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Abstract

Representing data as points in a high-dimensional space, so as to use geometric
methods for indexing, is an algorithmic technique with a wide array of uses. It is
central to a number of areas such as information retrieval, pattern recognition, and
statistical data analysis; many of the problems arising in these applications can involve
several hundred or several thousand dimensions.

We consider the nearest-neighbor problem for d-dimensional Euclidean space: we
wish to pre-process a database of n points so that given a query point, one can ef-
ficiently determine its nearest neighbors in the database. There is a large literature
on algorithms for this problem, in both the exact and approximate cases. The more
sophisticated algorithms typically achieve a query time that is logarithmic in n at the
expense of an exponential dependence on the dimension d; indeed, even the average-
case analysis of heuristics such as k-d trees reveals an exponential dependence on d in
the query time.

In this work, we develop a new approach to the nearest-neighbor problem, based on
a method for combining randomly chosen one-dimensional projections of the underlying
point set. From this, we obtain the following two results.

(i) An algorithm for finding ε-approximate nearest neighbors with a query time of
O((d log2

d)(d + log n)).

(ii) An ε-approximate nearest-neighbor algorithm with near-linear storage and a
query time that improves asymptotically on linear search in all dimensions.
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1 Introduction

The nearest-neighbor problem is central to a wide range of areas in which computational tech-
niques are applied. Nearest-neighbor-based methods appear, for example, in algorithms for
information retrieval [37, 38, 8, 15], pattern recognition [14, 18], statistics and data analysis
[35, 16], data compression [27], and multimedia databases [36, 23, 40]. The pervasiveness of
the problem arises in large part because of its effectiveness as a general-purpose means of
indexing and comparing data: one represents objects as points in a high-dimensional met-
ric space, and then uses “nearness” with respect to the underlying distance as a means of
indexing and similarity-based comparison. While the design of theoretically efficient nearest-
neighbor algorithms has been oriented mainly towards a small number of dimensions, many
of the core applications of the nearest-neighbor problem take place in a very large number
of dimensions. For example, the application of standard vector-space methods in informa-
tion retrieval [37, 38, 8, 15] can result in problems with several thousand dimensions; much
work has been devoted to “dimension–reduction” techniques such as principal component
analysis [29] and latent semantic indexing [15], but these typically are not used to reduce
the dimension below several hundred [15, 7]. Multimedia retrieval applications such as [23]
can also involve several hundred dimensions.

In this paper, we consider one of the most commonly studied settings of the nearest-
neighbor problem, both theoretically and in applications: namely, the case of points in Rd

with the Euclidean metric. That is, for points x = (x(1), . . . , x(d)) and y = (y(1), . . . , y(d)), we
define the distance between x and y to be

d(x, y) =

(

d
∑

i=1

(x(i) − y(i))
2

)(1/2)

.

The nearest-neighbor problem in this setting is then the following. We are given a set P of
n sites {p1, . . . , pn}; each site pi is a point in Rd. We must pre-process P so as to be able to
efficiently answer queries of the following form: Given an arbitrary point q ∈ Rd, return a
site in P that is closest to q (with respect to d(·, ·)).

There is a voluminous literature on algorithms for the Euclidean nearest-neighbor prob-
lem, and we do not attempt a comprehensive survey of it here. Establishing upper bounds on
the time required to answer a nearest-neighbor query in Rd appears to have been first under-
taken by Dobkin and Lipton [17]; they provided an algorithm with query time O(2d log n)
and pre-processing O(n2d+1

). (We use the term “pre-processing” to refer to the sum of
the pre-processing time and storage required.) This was improved by Clarkson [11]; he
gave an algorithm with query time O(exp(d) · log n) and pre-processing O(n⌈d/2⌉(1+ε)), where
exp(d) denotes a function that grows at least as quickly as 2d. Most of the subsequent
approaches and extensions (e.g. [42, 32, 2] and others) have required a query time of at
least Ω(exp(d) · log n). Indeed, even the average-case analysis of heuristics such as k-d trees
[22, 6, 26, 39], for restricted cases such as input points distributed uniformly over a bounded
subset of Rd, reveals an exponential dependence on d in the query time. One exception to
this phenomenon is a recent algorithm of Meiser [33] (designed, as are some of the above al-
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gorithms, for the more general problem of point location in an arrangement of hyperplanes);
it obtains a query time of O(d5 log n) with storage O(nd+ε).

It is natural to try improving the computational requirements by only looking for an
approximately nearest neighbor of the query. We say that p ∈ P is an ε-approximate nearest

neighbor of q if for all p′ ∈ P , we have d(p, q) ≤ (1 + ε)d(p′, q). Settling for an approximate
solution makes sense for a number of reasons – among other things, the use of fixed-precision
arithmetic will typically mean that the above “exact” algorithms are in fact producing an-
swers that are only approximate anyway; and perhaps more importantly, the methods used
for mapping features to numerical coordinates in many of the applications cited above (e.g.
[18, 37, 23, 36]) have been chosen on heuristic grounds, and so often an “exact” answer is
no more valuable than a close approximation.

Finding ε-approximate nearest neighbors, for arbitrarily small ε > 0, has also been
studied extensively. Arya, Mount, et al. [5, 4] obtain an algorithm with query time O(exp(d)·
ε−d log n) and pre-processing O(n log n). Clarkson [12] obtained a different algorithm which
improves the dependence on ε to exp(d) · ε−(d−1)/2. Again, these approaches result in query
times that grow exponentially with d.

One can make several observations at this point. First, for algorithms with an exponential
dependence on d in the query time, one has the following striking state of affairs: the
“brute-force” algorithm — which simply computes the distance from the query to every
point in P , in time O(dn) — provides a faster query time even theoretically when d ≥ log n.
Further, when one requires storage costs to be polynomial in n (for variable d), it appears
that no algorithms are known with query times that improve on brute-force search once
d is comparable to log n. This reflects the well-known “curse of dimensionality” [12] that
appears throughout computational geometry; it is particularly unfortunate in the present
setting, since the dimension is quite large in many of the applications cited above. To quote
from Arya, Mount, et al. [5], “. . . if the dimension is significantly larger than log n (as it for
a number of practical instances), there are no approaches we know of that are significantly
faster than brute-force search.”

In this work, we develop a new approach to the nearest-neighbor problem, based on a
method for combining randomly chosen one-dimensional projections of the underlying point
set P . From this we obtain the following two results.

(i) A conceptually simple algorithm for finding ε-approximate nearest neighbors with stor-
age O(n log d)2d and a query time of O((d log2 d)(d + log n)).

(ii) An ε-approximate nearest-neighbor algorithm with near-linear storage and a query
time that improves asymptotically on brute-force search in all dimensions.

We now turn to an overview of the algorithms.

Our Results

The First Algorithm. First, we provide an algorithm for ε-approximate nearest neighbors
with a query time that is logarithmic in n and polynomial in d and ε−1. Specifically, we
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show how to answer queries in time

O((d log2 d)(d + log n))

with storage O(n log d)2d. (For the sake of exposition in this introduction, we use the O()
notation to suppress terms that are quadratic in ε−1, but independent of d and n.) Hence
the query time of this algorithm is better than that of brute-force search for all dimensions
up to o(n/ log2 n).

The processing of a query is deterministic; however, the initial construction of the data
structure is randomized and may fail with a probability that can be made arbitrarily small.
(Increasing the pre-processing time by a factor of log δ−1 reduces the failure probability
to 1 − δ.) Every query made with the data structure will be correct provided the initial
construction does not fail.

With essentially no modification to the data structure, we can return a set of k ap-
proximately nearest neighbors. We define this as follows. If q ∈ Rd, and pi1, . . . , pin is
a listing of the points of P in order of increasing distance from q, then we say that the
(ordered) set S = {s1, . . . , sk} ⊂ P is an ε-approximate set of k nearest neighbors of q if
for each j = 1, . . . , k, we have d(sj, q) ≤ (1 + ε)d(pij , q). Using the same pre-processing
as before, we can return an ε-approximate set of k nearest neighbors with query time
O(k + (d log2 d)(d + log n)).

The Second Algorithm. Although our first algorithm provides a query time that is
polynomial in d and logarithmic in n, its pre-processing requirements are prohibitively large
— in particular, they contain d in the exponent. However, the same underlying data structure
and search techniques can be used to obtain a second algorithm with storage that is near-
linear in the size of P , and a query time that still asymptotically improves on brute-force
search in all dimensions. This second algorithm uses randomization for processing a query,
and with probability 1 − δ returns an ε-approximate nearest neighbor. It has query time

O(n + d log3 n),

pre-processing time O(d2n log2 n(log2 d+log d log log n)) = O∗(d2n), and storage O(dn log2 n(log2 d+
log d log log n)) = O∗(dn). (Here, the O() notation suppresses terms that are quadratic in
ε−1 and logarithmic in δ−1; the O∗() notation also suppresses terms that are polynomial in
log n. The error probability is taken only over the choices made by the algorithm; not over
any presumed distribution on query points.)

Thus, when d = O(n/ log3 n), we can answer a query with a net constant number of
operations per site in P , rather than the d operations per site required by the brute-force
algorithm. Moreover, in processing a query, this algorithm only computes O(log3 n) distances
in Rd. Finally, the data structure underlying this algorithm can be made dynamic very
easily; over any period of time in which the current size of P does not grow by more than
a polynomial amount, the dynamic version supports insertions into P in time O∗(d2) and
deletions from P in time O∗(d). Provided that the construction of the data structure did
not fail for the initial point set, it is guaranteed not to fail under an arbitrary sequence of
insertions and deletions.
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A General Proximity Problem. A number of classical proximity problems in compu-
tational geometry are expressed in terms of distance relations among a fixed set of n points,
rather than in terms of a potentially infinite universe of queries. Some salient examples are
the closest pair problem — given n points, find the pair at minimum distance — and the
bichromatic closest pair problem — given n red points and n blue points, find the red-blue
pair at minimum distance. Such problems are well-solved in a small number of dimensions;
but in high dimensions, Cohen and Lewis have recently observed [13] that even for approx-
imate or average-case versions, the trivial O(dn2) algorithm is the best known if one does
not resort to fast matrix multiplication.

We show that our second nearest-neighbor algorithm can be used directly to provide
an algorithm for a general proximity problem that includes the closest pair and bichromatic
closest pair problems as special cases. Our algorithm provides an ε-approximate answer with
probability 1 − δ; its running time is O((ε−2 log δ−1)(n2 + nd log n)). Thus for all values of
d up to O(n/ log n), it provides a running time that is purely quadratic in the number of
points, independent of the dimension.

Both nearest-neighbor algorithms are based on the same underlying technique, which we
now describe. The basic ideas behind this technique appear to be quite general, and we
do not believe that the present work fully exhausts their ramifications for high-dimensional
proximity problems. We emphasize at the outset that the basic variants of our two algorithms
are considerably simpler than nearly all the previous theoretical approaches described above;
they do not require the use of complicated data structures, the manipulation of sets of
hyperplanes in d dimensions, or the special handling of “degenerate” cases. As such, the
algorithms appear to be simpler to implement even than the original method of Dobkin and
Lipton [17].

Techniques and Basic Definitions

We build our data structures from the projections of the set P onto random lines through the
origin in Rd. The use of random projections onto lines has appeared in a number of contexts
in recent high-dimensional geometric constructions and algorithms (e.g. [30, 24, 28, 31, 10]);
thus it is worth our discussing what we gain from this approach in the setting of the nearest-
neighbor problem. First of all, it is useful to note what we do not gain from this approach.

(i) Simple examples show that an ε-approximate nearest neighbor of the query need
not lie close to it in the projection onto a random line; it can be the case that with high
probability, Ω(n) other points of P will lie between the query and every ε-approximate
nearest neighbor.

(ii) A standard application of random projections — the reduction of the dimension of
the problem — appears to be of essentially no use in obtaining the bounds we are seeking
here. In particular, the strongest result on distance-preserving projections of point sets is due
to Frankl and Maehara [24], strengthening a bound of Johnson and Lindenstrauss [30]; they
show that projecting P onto a random subspace of dimension roughly 9ε−2 log n preserves
all relative inter-point distances to within a factor of 1 + ε, with high probability. But, for

4



example, applying an algorithm with query time Ω(exp(d)) even in this reduced dimension
results in a time bound of at least n9ε−2

, which is of course much worse than the O(dn)
bound for the brute-force algorithm. (One encounters other problems as well; for example,
once a random projection has been chosen, there will be a small fraction of queries that are
guaranteed to produce incorrect answers.)

Here, we make use of the following property of random projections onto a line: if x is
closer to the query than y, then x has a probability greater than 1

2
of also being closer to the

query in the projection. As a result, with enough projections, we can begin making pairwise
comparisons between points of P (with respect to a given query) with high probability. Using
these pairwise comparisons, we can then arrive at an approximately nearest neighbor.

Since we are primarily concerned with case of small ε, we assume for the remainder of
the paper that ε ≤ 1

2
. The case of larger ε does lead to a performance improvement for the

algorithms; the analysis requires only minor modifications from what is presented here.
Both of our algorithms germinate from the following geometric fact. If x = (x(1), . . . , x(d))

and y = (y(1), . . . , y(d)) are vectors in Rd, we use x · y to denote the inner product of x and
y: x · y =

∑d
i=1 x(i)y(i). Note that (x − y) · (x − y) is the square of the distance between x

and y; and ‖x‖ =
√

x · x is the norm of the vector x. Finally, let Sd−1 ⊂ Rd denote the
unit (d − 1)-sphere {v ∈ Rd : ‖v‖ = 1}. Our fact is the following: for γ ≤ 1

2
, suppose that

(1 + γ)‖x‖ ≤ ‖y‖, and let v be a vector drawn uniformly at random from Sd−1. Then the
probability that |v · x| < |v · y| is at least 1

2
+ γ

3
. Let us actually be a little more concrete,

and use Wx,y to denote the set of vectors v ∈ Sd−1 for which the event |v · x| < |v · y| fails
to happen; we will call this the exceptional set for (x, y).

Suppose that, for points x, y ∈ P and a query q ∈ Rd, we want to compare d(x, q) =
‖x − q‖ with d(y, q) = ‖y − q‖ by computing their respective inner products with a set
V of vectors v1, . . . , vk ∈ Sd−1, and then determining whether (x − q) or (y − q) has a
smaller inner product with a majority of the vectors vi. If (1 + ε)d(x, q) ≤ d(y, q), then the
above experiment will fail only if a majority of the vectors in V lie in the exceptional set
W(x−q),(y,q). Since the measure of W(x−q),(y−q) is at most 1

2
− ε

3
, this in turn corresponds to a

“non-uniformity” in the distribution of the finite set V on Sd−1.
Let us say that a finite set V ⊂ Sd−1 is ρ-distinguishing, for ρ < 1

2
, if strictly fewer than

half the elements of V lie in any exceptional set of the form Wx,y that has measure at most ρ.
As we have just observed, a ρ-distinguishing set can be used to correctly compare distances to
within a factor of 1+(3

2
−3ρ), by the above experiment. In section 2, we use a VC-dimension

argument to show that with high probability, a random set of size O(dε−2 log d log(dε−2))
will be (1

2
− ε

3
)-distinguishing, which is sufficient for our purposes.

Given this definition, the construction of our data structure fails only if a random set
that we choose initially turns out not to be (1

2
− ε

3
)-distinguishing. Note that failure does

not depend on the underlying point set P . Since the processing of a query is deterministic
in our first algorithm, it follows that if one were to know of a (1

2
− ε

3
)-distinguishing set

V in d dimensions, one could use it to process all future queries for any point set with a
deterministic guarantee of correctness.

We describe the two algorithms themselves in Sections 3 and 4. The first algorithm uses
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a distinguishing set V to partition the set of queries into O(n log d)2d equivalence classes
with the following property: for each class, there is an ordering of the points of P so that for
all k between 1 and n, the first k points in this ordering constitute an ε-approximate set of
k nearest neighbors for all queries in the class. Moreover, the identity of the class containing
a query can be determined by performing O(d log2 d) inner products and binary searches.

The second algorithm uses a distinguishing set to build an “elimination tournament”
on the set of points; the tournament returns an ε-approximate nearest neighbor with high
probability using a linear number of comparisons. We note that the analysis of tournaments
with unreliable comparisons has been the subject of a number of previous papers (see e.g. [21,
1] and the references therein); however, the actual models considered in these papers are
technically fairly distinct from the constraints imposed by our application here.

2 Some Geometric Lemmas

In this section, we prove some of the geometric lemmas required for the analysis of our
algorithms. It is important to note that none of this is needed for the actual implementation
of the algorithms, which will be described in a self-contained form in the following two
sections.

We make use of the definitions from the previous section. First, we prove the basic
geometric fact discussed above.

Lemma 2.1 Let x, y ∈ Rd, γ ≤ 1
2
, and suppose that (1+γ)‖x‖ ≤ ‖y‖. Then for v uniformly

distributed over Sd−1, we have Pr [|v · x| ≥ |v · y|] ≤ 1
2
− γ

3
.

Proof. Let E denote the event |v · x| ≥ |v · y|. Let A denote the (two-dimensional) affine
span of the vectors x and y. For a vector v ∈ Sd−1, let πA(v) denote the projection of v onto
A. Observe that

v · x = πA(v) · x
v · y = πA(v) · y.

Thus, for given x and y, the outcome of the event E depends only on the angle ϕ formed
between πA(v) and x (or, equivalently, on the angle formed between πA(v) and y). We also
note that the angle ϕ is uniformly distributed over [0, 2π).

Now, if we let θ ∈ [0, π] denote the angle between x and y in A and r = ‖x‖/‖y‖ ≤ 1
1+γ

,

the event E occurs when cos2(θ − ϕ) ≤ r2 cos2 ϕ; that is, when

cos2(θ − ϕ)

cos2 ϕ
=

(cos2 θ)(cos2 ϕ) − (sin 2θ)(sin ϕ)(cos ϕ) + (sin2 θ)(sin2 ϕ)

cos2 ϕ

= cos2 θ − (sin 2θ)(tanϕ) + (sin2 θ)(tan2 ϕ)

≤ r2.
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Applying the quadratic formula to the last inequality, this occurs when

tan ϕ ∈
[

sin 2θ

2 sin2 θ
± r sin θ

sin2 θ

]

= [cot θ ± r csc θ] .

Thus, for a given value of θ and r, we have

Pr[E ] =

{

1
π

(tan−1 [cot θ + r csc θ] − tan−1 [cot θ − r csc θ]) , θ ∈ (0, π)
0, θ = 0, π

For fixed r, one can therefore show that Pr[E ] is maximized over [0, π] at θ = π
2
, since it is

differentiable on the open interval (0, π), and tedious calculations show that its derivative
has precisely one zero in this interval, when θ = π

2
. Now, when θ = π

2
, we have

Pr[E ] =
2 tan−1 r

π
.

By Taylor’s inequality, we have

2 tan−1 r

π
≤ 2π

4
r

π
=

r

2
≤ 1

2
− γ

3

for γ ≤ 1
2
. Thus,

Pr[E ] ≤ 1

2
− γ

3

as required.

Recall that we use Wx,y to denote the subset of Sd−1 for which the event E in the above
lemma occurs, and refer to this as the exceptional set for (x, y). We now want to consider
the VC-dimension of the collection of exceptional sets. In order to make this exposition
self-contained, we present the following definitions (see e.g. [41, 3] for more background;
we work within the more general framework of the former paper). A range space is a pair
(P,R), where P = (Ω,F , µ) is a probability space and R ⊂ F is a collection of measurable
subsets of Ω. We say that a finite subset A of Ω is shattered by R if for all B ⊂ A there
exists an R ∈ R such that B = A∩R. The VC-dimension of (P,R) is the supremum of the
cardinalities of finite subsets of Ω that can be shattered by R; hence we say that (P,R) has
infinite VC-dimension if and only if arbitrarily large finite subsets of Ω can be shattered by
R.

We have been working with the sphere Sd−1 and the uniform distribution; let Pd−1 =
(Sd−1,F , µ) denote the associated probability space, and let Rρ denote the collection of all
Wx,y for which µ(Wx,y) ≤ ρ.

Lemma 2.2 Let 0 < ρ < 1. The VC-dimension of the range space (Pd−1,Rρ) is at most

d′ = 8(d + 1) log(4d + 4).
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Proof. For a vector u ∈ Rd, let Hu denote the halfspace {v ∈ Sd−1 : u · v ≥ 0}. Now, for
Wx,y ∈ Rρ, we have v ∈ Wx,y if and only if v · x ≥ v · y ≥ −v · x or −v · x ≥ v · y ≥ v · x.
Thus,

Wx,y =
(

H(x−y) ∩ H(x+y)

)

∪
(

H(−x−y) ∩ H(−x+y)

)

.

Radon’s theorem (see e.g. [20]) implies that the VC-dimension of half-spaces in Sd−1 is
d + 1. Each range in (Pd−1,Rρ) is a Boolean combination of half-spaces with four literals,
and thus a theorem of Dudley [19, 3] implies that its VC-dimension is at most d′ = 8(d +
1) log(4d + 4).

A finite subset A of Ω is said to be a γ-sample of the range space (P,R) if for all R ∈ R,
we have

∣

∣

∣

∣

∣

|R ∩ A|
A

− µ(R)

∣

∣

∣

∣

∣

≤ γ.

A theorem of Vapnik and Chervonenkis [41] says, subject to some technical conditions, that
if (P,R) has VC-dimension at most k, for a natural number k, then a finite set A of size

ℓ ≥ 16

γ2

(

k log
16k

γ2
+ log

4

δ

)

is a γ-sample of (P,R) with probability at least 1 − δ.
We use this theorem directly to obtain the following lemma. Let γ and δ be arbitrary

positive constants.

Lemma 2.3 There is a constant c0 so that with probability at least 1 − δ, a set of f(γ, δ)
vectors chosen uniformly at random from Sd−1 is a γ

2
-sample of the range space (Pd−1,Rρ),

where

f(γ, δ) =
c0

γ2

(

d′ log
d′

γ2
+ log

1

δ

)

= Θ(d log2 d).

A consequence of this is the following.

Corollary 2.4 Let 0 < γ < 1
2
. With f(·, ·) as defined in Lemma 2.3, a set of f(γ, δ) vectors

chosen uniformly at random from Sd−1 is (1
2
−γ)-distinguishing with probability at least 1−δ.

3 The First Algorithm

We describe the first of our algorithms, which has query time O(k + (d log2 d)(d + log n))
and pre-processing O(n log d)2d.
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A Lemma on Digraphs. Before describing the algorithm itself, we require the following
digression. By a complete digraph, we mean a directed graph with the property that for every
pair of vertices i, j, exactly one of the directed edges (i, j) or (j, i) is present. We define an
apex of a digraph to be a vertex with a directed path of length at most two to every other
vertex. We define an apex ordering of a digraph to be an ordering i1, . . . , in of the vertices
with the property that ik an apex of the sub-digraph G[ik, ik+1, . . . , in].

Lemma 3.1 Every n-node complete digraph has an apex ordering, and such an ordering can

be computed in time O(n2).

Proof. First of all, it is well-known that every complete digraph G has an apex, and one can
be found in time O(n2). As a proof, observe that a node of G with maximal out-degree is
an apex.

To construct an apex ordering, one iteratively deletes an apex and updates the out-degrees
of all other nodes. Using a Fibonacci heap [25], deletion can be performed in O(logn) time
per operation, while decreasing the out-degree of each other node can be done in amortized
constant time per operation.

Building the Data Structure. Recall that we are given a set P = {p1, . . . , pn} of sites,
with each pi ∈ Rd. For 1 ≤ i, j ≤ n, let pij = 1

2
(pi + pj). (So pii = pi.) Define ε = 1

3
ε, and

let δ be an arbitrarily small positive failure probability. Let c0 and f(·, ·) be as defined in
Lemma 2.3, and define

L = f(
ε

3
, δ) = Θ(d log2 d).

The data structure is built as follows.

(i) Choose a set V of L vectors v1, . . . , vL uniformly at random from Sd−1.

(ii) For each vℓ, sort the points pij according to the value of the inner product vℓ · pij . Let
Sℓ denote the resulting sorted list, and let Σ denote the set of all L sorted lists.

(iii) Define an interval in list Sℓ to be a pair of entries in Sℓ (with dummy entries inserted at
the beginning and end of Sℓ), and a primitive interval to be an interval whose endpoints
are adjacent in Sℓ. Define a trace to be a sequence σ = σ1 · · ·σL of primitive intervals,
one for each list in Σ. Note that there are at most n2L = nO(d log2 d) traces.

Say that a trace σ = σ1 · · ·σL is realizable if there exists a point q ∈ Rd such that
for each ℓ, vℓ · q lies in the primitive interval σℓ of Sℓ. Below, we show that at most
O(n log d)2d traces are realizable, and we give a method for enumerating them.

(iv) For each realizable trace σ = σ1 · · ·σL, do the following.

(a) Say that pi σ-dominates pj in Sℓ if the entry pij lies between the primitive interval
σℓ and the entry pj in Sℓ. Otherwise, pj σ-dominates pi. Build a complete digraph
Gσ on the set {1, . . . , n}, with a directed edge from i to j > i if pi σ-dominates
pj in more than half the lists in Σ, and an edge from j to i otherwise.

(b) Construct an apex ordering S∗
σ of the nodes of Gσ. Store the pair (σ, S∗

σ).
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Processing a Query. Now we describe the algorithm for producing an ε-approximate set
of nearest neighbors of cardinality k, for a given query point q ∈ Rd.

(i) For each ℓ, use binary search to insert the value vℓ · q into the sorted list Sℓ. Let σℓ

denote the primitive interval into which it falls. (If it falls on the boundary of two
primitive intervals, arbitrarily assign it to one of them.)

(ii) Set σ = σ1 · · ·σL. Look up the pair (σ, S∗
σ) and return the first k entries in the sorted

list S∗
σ.

Complexity. The running time for a query is the time for (1) L inner products in Rd,
(2) L binary searches, (3) a look-up in a table of size n2L, and (4) the reading of the first k
entries in a sorted list. Thus, the total query time is

O(Ld + L log n + k) = O(k + (d log2 d)(d + log n)).

The pre-processing and storage requirements are simply the following: for each trace
σ that we store, we must compute the digraph Gσ in time O(Ln2), and we must store a
sorted list S∗

σ of length O(n). Now, there are clearly O(n2L) possible traces, and the cleanest
approach conceptually would be to store them all. However, we now show that the number
of realizable traces is significantly smaller.

Lemma 3.2 The number of realizable traces is at most
∑d

i=0

(

Ln2

i

)

= O(n log d)2d.

Proof. A realizable trace corresponds to a full-dimensional cell in the arrangement of hyper-
planes

{vℓ · x = vℓ · pij : 1 ≤ ℓ ≤ L, 1 ≤ i, j ≤ n}.
By a standard result on hyperplane arrangements (see e.g. [20, Thm 1.3]), the number of
such full-dimensional cells is at most

d
∑

i=0

(

Ln2

i

)

< 2

(

Ln2

d

)

< 2

(

eLn2

d

)d

= O(n log d)2d.

(One can obtain a somewhat tighter bound in the present case by making use of the fact that
many of the pairs of hyperplanes are parallel; however, this improvement does not affect the
overall asymptotic bound that we obtain.)

The set of realizable traces can be determined by constructing the arrangement in the
proof of Lemma 3.2, and enumerating all its full-dimensional cells. For this one could use
the algorithm given in [20], with a running time of O(Ldn2d).
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Correctness. Finally, let us show that the algorithm correctly answers approximate nearest-
neighbor queries. We say that the construction of the data structure succeeds if the set
V = {v1, . . . , vL} is (1

2
− ε

3
)-distinguishing. By Corollary 2.4, this occurs with probability at

least 1 − δ.

Theorem 3.3 If the construction of the data structure succeeds, then for every q ∈ Rd, the

set returned in response to the query q is an ε-approximate set of nearest neighbors of q.

Proof. Fix q ∈ Rd, and suppose that the trace generated in processing the query q is σ. Let
S = s1, . . . , sk denote the first k sites in the sorted list S∗

σ. If S is not an ε-approximate set
of nearest neighbors, it would follow that there exists an index m between 1 and k, and a
set of points P ′ ⊂ P of cardinality m, such that

(1 + ε) max
p∈P ′

d(p, q) < d(sm, q).

Hence, there would exist a point p ∈ P such that p 6∈ {s1, . . . , sm} and (1 + ε)d(p, q) <
d(sm, q).

In the original labeling of the points of P , suppose that sm = pi and p = pj . Now, since
S∗

σ is an apex ordering of Gσ, and since sm = pi precedes p = pj in S∗
σ, it follows that there

is a path of length at most two from i to j in Gσ; hence the edge (i, j) is present in Gσ, or
there is a path consisting of the edges (i, ℓ), (ℓ, j) for a vertex ℓ 6= i, j. We consider the latter
case, the former being easier.

Consider the points pi and pℓ. Since there is an edge (i, ℓ) in Gσ, we know that pi σ-
dominates pℓ in at least half the lists of Σ. Thus, for at least half the points vr ∈ V , we have
|vr · q − vr · pi| ≤ |vr · q − vr · pℓ|; i.e. at least half the points in V lie in the set W(pℓ−q),(pi−q).
Now if it were the case that that (1+ε)d(pℓ, q) < d(pi, q), then by Lemma 2.1 the exceptional
set W(pℓ−q),(pi−q) would have measure at most 1

2
− ε

3
, and this would contradict the assumption

that V is (1
2
− ε

3
)-distinguishing. Hence it follows that

d(pi, q) ≤ (1 + ε)d(pℓ, q).

By the same reasoning, we also have

d(pℓ, q) ≤ (1 + ε)d(pj, q).

Combining these two inequalities, we obtain d(pi, q) ≤ (1 + ε)2d(pj, q) ≤ (1 + ε)d(pj, q),
which contradicts our initial assumption about pi and pj.

4 The Second Algorithm

We describe the second of our algorithms, which has query time O(n + d log3 n), pre-
processing time O∗(d2n), and storage O∗(dn). We use the constants defined in the previous
section, as well as the following additional constants.

11



• γ2 is chosen so that eγ2 ≤ 1 + ε.
• c1 is chosen so that e−

1
64

c1γ2
2 ≤ 1

4
(1

3
δ)(1/ log n).

• c2 is chosen so that e−
1
64

c2ε2 ≤ 1
2
.

• c′2 is chosen so that e−
1
64

c′2ε2 ≤ 1
3
δ.

• γ1 is chosen so that
(

1 − c1 log3 n
n

)

γ1n

log3 n ≥ 1 − 1
3
δ.

• c3 is chosen so that
(

1 − γ1

log3 n

)c3 log3 n ≤ δ.

Building the Data Structure. We set ε0 = γ2

log n
and define

L = f(
1

6
ε0, δ) = Θ(d log2 n(log2 d + log d log log n)).

As in the previous section we choose a set V of L vectors v1, . . . , vL. We will assume for the
remainder of the section that V is a 1

12
ε0-sample for the range space (Pd−1,R 1

2
− 1

6
ε0), which

by Lemma 2.3 happens with probability at least 1 − δ.
Our data structure is simply an L× n matrix M ; the entry M [i, j] is set equal to vi · pj .
By Lemma 2.1 and our assumption that V is a 1

12
ε0-sample, we have the following prop-

erty of the data structure.

Lemma 4.1 Let q ∈ Rd, pi, pj ∈ P , ε0 ≤ γ ≤ 1
2
, and suppose that (1 + γ)d(pi, q) ≤

d(pj, q). Let vk be chosen uniformly at random from V . The probability that |vk · (pi − q)| ≥
|v · (pj − q)| is at most 1

2
− γ

3
+ ε0

12
≤ 1

2
− γ

4
.

Processing a Query. Now we describe the algorithm for processing a query q ∈ Rd. First,
let p∗ denote a point which minimizes d(p, q) over all p ∈ P . Let Z denote the set

{pi ∈ P : d(pi, q) ≤ (1 + ε)d(p∗, q)}.

So the goal of the algorithm is to output a point in Z with probability 1 − δ.
If pi, pj ∈ P and vk ∈ V , we say that pi dominates pj with respect to vk (written pi �k pj)

if
|vk · pi − vk · q| < |vk · pj − vk · q|.

Now, if V ′ ⊂ V , we say that pi dominates pj with respect to V ′ (written pi �V ′ pj) if pi �k pj

for strictly more than half the vectors in V ′. The operation of deciding whether pi �V ′ pj

will be referred to as a V ′-comparison of pi and pj; if pi �V ′ pj then we say that pi wins the
V ′-comparison.

The algorithm is as follows. We assume for simplicity that n is a power of 2; that is,
n = 2m. Let T be a complete binary tree of depth m. Let Th denote the set of nodes of T
at height h ≤ m; the leaves are at height 0.

Let L1 = c1 log3 n. We initially choose a multiset Γ of L1 vectors from V , drawing each
uniformly at random with replacement. We compute the inner product of q with each v ∈ Γ.
(We note that if L1 ≥ L, then one can alternately use the entire set V in place of Γ; however,
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the method given here leads to a cleaner analysis.) We assume for simplicity that L1 is a
power of 2 and write b = log L1 = Θ(log log n).

The algorithm consists of two phases:
Phase A

• To each node x at height h ≤ b, we assign a randomly chosen sub-multiset Γx of Γ of
size c′2 + c2h.

• We randomly assign each point of P to a distinct leaf of T .

• Working from the leaves of T up to height b, we assign a point of P to x ∈ T by
Γx-comparing the points assigned to the two children of x and assigning the winner to
x.

• Starting at height b, we perform the same procedure using Γ-comparisons.

• Let p̃A denote the point that is assigned to the root of T .

Phase B

• We randomly choose a set P ′ ⊂ P of size c3 log3 n.

• We compute the distance from q to each p ∈ P ′, and define p̃B to be the point of P ′

whose distance to q is the smallest.

Finally, we determine which of p̃A and p̃B is closer to q, and return this point as our answer
to the query.

Complexity. Each entry of the matrix M requires time O(d) to compute, for a total time
of O(dLn) = O∗(d2n). The space required to store M is simply Ln = O∗(dn).

To process a query, we first compute v · q for each v ∈ Γ; this requires time O(d log3 n).
Phase B also takes time O(d log3 n). Phase A consists simply of determining pi �k pj for
various indices i, j, k. Each comparison takes constant time, since the values of vk · pi and
vk · pj are stored in M and the values of vk · q are computed initially.1 The total number of
comparisons is

m
∑

h=b+1

L1|Th| +
b
∑

h=0

(c′2 + c2h)|Th|

= c1 log3 n
m
∑

h=b+1

n

2h−bc1 log3 n
+ c′2n

b
∑

h=0

1

2h
+ c2n

b
∑

h=0

h

2h

≤ n + 2c′2n + 2c2n

= O(n).

Thus the total running time to process a query is O(n + d log3 n).

1We use the standard assumption (see e.g. Motwani and Raghavan’s book [34]) of a RAM model in which
one can access and randomly choose array indices of polynomial size in constant time.
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Correctness. We will be making use of the following tail inequality (see e.g. [34]).

Lemma 4.2 Let X1, . . . , Xr be i.i.d. Bernoulli trials with success probability p, let X =
∑

i Xi, and let µ = rp. Then

Pr [X < (1 − γ)µ] < e−
1
2
µγ2

.

A corollary of this is the following.

Corollary 4.3 Let X1, . . . , Xr be i.i.d. Bernoulli trials with success probability 1
2
+ γ, where

0 < γ < 1
2
. Let X =

∑

i Xi and µ = rp. Then

Pr
[

X ≤ 1

2
r
]

< e−
1
2
µγ2

.

Proof.

Pr
[

X ≤ 1

2
r
]

≤ Pr
[

X < (1 − γ)(
1

2
+ γ)r

]

= Pr [X < (1 − γ)µ] < e−
1
2
µγ2

.

Combining this bound with Lemma 4.1, we have

Lemma 4.4 Let (1 + γ)d(pi, q) ≤ d(pj, q). Let Γ′ be a randomly chosen sub-multiset of Γ.

The probability that pj �Γ′ pi is at most e−
1
64

|Γ′|γ2

.

In analyzing the algorithm, we consider two cases separately. The first is easier.

Case 1: |Z| ≥ γ1n/ log3 n. The probability that a member of Z enters the random set P ′

in Phase B is, by the definition of c3, at least 1 − δ. Hence we have

Lemma 4.5 Given that we are in Case 1, the probability that an element of Z is returned

is at least 1 − δ.

Case 2: |Z| ≤ γ1n/ log3 n. Let E1 denote the event that there exist pi and pj such that
(1+γ2/ log n)d(pi, q) ≤ d(pj, q) and pj �Γ pi. A consequence of Lemma 4.4 and the definition
of c1 is the following.

Corollary 4.6 The probability of event E1 is at most 1
3
δ.

Let P1 denote the set of points that are assigned to nodes in Tb. Let E2 denote the event
that p∗ 6∈ P1.

Lemma 4.7 The probability of E2 is at most 2
3
δ.
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Proof. Let y denote the node of T to which p∗ is assigned, and let x denote the node of Tb

that lies on the path from y to the root. Let T x denote the subtree of T rooted at x, and E3

denote the event that some node of Z \ {p∗} is assigned to a leaf of T x. By the definition of
the constant γ1, the probability of E3 is at most 1

3
δ.

We now show that if E3 does not occur, then the probability that p∗ is assigned to node
x (and hence placed in P1) is at least 1− 1

3
δ. To see this, suppose that p∗ has been assigned

to a node z at height h in T x, and let z′ be the parent of z. The probability that x is not
assigned to z′ is, by Lemma 4.4, at most

e−
1
64

ε2(c′2+c2h) = e−
1
64

ε2c′2
(

e−
1
64

ε2c2
)h

≤
1
3
δ

2h
.

Thus, summing over all the nodes on the path from x to y, we obtain the claimed bound.

Finally, we have

Lemma 4.8 Given that we are in Case 2, the probability that an element of Z is returned

is at least 1 − δ.

Proof. We show that if events E1 and E2 do not occur, then an element of Z will be returned.
To show this, we prove by induction on h ≥ b that there is a point pjh

assigned to a node in
Th for which

d(pjh
, q)

d(p∗, q)
≤ (1 +

γ2

log n
)h−b.

From this it will follow that the point pjm
assigned to the root satisfies

d(pjm
, q)

d(p∗, q)
≤ (1 +

γ2

log n
)log n ≤ eγ2 ≤ 1 + ε,

and hence pjm
∈ Z as desired.

We start the induction by observing that we assumed E2 did not occur; hence when
h = b, we can take pjh

= p∗. Now suppose the induction hypothesis holds for a given
value of h; let us suppose that pjh

is assigned to the node xh ∈ Th. Let x′
h denote the

sibling of xh, and yh+1 denote their parent. Let p′h denote the point assigned to x′
h. Now if

d(p′h, q)/d(pjh
, q) > (1 + γ2/ log n), then we use the assumption that event E1 did not occur

to infer that pjh
will be assigned to yh+1. And if d(p′h, q)/d(pjh

, q) ≤ (1 + γ2/ log n), then
either of pjh

or p′h would satisfy the induction hypothesis for h + 1, and we know that one of
them will be assigned to yh+1.

Combining Lemmas 4.5 and 4.8, we have

Theorem 4.9 The probability that an element of Z is returned by the algorithm is at least

1 − δ.
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5 A General Proximity Problem

In the introduction, we mentioned two classical proximity problems of computational ge-
ometry: closest pair and bichromatic closest pair. In this section, we consider a common
generalization of the two, which we call the G-proximity problem. We are given a set of
points P = {p1, . . . , pn} in Rd, and an undirected graph G on the vertex set P . The goal
is the following: over all pairs of points in P that correspond to edges in G, find the pair
at minimum distance. Thus the closest pair problem is the special case in which G is the
complete graph; and the bichromatic closest pair problem is the special case in which G is a
complete bipartite graph.

We show how the algorithm of the previous section can be used directly to obtain an
ε-approximate algorithm for the G-proximity problem. The running time will be quadratic
in the number of points and independent of d, provided d = O(n/ logn); thus for high
dimensions it provides an improvement on the brute-force O(dn2) algorithm.

Let ε = 1
3
ε. The algorithm proceeds as follows.

(1) First, by a result of Frankl and Maehara [24], we can project P into a random
subspace of dimension O(ε−2 log n) and preserve all relative inter-point distances to within
a factor of 1 + ε, with high probability. The time to do this is O(ε−2nd log n), after which
we may assume that d = O(ε−2 log n).

(2) Next, we perform the pre-processing step of the algorithm from Section 4, with the
approximation parameter set to ε. From this we obtain an L × n matrix of inner products.

(3) For each pi ∈ P , let ∆i ⊂ P denote the set of neighbors of i in the graph G. We
perform an approximate nearest-neighbor query using pi as the query point and ∆i as the
underlying set of sites; in time O((ε−2 log δ−1)n), we obtain an answer qi ∈ ∆i.

(4) Finally, for each of the pairs (pi, qi) produced in the previous step, we compute
d(pi, qi) and return the pair at minimum distance.

We claim that with probability 1 − δ, the resulting pair is an ε-approximate answer to
the G-proximity problem. To see this, suppose that (pi, pj) is a correct (exact) answer to the
G-proximity problem. Then by the performance guarantee of the algorithm from Section 4,
the pair (pi, qi) returned in step (3) satisfies d(pi, qi) ≤ (1+ ε)d(pi, pj) with probability 1− δ.
Finally, the pair (p∗, q∗) returned in step (4) satisfies d(p∗, q∗) ≤ d(pi, qi), from which the
claim follows. Thus we have

Theorem 5.1 The above algorithm has running time O((ε−2 log δ−1)(n2 + nd log n)), and

with probability at least 1−δ it returns an ε-approximate answer to the G-proximity problem.
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