1 Walk Properties
Before giving performance results, we examine the properties

of the walks themselves. We start by looking at how uniform our
walk strategies are, as more uniform walks will tend to give lower
variance estimates. We know a priori that the Metropolis walk
is perfectly uniform and that the unweighted random walk is bi-
ased. We can quantify how biased the unweighted walk is and
also how closely our algorithms approximate uniformity by com-
puting the variance over the expected visitation distribution p. We
look at walks of length 55, where we find that the unweighted
walk has variance 2934. By contrast, Algorithm 1 has variance
0.0025. When we bias towards triangle closing in Algorithm 2,
that variance increases to 634, but when we relearn the weights
taking the triangle-closing bias into account, the variance of Algo-
rithm 3 drops back to 0.015. Thus, our two methods for achieving
uniformity in the walk do so nearly perfectly, with the remaining
variance likely due to the fact that we don’t completely converge in
100 iterations of our algorithms.

Next, we look at repetition in the walks. All other things being
equal, we would achieve the best variance if the nodes all had mul-
tiplicity 1. Figure 1 shows the fraction of nodes that are unique in
random walks for various lengths. We see here that the unweighted
random walks, as well as the Algorithm 1 walks tend to mostly visit
unique nodes, with over 90% of the hops being to new nodes, even
after hundreds of hops. On the other hand, Metropolis sampling
frequently stalls, and so even the first hop is relatively unlikely to
visit a new node. In the middle, the triangle-closing algorithms
tend to form more compact sets of nodes, and hence the revisit

 0.0002

 0.00025

 0.0003

 0.00035

 0.0004

 0.00045

 0.0005

 0.00055

 0.0006

 1 10 100

V
ar

ia
nc

e

Hops

Variance for Different Sampling Algorithms
Types by country, biases 4%,5%,6%,7%

A
B

C
Unweighted

Metropolis
Baseline

 0.0002

 0.00025

 0.0003

 0.00035

 0.0004

 0.00045

 0.0005

 0.00055

 0.0006

 1 10 100

V
ar

ia
nc

e

Hops

Variance for Different Sampling Algorithms
Types by degree quartile, biases 4%,5%,6%,7%

A
B

C
Unweighted

Metropolis
Baseline

 0.0012

 0.0014

 0.0016

 0.0018

 0.002

 0.0022

 0.0024

 0.0026

 0.0028

 0.003

 1 10 100

V
ar

ia
nc

e

Hops

Variance for Different Sampling Algorithms
Types by country, biases 40%,50%,60%,70%

A
B
C
Unweighted
Metropolis
Baseline

 0.001

 0.0015

 0.002

 0.0025

 0.003

 0.0035

 0.004

 1 10 100

V
ar

ia
nc

e

Hops

Variance for Different Sampling Algorithms
Types by degree quartile, biases 40%,50%,60%,70%

A
B
C

Unweighted
Metropolis

Baseline

Figure 5: Variance under different conditions

nodes fairly frequently.
The other important property of the walks is their efficiency in

terms of the number of supporting fringe nodes required per unique
node visited. Figure 2 shows that all the walks become more ef-
ficient as they become longer. As expected, the triangle-closing
walks are more efficient than their rivals.

4.2 Sample Variance

Types by Degree Quartile. In any system, some users are more
active than others, and it is expected that power users will respond
differently from more lightly engaged users. One simple proxy for
engagement level is the degree of the nodes. More heavily engaged
users will tend to have more connections in the social network.

Thus, in this section we examine the case where the response to
the test is biased by degree. As high-degree nodes can easily have
low-degree friends, one might expect that walks would be rapidly
mixing with respect to node type, and hence the best solution would
be to take a single long walk. Indeed, if each hop took you to a node
with a degree selected uniformly from the four quartiles, longer
walks would be better, owing to their increased efficiency in terms
of budget spent per node evaluated. However, Figure 4 shows the
probability of being at a node with the same type as the start node
after h hops, as a function of h. While the walks all converge to
0.25 as expected, there is still some correlation between the start
node and the 10th node in the walk, suggesting that restarts will be
helpful.

When we actually run the process and compute the variance, (see
Figure 5) we find that intermediate length walks perform best, as
they best trade off efficient use of budget with independence. In this
experiment, the users in the bottom degree quartile are given bias
4% or 40% while the users in the top degree quartile are given bias
7% or 70%. For both sets of biases, we see that the triangle-closing
walks perform significantly better than the alternatives and that Al-
gorithm 1 outperforms all three baselines. For these two choices
of biases, we find that the optimal number of hops is longer for the
smaller set of biases. When we plug the variance expressionsE(V)
and V (E) from Section 2 into the formulae from that section, we
find agreement between the model and this empirical observation;
we discuss this further at the end of Section 4

One final note is that, because the walks come in discrete chunks,
we may not be able to use all of our budget for long walks. This is
particuarly apparent when looking at the long walks for Algorithm
1; if the core and fringe from one walk requires 501 nodes, and our
budget is 1000, we can not take a second walk, and hence make end
up with a significant unspent portion.

Types by Country. Here we perform our experiments identically,
with the exception that the biases on the nodes are given by the
country they reside in. The primary difference between this assign-
ment of types and that by degree is that the country-based types
are more correlated along the walk. Figure 3 shows that even after
100 hops, the country that a walk is in is highly correlated to the
country that the walk starts in. In the case of the triangle-closing
algorithms, the correlation continues out beyond 1000 hops. The
consequence of this is that we expect the optimal number of hops
to be shorter than it was in the case where we assigned types by de-
gree, since we need to restart more often to ensure we get the right
mix of types.

Figure 5 shows that the results match this intuition. The triangle-
closing algorithms still perform best, with the more uniform ver-
sion slightly outperforming the biased version. As expected, the
optimal number of hops is smaller than it was in case where we

assigned type by degree, and the variance increases sharply as the
number of hops grows large.

4.3 Impact of budget
As we saw when we looked at the abstract bag-of-coins problem,

the optimal solution is typically quite wasteful and this suggests
that the best thing to do is to take many relatively short independent
walks. The theory says that this should be the case regardless of
budget. However, in principle it could turn out differently on real
data for multiple reasons. First, the sets of nodes we sample do not
all have the same type, and for long walks the distribution of types
becomes well-mixed. Another difference is that the bags of coins
did not have any multiplicities, whereas our model does, especially
the triangle-closing versions.

We can test this empirically by finding the optimal hop length t∗

for different budgets (we do this on Algorithm 2) and compare this
value with the theoretical optimum et from the model in Section 2.
To use the abstract model, we need a functional form for g(t) from
Section 2, and we find that g(t) = 0.36t + 2.88t0.35 provides an
excellent fit. Next, we compute V (E) and E(V) based on the type
distribution (done by country in this experiment) and the biases
(40% - 70%).

Plugging in the numbers, we find the optimal et = 9.4. The table
below shows the empirical optimum hop count t∗ for different bud-
gets, along with the empirical and theoretical variances. While the
the variances are slightly worse (due to multiplicities in sampling),
the optimal number of hops is empirically 8 (for budgets where
discretization effects are not a significant factor), which typically
yields 9 nodes, exactly matching the theoretical et.

Budget Optimal Hops Empirical Var. Model Var.
50 4 3.8E-2 2.4E-2

100 5 1.6E-2 1.2E-2
200 7 7.4E-3 5.9E-3
500 8 2.8E-3 2.4E-3

1000 8 1.4E-3 1.2E-3
2000 8 7.0E-4 5.9E-4
5000 7 2.8E-4 2.4E-4

10000 8 1.4E-4 1.2E-4

5. REFERENCES
[1] L. Backstrom, D. Huttenlocher, J. Kleinberg, and X. Lan.

Group formation in large social networks: Membership,
growth, and evolution. Proc. ACM SIGKDD, 2006.

[2] Z. Bar-Yossef, A. C. Berg, S. Chien, J. Fakcharoenphol, and
D. Weitz. Approximating aggregate queries about Web pages
via random walks. Proc. VLDB, 2000.

[3] S. Boyd, P. Diaconis, and L. Xiao. Fastest mixing Markov
chain on a graph. SIAM Review, 46(4):667–689, 2004.

[4] M. Gjoka, M. Kurant, C. T. Butts, and A. Markopoulou.
Walking in Facebook: A case study of unbiased sampling of
OSNs. Proc. IEEE INFOCOM, 2010.

[5] M. Henzinger, A. Heydon, M. Mitzenmacher, M. Najork. On
near-uniform URL sampling. Proc. WWW, 2000.

[6] J. Leskovec, L. Adamic, and B. Huberman. The dynamics of
viral marketing. ACM Trans. Web, 1(1), May 2007.

[7] N. Linial, A. Samorodnitsky, and A. Wigderson. A
deterministic strongly polynomial algorithm for matrix scaling
and approximate permanents. In Proc. 30th ACM Symposium
on Theory of Computing, 1998.

[8] L. Lovász. Random walks on graphs: A survey. In
Combinatorics: Paul Erdös is Eighty, 1996.

[9] R. Sinkhorn. A relationship between arbitrary positive
matrices and doubly stochastic matrices. Annals of
Mathematical Statistics, 35(2):876–879, 1964.

