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1. Introduction

Motivated by the study of dynamic continuous (or dynamic) packet routing, we
introduce a new approach to the analysis of queuing systems. In the context of
packet routing, our objective is to study stability and bounds on routing delay for
various networks and scheduling policies. Our approach is based on an adver-
sarial generation of packets (i.e., jobs) so that positive results (e.g., stability and
upper bounds on queue sizes) are more robust in that they do not depend on
particular probabilistic assumptions about the input sequences. Negative results
(e.g., instability) can also be used to suggest corresponding results for more
traditional stochastic queuing model assumptions. Moreover, the adversarial
model may be a better (or at least safer) model of arrival processes in
applications such as heterogeneous ATM networks.

New applications in communications networks and complex manufacturing
systems have recently led to significant advances in queuing theory. In particular,
the issue of stability for “open multiclass queuing networks” is now much better
understood. In a preliminary version of our work (see Borodin et al. [1996]), we
did not fully take into account the dramatic progress in this area. For example,
using fluid model limits (see Dai [1995], Dai and Meyn [1995], and Rybko and
Stolyar [1992]), Bramson [1996] has recently shown that for independent and
time-invariant input distributions (say, for example, Poisson arrivals), FIFO
scheduling is stable for any class-independent service time distribution (including
constant service time, the standard assumption in packet routing) as long as the
necessary load conditions (i.e., total expected arrival rate at any server is less
than the expected service rate) are satisfied. Hence, queuing theory clearly
provides a general methodology for studying continuous packet routing. How-
ever, our initial results coupled with the subsequent compelling results of
Andrews et al. [2001], and other more recent results (for example, see Aiello et
al. [1998], Andrews [2000], and Andrews and Zhang [2000]) demonstrate that the
adversarial approach provides another useful perspective to an important and
fast evolving field. In fact, as one might expect in such a well-studied field, our
“new approach” is not entirely new. The “leaky bucket” model studied by Cruz
[1991a; 1991b] should also be considered as a (restricted) adversarial model.

We introduce our adversarial model and for definiteness present this model in
the context of packet routing. More generally this adversarial approach can be
applied to any queuing network; see Tsaparas [1997]. Surprisingly, in spite of the
power of the adversary, certain networks and scheduling disciplines can be
proven to be “universally stable.” That is, certain networks are stable under any
greedy scheduling rule and certain scheduling rules are stable for any network. In
contrast, we will also see that some natural scheduling disciplines can be quite
ill-behaved.

2. Related Work

Queuing theory and analysis is, of course, a well-developed and highly utilized
field of study. We cannot endeavor to survey all the applicable literature. We will
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only attempt to briefly review the most relevant results concerning multiclass1

queuing networks. We will also briefly review some relevant results from the field
of packet routing. For basic definitions in queuing theory, we refer the reader to
standard texts such as Kelly [1979], Kleinrock [1975], and Walrand [1988]. The
reader may wish to skip this section and proceed directly to the new definitions
in Section 3.

2.1. MULTICLASS QUEUING NETWORKS. We can view dynamic packet routing
as one restrictive (but still quite important and nontrivial) type of multiclass
queuing network. In particular, while oblivious routing necessitates different
classes2 (i.e., one for each path), the service time distributions are all identical
and independent of the class as well as independent of the number of jobs (i.e.,
packets) waiting for service at any edge.

In a series of papers beginning with the work of Lu and Kumar [1991] and
Rybko and Stolyar [1992], it was shown that the load conditions are not in
general sufficient to guarantee stability. These initial “counterexamples” (to what
seems a very natural conjecture) were first derived for scheduling rules based on
the priority of a class. Seidman [1994] (for deterministic arrivals and service
times) and then Bramson [1994a] for Poisson arrivals and exponential service
times, showed that even FIFO can be made to be unstable. Indeed, Bramson
[1994b] showed that FIFO can be unstable at an arbitrarily small ratio of arrival
rate to service rate. All these examples require that the service time distribution
at a given server is class dependent.

Rybko and Stolyar [1992] were able to analyze the stability of a particular
network by first arguing about stability in a “fluid model abstraction” of this
network. This approach was then formalized as a general approach in the work of
Dai [1995] and Dai and Meyn [1995]. They show a “meta theorem” whereby
stability in the fluid model abstraction of a queuing network implies stability in
the given queuing network. We note that the fluid model abstraction only
considers the mean rate of service disregarding the nature of the service
distribution. (Since the fluid model must necessarily depend on the scheduling
rule and there is neither a formal definition of a scheduling rule nor a procedure
showing how to transform the scheduling rule into the corresponding equations,
we have chosen to call this a meta theorem. But the meaning and applicability of
this result is clear.) A Kelly-type network is a possibly multiclass network but one
in which the service time distribution at a server is class independent. Using the
fluid model approach, Bramson [1996] has shown that FIFO scheduling in a
Kelly-type network using FIFO scheduling is stable. In particular then, under
mild assumptions on the nature of the (mutually independent) input distributions
of the classes, continuous packet-routing networks (having constant time service)
using FIFO scheduling are stable networks. The Bramson FIFO stability result
for the fluid model stands in direct contrast to the result of Andrews et al. [2001],
which shows that FIFO can be unstable in the adversarial model.

1 In a multiclass queuing network, jobs are partitioned into different classes with the understanding
that all jobs in a class are indistinguishable in the sense that they have the same service requirements.
2 Note that from a queuing theory perspective, the Bernoulli (or Markovian) network assumption
discussed below avoids the need for multiple classes.
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2.2. THE CRUZ PERMANENT SESSION MODEL. Cruz [1991a] introduces an
input model designed to capture the burstiness of inputs in communication
networks. Cruz defines a (s i, r i) regulator as an input process that controls the
rate of a particular input session (i.e., a path in the network) so that during any
time interval [t1, t2], the input traffic (for this path) is bounded by s i 1 r i(t2 2
t1) units of traffic. The rate r i corresponds to the long-term average rate of flow
while the constant s i bounds the burstiness of the input. Such an input process
can be viewed as the output of a “leaky bucket model” of flow control where
packets are dropped whenever the above constraints cannot be satisfied. The
total induced traffic rate r(e) on any edge e is defined as ( i:e[Pi

r i. Andrews
[2000] refers to this input model as a (s, r) regulated session model. Following
Andrews and Zhang [2000], we will refer to this input model as the permanent
session model (in contrast to the adversarial model in which sessions are viewed
as temporary). Cruz [1991a; 1991b] develops some basic properties of such an
input model including the study of stability for acyclic networks relative to a class
of greedy scheduling rules.

Tassiulas and Georgiadis [1996] adopt the permanent session model for the
analysis of routing packets3 in a (unidirectional) ring G. They show that for any
greedy scheduling rule 6 that the system (G, !, 6) is stable for any adversary !
that corresponds to the (s, r) permanent session model under the load constraint
that r(e) , 1 for every edge e. Although the concept of an adversary is implicit,
these results by Cruz, and Tassiulas and Georgiadis, can be viewed as initial
results in the development of an adversarial queuing theory. Following the
adversarial FIFO instability result of Andrews et al. [2001], a recent result of
Andrews [2000] proves that FIFO can also be unstable in the Cruz permanent
session model.

For r , 1, we can model the permanent session model as a (w, r9) adversary
for any r9 . r and a sufficiently big window w. Note that this corresponds to a
(restricted) adversary which is controlling individual input streams (i.e., particu-
lar paths in the network) rather than an adversary that is globally controlling the
entire input process. The more general (w, r) adversary thus intuitively seems to
provide a better model for ATM networks having heterogeneous and frequently
changing rates of traffic. Recently Andrews and Zhang [2000] have shown that
there are known scheduling rules (namely, Generalized Processor Sharing and
Weighted Fair Queuing), which are unstable (for the “baseball graph” intro-
duced by Andrews et al. [2001]) in the full adversarial model but which (by
results of Parekh and Gallager [1993; 1994]) are universally stable in the
permanent session model. Our DAG result and the unidirectional ring result of
Andrews et al. [2001] therefore provide (respectively) a significant generalization
of the Cruz and Tassiulas and Georgiadis results.

2.3. STATIC ROUTING. There has been recent work showing how stability
results and delay bounds for continuous packet routing may be derived from
analogous results in the static setting. In a static routing problem, we are given a
finite set of packets, each with an assigned path, and we wish to schedule the

3 To be more precise, the scheduling policies in Tassiulas and Georgiadis [1996] also allow
processor-sharing rules and the transmission of packets viewed as streams of traffic that can be
routed in a cut-through mode as well as discrete packets that are transmitted in a store-and-forward
mode. This added generality is not important for our purposes.
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motion of each packet along its respective path so as to minimize the maximum
arrival time. A seminal result in this regard is the well-known bound of Leighton
[1994] that every static packet routing problem in which the maximum path
length is D and the maximum number of packets using an edge is C has a
schedule in which each packet reaches its destination within O(C 1 D) units of
time. A centralized, polynomial-time algorithm to compute such a schedule is
given by Leighton et al. [1999]. Rabani and Tardos [1996] and Ostrovsky and
Rabani [1997] developed distributed algorithms for the static problem of Leigh-
ton, Maggs, Rao with bounds that approach the O(C 1 D) achieved by the
centralized methods of Leighton et al. [1994; 1999].

The work of Rabani and Tardos [1996] establishes a connection with the
adversarial model developed in this paper, in the following sense. Consider any
algorithm for the n-packet static problem with parameters C and D defined
above that produces a schedule with completion time (1 1 d)C 1 g(n) D 1
f(n), where d . 0 is a constant and f(n) $ log n. Then it can be converted into
an algorithm for continuous packet routing that is stable against an arbitrary (w,
1 2 «) adversary, where « is a function of d and each packet has an inverse
polynomial probability of being “dropped” before reaching its destination. This
latter condition, that an algorithm may drop packets with small probability, is not
present in our model.

Broder et al. [1997] also present a general method for transforming static
routing algorithms into continuous ones. They focus on a model in which the
switching nodes in the network have bounded buffers. Here a distinction is drawn
between input nodes in the network, where packets are generated, and all other
intermediate nodes of the network. The queue at an input node may grow
arbitrarily large, but the queue at an intermediate node v can grow no larger
than an absolute bound B, after which packets cannot enter v. Broder et al.
[1997] show that any static packet routing algorithm in this model that satisfies
some technical conditions can be transformed into a stable algorithm for
continuous packet routing, against an arbitrary adversary of sufficiently small
constant rate.

The connections between the static and continuous settings appears implicitly
in the development of other protocols in adversarial queuing theory. The analysis
showing a polynomial bound on queue size for the randomized universally stable
protocol of Andrews et al. [2001], for example, builds on techniques used in the
proof of the static result of Leighton et al. [1994]; the protocol, however, itself
has a simple description that is independent of the analysis.

2.4. CONTINUOUS PACKET ROUTING. Without any explicit use of queuing
theory results, Leighton [1990] analyzes one-bend routing on n 3 n arrays; the
paths in one-bend routing are acyclic and in fact one-bend routing on arrays
turns out to be easier to analyze than routing on cyclic networks such as rings.
Leighton considers the case where each injected packet has a random destina-
tion4 and packets are injected at each node according to a Bernoulli distribution
with rate a , 4/n.

4 We note that continuous packet routing results to date are restricted to the case in which packets
have random destinations. One of our main goals is to extend such results to the case where a packet
is given a specified destination and path at the time of its injection.
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These assumptions (on the routing scheme, on the injection rate at each node,
and on the fact that packets have random destinations) imply that the induced
traffic rate on any edge is less than one (the service rate of each edge). Leighton
[1990] is able to provide a detailed analysis that shows that for the “farthest-to-
go” scheduling discipline at each edge queue, the network is stable and “with
high probability” queue sizes are bounded by a small constant. Moreover, the
expected delay of a packet is bounded by a constant with high probability. These
results are strengthened in Kahale and Leighton [1995] where the same results
are proven for any scheduling discipline. Somewhat weaker results are derived
when the underlying graph is a ring. For the ring, stability and bounded delay
results are shown for FTG scheduling. The precise nature of these packet delay
results seems beyond what we can hope to derive from applying general queuing
theory results. On the other hand, the Leighton and Kahale–Leighton results are
specific to certain networks and utilize the assumption of random destinations.

Stamoulis and Tsitsiklis [1991] consider the case of layered networks under the
assumption of Bernoulli routing. In queuing networks with Bernoulli routing,
jobs are indistinguishable (i.e., a single class network) and the next server taken
is a Markov process (i.e., a probabilistic function of the last server and
independent of previous history). In the context of packet routing, the Bernoulli
assumption means that the next edge to be traversed is a random function of the
last edge traversed and is independent of the packet identity. Stamoulis and
Tsitsiklis consider such networks under the assumption of Poisson arrivals. They
observe that for layered Bernoulli routing networks, the distribution on the
network states (i.e., the queue size at each edge) that results from a network with
constant time edge traversal and FIFO scheduling is statistically dominated by
the state distribution obtained using a processor (i.e., edge) sharing scheduling
discipline. They apply this observation to random destination routing in layered
networks (e.g., the butterfly) and in networks that can be layered (e.g., dimen-
sion-by-dimension routing to random destinations in the hypercube).5 Thus
bounds on expected queue sizes for constant-time edge traversal can be inferred
from results about the analogous network which assumes processor sharing for
edge traversal. Since the latter assumption results in a product form network,
standard queuing theory analysis can yield constant bounds on expected queue
sizes and from this follow (by Little’s Theorem) bounds on the expected time in
the network.

Following similar experiments by Mitra and Cieslak [1987] for the Omega
network, Harchol-Balter and Black [1994] simulate packet routing on array
networks and conjecture that the queue sizes that obtain under the assumption of
exponentially-distributed edge-traversal times are an upper bound for the queue
sizes obtained with constant-time edge traversal. Mitzenmacher [1994] proves
this conjecture for one bend routing on arrays. It is tempting to believe that the
experiments and conjecture of Harchol-Balter and Black [1994] apply to a much
wider context. Indeed, independent of the results in packet routing, there are
many queuing-theoretic results pertaining to generalized Jackson networks. In
particular, under the appropriate load conditions and some very general assump-

5 Stamoulis and Tsitsiklis [1991] allow a more general, non-uniform, selection of random destinations
than in Leighton [1990] and Kahale and Leighton [1995]; e.g., nearby destinations can be more
probable.
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tions on the arrival and service time distributions, Meyn and Down [1994]
establish stability for such networks. These results apply to the more general case
that each server has its own service time distribution. However, Harchol-Balter
and Wolfe [1995] give evidence that it will not be a simple task to apply the
approach in Stamoulis and Tsitsiklis [1991] to the general study of dynamic
packet routing. First, they show that the “layered” assumption in Stamoulis and
Tsitsiklis [1991] is not necessary as they are able to derive the same results for
any Bernoulli routing network. But they also show that without the Bernoulli
network assumption, it is no longer necessarily true that the set of delays for
FIFO with constant-time servers is stochastically dominated by processor-sharing
servers.

3. The Adversarial Model

We begin with an informal discussion of packet routing, adversaries and sched-
uling policies. A routing network is a directed graph. Time proceeds in discrete
steps. A packet is an atomic entity that resides at a node at the end of any step. A
packet must travel along a path in the network from its source to its destination,
both of which are nodes in the network. When the packet reaches its destination,
we say that it is absorbed. During each step, a packet may be sent from its current
node along one of the outgoing edges from that node. At most one packet may
travel along any edge of the network in a step. Any packets that wish to travel
along an edge e at a particular time step but are not sent wait in a queue for edge
e. The delay of a packet is the number of steps which the packet spends waiting
in queues.

At each step, an adversary generates a set of requests. In this paper, a request is
a path specifying the route followed by a packet. We say that the adversary injects
a set of packets when it generates a set of requested paths. We restrict ourselves
to the case in which the path traversed by each packet is fixed at the time of
injection (i.e., nonadaptive routing), so as to be able to focus on the queuing
rather than routing aspects of the problem. (Recently, Aiello et al. [1998] have
successfully extended the adversarial model to adaptive routing.)

Clearly an unrestricted adversary can flood the network with packets, demand-
ing more bandwidth than available. Therefore, we need to introduce a restriction
analogous to the load condition imposed in queuing theory. Let w be an arbitrary
positive integer, e any edge in the network and t any sequence of w consecutive
time steps. We define N(t, e) to be the number of paths injected by the
adversary during time interval t that traverse edge e. It is common in packet
routing to assume that all paths are simple paths. However, in more general
queuing applications, one may not want to assume simple paths and hence in the
definition of N(t, e) we need not assume simple paths; thus, we would count the
multiplicity of the number of times a particular path traverses e. For any r . 0,
we define a (w, r) adversary that injects paths subject to the following load
condition: for every sequence t of w consecutive time steps and for every edge e,
N(t, e)/w # r. We say that such a (w, r) adversary injects packets at rate r with
window size w . A rate r adversary is a (w, r) adversary for some w.6

6 We follow the definition of a (w, r) adversary as it appears in Andrews et al. [2001]. In our original
paper [Borodin et al. 1996], we only defined and proved results for path-packing adversaries (to be
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Clearly, if the rate r were greater than one, an adversary (or any input
generation process) would congest some edge (since the service rate of every
edge is assumed to be 1) and the network would be unstable. Hence, we will
hereafter assume that r # 1. We note that in its full generality, there are no
computational requirements on how the adversary chooses its requests in any
given step and (as will be formalized below). The adversary’s choice of input
packets is simply a function of the history of the packet routing that has taken
place thus far. One can of course place further restrictions on the nature of the
adversary. For example, a (w, r) path-packing adversary is further restricted so
that the paths requested at any step must be edge disjoint. A more stringent
restriction (a single path adversary) requires that at most one packet be injected
at each step. In general, we have a request collection of permissible request sets;
at each step, the adversary must pick one request set (5 set of paths) from this
request collection.

Additionally, we consider stochastic adversaries. A (w, r) stochastic adversary
is also specified by a request collection, a rate and a window size; now, however,
at each step the adversary has a probability distribution (possibly different for
each step) over its request collection, and at each step draws a set of requests
from the specified distribution. Now, the quantity N(t, e) is a random variable
induced by the distributions used by the adversary during the time steps t. If t
denotes the w time steps t 1 1, . . . , t 1 w, we let Ht denote the entire history
of packet arrivals up to (and including) step t. The appropriate load condition7 is
that for every sequence t of w consecutive time steps and for every edge e,
E[N(t, e) uHt]/w # r. In order to achieve the greatest degree of generality, we
would like to impose the fewest conditions on a stochastic adversary and still be
able to derive stability results. Once again, it is clear that r # 1 is necessary to
avoid flooding some edge. Moreover, it is not hard to see that even for the
simplest network consisting of one edge, a rate 1 stochastic adversary can be
unstable. Simply consider an adversary which injects zero packets with probabil-
ity 1/2 and injects two packets with probability 1/2; after t steps the expected
queue size (which is acting like a random walk on the line [0, `)) is approxi-
mately =t. Hence, we will be concerned with stochastic adversaries having rate
r , 1. However, this bound on the expectation (i.e., the first moment) is not
sufficient for our purposes and we will also have to impose a bound on the pth
moment (see Lemma 2) for p . 2. We will then say that a (w, r) stochastic
adversary is properly bounded if there exist constants p . 2, e . 0 and V such
that for all sequences t of w consecutive time steps t 1 1, . . . , t 1 w and all
edges e, E[N(t, e) uHt]/w # 1 2 e and E[N(t, e)puHt] # V. Note that this
model is quite general as it allows the adversary to adaptively modify the
distribution at each time step. In particular, it includes the special case (as is
often assumed in queuing theory) of a fixed, time-invariant input distribution
(e.g., say a Poisson or constant rate arrival process) for each possible request. It
also subsumes the case of oblivious packet routing for packets that are generated

defined) although we implicitly suggested a more general adversary. In subsequent discussions, we
independently adopted the general (w, r) adversarial framework. Stability proofs for the general
adversary that are presented in this paper are extended versions of our earlier proofs given for
path-packing adversaries.
7 In our conference paper [Borodin et al., 1996], we incorrectly stated the load condition as the
unconditional expectation E[N(t, e)]/w # r.
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at each node with randomly chosen destinations (e.g., as studied in Kahale and
Leighton [1995], Leighton [1990], and Stamoulis and Tsitsiklis [1991]). To
differentiate such stochastic adversaries from the nonstochastic adversaries
defined above, we will refer to the nonstochastic adversaries as deterministic
adversaries. Clearly, deterministic adversaries are a special case of stochastic
adversaries.

To the best of our knowledge, these adversarial models provide the first
framework for studying queuing models where we do not essentially assume
independent input streams. Moreover, the analysis of these models provide not
only results about stability but also quantitative bounds on queue lengths and delays.

A scheduling policy specifies, for each edge e and each time step, which packet
(amongst those waiting) is to be moved along edge e. A greedy scheduling policy
(called a work-conserving policy in the terminology of queuing theory) always
specifies some packet to move along edge e if there are packets waiting to use
edge e. In this paper, we restrict ourselves to deterministic greedy scheduling
policies. Examples of natural greedy scheduling policies include the following:

—FIFO (First-In-First-Out). This is also called FCFS (First-Come-First-Served).
—LIS (Longest-In-System). A packet originates at a specified time, and priority is

given to the packet that has been in the network for the longest amount of time.
—NIS (Newest-In-System). Similar to LIS but now priority is given to the packet

that has spent the least amount of time in the network.
—FTG (Furthest-To-Go). Each packet has a prescribed path, and priority is

given to the packet which has the largest number of edges still to be traversed.
—NTG (Nearest-To-Go). Similar to FTG but now priority is given to the packet

that has the smallest number of edges still to be traversed.

All of these scheduling policies require some tie-breaking rule in order to be
unambiguously defined. For our purposes, we can assume that whenever we are
proving a positive (e.g., stability) result, the adversary can break the tie. For a
negative result, we can assume any well-determined tie-breaking rule. It should
also be clear that all of these scheduling policies can be extended to more
general queuing networks. For example, FTG would be extended to MTTG
(Most-service-Time-To-Go) where priority is given to that job which has the
most service time remaining (summing the required service over all servers still
scheduled to be visited).

In order to make the above discussion more precise, we need some additional
definitions. A packet P is a triple (ID, p, t̃) where ID is some unique identifier,
p is the path (from the origin to the destination of the packet) that the packet
must traverse, and t̃ is the time that the packet was injected into the network (at
its origin). The statet(P) of a packet P at time t is the vector (P, i, t1, . . . , t i)
where i is the number of time steps in which P has traversed an edge in its path
and t j is the time of the jth such traversal. We define the configuration configt(G)
of a network G at time t as configt(G) 5 {statet(Pk) uPk is a packet that is
present in the network at time t}. Note that the configuration implicitly specifies
the states of packets in each (edge) queue of the network. In particular, we will
assume that time begins at step t 5 0 and thus config0(G) denotes the initial
configuration of the network. We can then formally define a deterministic
adversary ! as a function !;ø j50

` [ j 3 ) t50
j configt(G)] 3 {PkuPk is a new
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packet}; that is, !( t̃, ) t50
t̃ configt(G)) specifies the new packets that the

adversary ! injects into the network at time t̃ and it does so based on the entire
history of the routing up to this point of time. A stochastic adversary !S is
similarly defined as a function !S;ø j50

` [ j 3 ) t50
j configt(G)] 3 {DkuDk is a

distribution on new packets}. That is, a stochastic adversary chooses a distribu-
tion for the next set of requests and this distribution is a function of the history
of the network configurations. At any time t, once the distribution has been
chosen, the inputs are then randomly generated according to this distribution. A
deterministic scheduling policy 6 is defined as having the same domain as a
deterministic adversary with its range being the set of packets that exist in the
system at time t̃; that is, in its full generality we can consider global scheduling
rules based on the entire history to date. However, in practice and for the
purpose of this paper, we will mainly be concerned with distributed scheduling
policies where the packet selected to traverse any given edge e is determined by
the states of the packets that are presently in the queue associated with edge e.
We note that all the known deterministic scheduling rules fit into this framework.
We could also easily define randomized scheduling policies but will not do so
since we do not consider such policies in this paper. However, we note that
randomized scheduling policies are often utilized in packet routing; see, for
example, Rabani and Tardos [1996].

Our main goal will be to prove the stability of arbitrary and particular greedy
scheduling policies 6 on various networks G and against various classes Y of
adversaries.8 Similar to Andrews et al. [2001], we define a network system as the
tuple (G, Y, 6). We will say that a network system (G, Y, 6) is stable, if for
every initial configuration C0(G) there is a constant M (which may depend on
the size of the network G, the initial configuration and the rate and window
parameters of the adversary class Y) such that for every adversary ! in the class
of adversaries Y, when the network system is executed with initial configuration
C0(G) against adversary ! (i.e., is executed using the deterministic adversary !
to generate packets and the scheduling policy 6 to route packets), the maximum
number of packets in any queue is bounded by M.9 For stochastic adversaries, we
say that the network system (G, Y, 6) is stable if for every initial configuration
C0(G) there is a constant M as above such that for every stochastic adversary !S

in the class Y, when the network system is executed with initial configuration
C0(G) against adversary !S then at all times the expected number of packets in
any queue is bounded by M. We will say that a network G is universally stable
with respect to a class Y of adversaries if (G, Y, 6) is stable for all greedy
scheduling policies, and similarly a scheduling policy 6 is universally stable if (G,
Y, 6) is stable for all networks G.10 Andrews et al. [2001] show that for

8 For example, certain networks G are stable against the class of stochastic adversaries of rate r , 1
for any greedy scheduling rule.
9 Equivalently, we can say that the maximum number of packets in the system is bounded by some
constant M. In queuing theory one sometimes defines stability in terms of the existence of a limiting
stationary distribution for the state of the network. Our definition is consistent with other standard
uses of the term and furthermore one cannot hope for a limiting distribution in an adversarial model.
10 For the study of the universal stability of a scheduling rule, we can assume that the initial
configuration is empty. Informally, we argue that any network can be modified by appending “input
trees” to each node and using these input trees to adversarily construct any desired initial
configuration.
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undirected networks (i.e., in the sense that each undirected edge represents two
directed edges) it is decidable if a packet routing network is universally stable.
Based on Andrews et al. [2001], Goel [1997] gives a simple characterization for
the universal stability of directed and undirected networks. Bertsimas et al.
[1996] use linear programming to decide universal stability for all 2-station fluid
model networks and conjecture that such a test exists for all fluid model queuing
networks.

Rather than define stability in terms of maximum queue size, one could also
define stability in terms of the maximum delay incurred by any packet. Clearly, if
no packet is delayed by more than M steps then the maximum queue size is also
bounded by M. Conversely, for any (w, r) adversary with rate r , 1, if the
maximum queue size is bounded by M, then a packet can be delayed in any
queue by at most cw steps where c is large enough that cw . M/(1 2 r). (In cw
steps, at most cwr packets enter the queue and cw packets leave the queue while
it remains nonempty.) Clearly, when r 5 1, it is possible to have a given packet
delayed forever even though the system is stable under the given definition.

4. Results

It is perhaps tempting to conjecture that for every network G, every greedy
queuing discipline is stable for a deterministic adversary with injection rate r , 1
(or even r 5 1). Our first result shows that every directed acyclic network is
universally stable for rate 1 deterministic adversaries.

(1) If G is a DAG, and Y is the class of deterministic rate 1 adversaries, then (G,
Y, 6) is stable for every greedy queuing discipline 6. That is, every DAG is
universally stable against the class of rate 1 deterministic adversaries.

Unfortunately, universal stability against rate 1 adversaries does not extend to
the case of graphs with directed cycles, as our next result shows.

(2) Let G be a unidirectional ring network on n $ 3 nodes and let Y be the class of
deterministic rate 1 single path adversaries. Then the network system (G, Y,
LIS) is not stable. Indeed, for every initial configuration, there is a rate 1
adversary !, injecting a single path on every step, which will force the network to
have an unbounded number of packets. Similarly, FIFO is unstable for rate 1
single path adversaries.

This instability result is in contrast with the next result.

(3) If G is a unidirectional ring and Y is the class of deterministic rate 1
adversaries, then (G, Y, FTG) is stable.

All our stability results also hold for stochastic adversaries of bounded
variance for injection rates bounded away from 1.

In our conference paper [Borodin et al. 1996], we asked if our stability results
for the ring and DAGs could be extended to all networks and all greedy
scheduling rules. Our results were soon significantly extended by Andrews et al.
[2001]. They show that the ring is universally stable with respect to the class of
rate r , 1 deterministic adversaries. They also show that certain scheduling
policies 6 (such as Newest-in-System (NIS), LIS and FTG) are universally stable
against the class of rate r , 1 deterministic adversaries. However, they demon-
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strate that certain common scheduling policies (such as FIFO and Nearest To Go
(NTG)) are not universally stable. Specifically, for FIFO (respectively, NTG)
scheduling, they show that there is some network and initial configuration for
which some rate r . 0.798 (respectively, rate r . 0.62) path-packing adversary
causes instability.

In hindsight, the instability of NTG (packet routing) is well motivated by the
queuing instability examples11 of Lu and Kumar [1991] and Rybko and Stolyar
[1992]. Note that our instability result for FIFO on the ring with rate 1 and the
FIFO instability result of Andrews et al. [2001] stands in contrast to Bramson’s
[1996] fluid stability result for class-independent service time networks with
FIFO scheduling. We strengthen the Andrews et al. [2001] NTG instability result
by showing the following.

(4) For every rate r . 0, there exists a network and initial configuration for which
some rate r adversary causes NTG to be unstable. Indeed, although motivated
by initial adversarial results, this turns out not to be an adversarial result rather,
the “adversary” will only set the initial configuration and then will be injecting
all paths at a constant rate!

Thus, in addition to providing a framework for obtaining very general stability
results, the adversarial model is able to distinguish between different scheduling
policies and to suggest instability results in more classical settings. This sensitivity
to the scheduling policy is not unnatural, yet prior queuing theoretic results do
not seem to highlight this.

The remainder of the paper is structured as follows. Section 5 discusses
stability bounds for acyclic networks G. Section 6 discusses results for the ring.
Our NTG instability result is outlined in Section 7. We conclude in Section 8
with a number of open problems.

5. Dags and Meshes

Perkins and Kumar [1989] show that for constant rate arrivals there is a class of
scheduling rules (called “clear a fraction”) with respect to which all acyclic
networks are stable. Using a fluid model, Down and Meyn [1995] consider a
specific acyclic network and show that it is universally stable. Again using a fluid
model, Dai [1995] shows that every acyclic network is universally stable for rate
less than 1. These stability results for fluid models then can be applied to obtain
stability results for the more standard “stochastic queuing networks” (i.e., with
time-invariant input distributions). We extend these results by showing that for
packet routing, acyclic networks are universally stable in the (deterministic and
stochastic) adversarial setting. Recently, Gamarnik [1998] showed how to use
fluid models to show that if a packet routing network is universally stable in the
fluid model, then it is universally stable in the deterministic adversarial model.
However, the fluid model results do not seem to provide quantitative bounds on
queue lengths.

11 These queuing network examples do not show that NTG is unstable for packet routing (where we
assume identical service time distributions) but can be easily modified to show packet routing
instability for some priority based scheduling policy.
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THEOREM 1. Let G denote an arbitrary directed acyclic graph, 6 an arbitrary
greedy protocol, and Y the class of deterministic rate 1 adversaries. Then (G, Y, 6)
is stable.

PROOF. For e an edge of G, let Qt(e) denote the queue at edge e at time t,
and let At(e) denote the number of packets (not already absorbed) that have
arrived by time t and are eventually destined to cross edge e. For any adversary
! that injects at rate 1, there exists some window size w, such that for any
window of time (t 2 w, t] and for any edge e the adversary can inject at most w
packets during this window that are destined to cross the edge e.

We define a function c[ inductively on the edges as follows: For an edge e,
suppose f1, . . . , fk are edges entering the tail of e. (Notice there may be no such
elements and then we just take k to be zero.)

c~e! 5 max$2w, Q0~e!% 1 O
i51

k

c~ fi!.

We claim that for all t 5 l z w $ 0 and all e [ G, we have

At~e! # c~e! (1)

Note that for any time t9 such that t 2 w , t9 , t, At9(e) # At2w(e) 1 w. The
theorem will then follow, since (e c(e) gives an absolute upper bound on the
number of packets in the system, in terms of the initial configuration.

The proof of this claim proceeds by induction on l. The claim clearly holds
when l 5 0. Now let t 5 lw for l $ 1. Suppose e is an edge whose tail is entered
by edges f1, . . . , fk. We consider two cases.

Case 1. At2w(e) # w 1 ( i51
k c( f i). In this case, we use the fact that in w

time steps the number of new packets inserted that wish to cross the edge ej is at
most w. Thus, in this case

At~e! # At2w~e! 1 w # 2w 1 O
i51

k

c~ f i! # c~e! .

Case 2. At2w(e) . w 1 ( i51
k c( f i). By the inductive assertion we have that

At2w( f i) # c( f i). But notice that At2w(e) is at most Qt2w(e) 1 ( i51
k

At2w( f i). Thus, we have

Qt2w~e! $ At2w~e! 2 O
i51

k

At2w~ f i!

. w 1 O
i51

k

c~ f i! 2 O
i51

k

At2w~ f i!

$ w.
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In other words, the number of packets queued at edge e must be at least w at the
beginning of time step t 2 w. Thus, in the next w time steps, at least one packet
crosses the edge e in every step. But the number of packets inserted which wish
to cross this edge may go up by at most w in w time steps. Thus, in this case also,
we have At(e) # At2w(e) # c(e).

The upper bound on the number of packets in the system that follows from this
proof is exponential in the number of edges (more precisely, the depth) of G.
Indeed, Andrews et al. [2001] show that for every m, there is an O(m2)-node
DAG G and a (1 2 1/(m 1 2)) rate path-packing adversary for which the
scheduling rule NIS (or FTG) can be forced to have queue size 2m21. Another
example of exponentially long (in the depth but not the size) queues for DAGs
can be found in Cruz [1991b]. For the special case of rooted tree networks (with
edges directed away from the root), the proof of Theorem 1 gives a much better
bound; in this case, all the sets Q(e) have linear (in the depth) size.

It is now reasonably easy to obtain essentially the same stability result for
stochastic adversaries (satisfying some minimal conditions as previously indicat-
ed). We need the following Martingale type lemma due to Pemantle and
Rosenthal [1999]:

LEMMA 2. Let X1, X2, . . . be a sequence of nonnegative random variables
satisfying the following properties:

(1) There exists positive constants a and b such that for all x1, . . . , xn with xn . b,

E@Xn11 2 XnuX1 5 x1 , . . . , Xn 5 xn# # 2a.

(2) There exists a positive constant u and a p . 2 such that for all x1, . . . , xn

E@ uXn11 2 XnupuX1 5 x1 , . . . , Xn 5 xn# # u.

Then there exists M (M is a function of X0, a, b and u) and t0 such that for all
t $ t0, E[Xt] # M.

An example in Pemantle and Rosenthal [1999] shows that condition (ii) above
cannot be replaced by a bounded second moment. We also note that by bounding
higher moments we immediately obtain improved results on the tail probabilities
(i.e., the probability that Xn will exceed c z M). Indeed, Hajek [1982] had
previously shown that a bound on exponential moments (replacing condition (ii)
above) yields exponentially decreasing bounds on the tail probabilities of the Xn

and assuming an absolute bound on Xn11 2 Xn allows us to use basic results
concerning super-Martingales (see, for example, the text by Durrett [1995]) to
determine bounds on E[Xn] and the tail probabilities.

THEOREM 3. Let G denote an arbitrary directed acyclic graph, 6 an arbitrary
greedy protocol, and Y the class of properly bounded stochastic adversaries with rate
1 2 e for some e . 0. Then (G, Y, 6) is stable.

PROOF. Let !S be a rate (1 2 e) adversary and let w be an appropriate
window size; that is, in any window of w consecutive time steps and for any
history of packet injections preceding this window, for every edge e, the expected
number of packets injected by !S that need to cross e is bounded by (1 2 e)w.
For every edge e in G, define Qt(e), At(e) as in the proof of Theorem 1. We
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also define c(e) in a manner similar to the proof of Theorem 1. Let f1, . . . , fk

be edges entering e. Then c(e) 5 max{2w, Q0(e)} 1 ( l51
k (c( f l) 1 ew).

(Notice that for e 5 0 this is exactly what we had in the previous proof.)
Unlike the deterministic adversary case, we will not be able to claim that

At(e) # c(e). Instead we use a potential function and show that if the potential
function is larger than a specified quantity, the potential is expected to decrease
in the next w time steps.

To define the potential, let e1, . . . , em be a numbering of the edges in
topological order (i.e., if i , j, then no directed path in G contains the edge ej

followed by the edge ei). The potential function associated with ei is defined as:

f t~ei! 5 max$At~ei!, c~ei!%.

The potential associated with the whole network is:

F t 5 O
i

lm2if t~ei! ,

where l is a positive real number greater than 1 whose exact value will be chosen
later.

Following the notation used in the definition of a stochastic adversary, let
Ht2w denote the entire history of packet injections up to and including step t 2
w. In order to prove that the expectation of this potential function must decrease
if it is too large, we prove the following bounds.

CLAIM 4

(1) At(ei) $ At2w(ei) 2 w
(2) E[At(ei) uHt2w] # At2w(ei) 1 (1 2 e)w.
(3) Let i be the smallest index (if it exists) such that for every j , i, At2w(ej) #

c(ej) and At2w(ei) . c(ei). (If such an i does not exist, then say i 5 m 1 1.)
Then for every j , i, E[At(ej)] # f t2w(ej) and (if i # m) E[At(ei) uHt2w] #
At2w(ei) 2 ew.

PROOF. Part (1) follows from the fact that at most one packet can cross any
edge in a given time step. Part (2) follows from the fact that the expected number
of packets that are injected in time (t 2 w, t] and wish to cross the edge ei is at
most (1 2 e)w. To show part (3) we use an induction argument similar to that in
the proof of Theorem 1. Suppose for some j # i that ej is an edge whose tail is
entered by edges f1, . . . , fk. We consider two cases.

Case 1. At2w(ej) # w 1 (l51
k (c( fl) 1 ew). Notice first that in this case that

At2w(ej) # c(ej) 2 w and (since j , i) we only need to show that E[At(ej)] #
f t2w(ej). We use the fact that in w time steps the expected number of newly
inserted packets that wish to cross the edge e is at most (1 2 e)w # w. Thus, in
this case

E@At~ej! uHt2w# , At2w~ej! 1 w # c~ej! 2 w 1 w 5 c~ej! # f t2w~ej! .

Case 2. At2w(ej) . w 1 (l51
k (c( fl) 1 ew). We will show in this case that

E[At(ej) uHt2w] # At2w(ej) 2 ew. Notice that this is sufficient to prove the
assertion for both cases j , i and j 5 i.
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Since f l 5 ej9 for some j9 , i, by the definition of i, we have that At2w( f l) #
c( f l) , c( f l) 1 ew. But At2w(ej) is at most Qt2w(ej) 1 ( l51

k At2w( f l). Thus
we have

Qt2w~ej! $ At2w~ej! 2 O
l51

k

At2w~ f l!

. w 1 O
l51

k

~c~ f l! 1 ew! 2 O
l51

k

At2w~ f l!

$ w.

In other words, the number of packets queued at edge e must be at least w at the
beginning of time step t 2 w. Thus in the next w time steps one packet crosses
the edge e in every step. But the expected number of packets inserted which wish
to cross this edge may go up by at most (1 2 e)w in w time steps. Thus, in this
case, we have E[At(ej) uHt2w] # At2w(ej) 2 ew. e

We now conclude by observing that if F t2w . b 5 ( i51
m lm2i(c(ei) 1 ew),

then there must exist a smallest i such that f t2w(ei) . c(ei) 1 ew. Using the
claim above, we conclude that

E@F tuHt2w ∧ F t2w . b# 2 F t2w 5 O
j,i

lm2j~E@f t~ej! uHt2w# 2 f t2w~ej!!

1 lm2i~E@f t~ei! uHt2w# 2 f t2w~ei!!

1 O
j.i

lm2j~E@f t~ej! uHt2w# 2 f t2w~ej!!

# 0 2 ewlm2i 1 O
j5i11

m

~1 2 e!wlm2j

# 2ewlm2i 1 ~1 2 e!
wlm2i

l 2 1

5
wlm2i

l 2 1
~2el 1 e 1 1 2 e!

#
2we

2
~provided l $ 2/e!

The final inequality above determines our choice of l, which we set to 2/e.
Thus we conclude that if the potential F t2w is high enough, then after w time
steps the potential F t is expected to decrease by at least a 5 ew/ 2. It should
also be clear that by assuming !S is properly bounded, we also know that
E[ uF t 2 F t2wup] is bounded by some constant u for p . 2 since F t is linear in
the At(e). Letting Xi 5 F i z w, the theorem follows from Lemma 2 since the
potential F t is an upper bound on the number of packets in the system at time t.
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COROLLARY 5. Consider any (say two dimensional ) mesh as a routing network
and consider the case of one bend routing. That is, packets are first sent along their
originating row to the destination column and then traverse along this column until
reaching the destination. Then, for any scheduling rule 6, and for the class Y of rate
1 2 e stochastic (and hence deterministic) one bend adversaries, the network (G, Y,
6) is stable.

PROOF. We sketch the proof for a two dimensional N by N mesh and
deterministic adversaries. The proof is similar to the argument used by Kahale
and Leighton [1995] when they consider one bend routing in the context of
Bernoulli distributed inputs destined to random destinations. Let e . 0 and
consider a (w1, 1 2 e) adversary for any window w1. We can consider packets
traversing a row as if they are traversing a one dimensional line (i.e., in each
direction a very restricted DAG) with inputs generated by the adversary. By
Theorem 1, all packets reach their column destination within c(w1 1 N) steps
for some constant c. Now consider the packets that enter a particular column
(say column j) during any interval [t, t 1 w2) of w2 time steps. Any such packet
has either arrived during this window of time or was generated at a step t9 [
[t 2 c(w1 1 N), t). There are therefore at most c(w1 1 N)(1 2 e) 1 w2(1 2
e) packets in the network that are destined to traverse any particular edge in
column j during the interval [t, t 1 w2). Now for any e9 , e, c(w1 1 N)(1 2
e) 1 w2(1 2 e) , w2(1 2 e9) for w2 sufficiently large. With regard to column
j, we can think of the (w1, 1 2 e) adversary as a (w2, 1 2 e9) adversary.
Applying Theorem 1 again (for column j thought of as a line), every packet that
enters column j at time t will reach its destination by time t 1 c(w2 1 N). e

This proof easily generalizes to any dimensional array and also to stochastic
adversaries. The same idea can be applied to toroidal networks using the
Andrews et al. [2001] universal stability results for unidirectional rings. However
without the one bend routing assumption, the instability results of Andrews et al.
[2001] show that (two-dimensional) meshes are not universally stable networks.

6. The Ring

There are now a number of independent results (for different queuing model
assumptions) showing that the (unidirectional) ring is universally stable for
rate , 1 (i.e., the total rate of service required at any server is less than 1). For
class independent service rates, Dai and Weiss [1996] prove universal stability for
fluid models (and hence for time-invariant stochastic queuing networks under the
same assumption of class independent service rates). Tassiulas and Georgiadis
[1996] establish the analogous result for packet routing using the Cruz [1991a]
leaky bucket model. Andrews et al. [2001] show that the ring is universally stable
with respect to deterministic adversaries. We shall now show that the scheduling
rule FTG is stable at rate 1 for the ring. In contrast, neither LIS (which is a
universally stable scheduling rule at any rate less than 1) nor FIFO are stable at
rate 1 for the ring. We then extend the FTG proof to stochastic adversaries with
rate 1 2 e.

Throughout this section, our underlying graph G will be the n-node unidirec-
tional cycle, with vertices numbered 0, . . . , n 2 1. For the purpose of packet
routing the unidirectional assumption is not usually a restriction as we most often
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assume simple one directional paths and clearly paths in the clockwise direction
will not interfere with paths in the counterclockwise direction. For definiteness
let us assume packets are being routed in a clockwise direction. Even this case is
quite non-trivial, both from the point of view of classical queuing theory and
within our adversarial setting. Indeed as demonstrated in Andrews et al. [2001], a
“slight” extension of the ring network (allowing two edges between each pair of
adjacent nodes) is enough to show that common scheduling policies like FIFO
and NTG (nearest-to-go) can be unstable.

6.1. INSTABILITY OF LIS AND FIFO AT RATE 1. We show in Section 6.2 that
the FTG protocol is stable at injection rate 1 on the ring. On the other hand, we
now exhibit simple adversaries with injection rate 1 that cause instability on the
ring for the Longest-in-System protocol (priority to the packet that was injected
longest ago) and the FIFO protocol (queues are maintained in First-Come-First-
Served fashion).

THEOREM 6. There is a deterministic adversary ! (respectively, an adversary
!9) that injects single paths onto the ring at rate 1, such that ! (respectively, !9)
will force the scheduling rule LIS (respectively, the scheduling rule FIFO) to have
unbounded size queues.

PROOF. We first describe the adversary ! for LIS. For simplicity of presen-
tation, assume that each path requested by ! will be a “self-loop”—a path that
traverses all the edges of the ring in sequence. It is not difficult to refine this
argument so that the adversary injects shorter paths.

! works as follows:

—For k 5 1, 2, 3, . . .
—Inject kn self-loops in sequence at node 1.
—Inject kn self-loops in sequence at node 0.

It is easy to verify by induction on k $ 1 that at the end of iteration k of this
process, there will be one packet at node 1 (destined for node 0) and kn 2 1
packets queued at node 0 (also destined for node 0). Thus the number of packets
becomes unbounded.

The adversary for the FIFO case is similar but a bit more complicated. To
simplify the presentation, we prove this case by contradiction. Say there is an
absolute bound M such that the number of packets in the system is bounded by
M for every adversary. Let us first show how to construct an adversary that
contradicts this bound M. The adversary, !9 first does an “initial” phase 0 and
then works in phases indexed by k as follows:

—For k 5 1, 2, 3, . . .
—Inject (M 1 1)n self-loops in sequence at node k(mod n).

The invariant that will be established is that at the end of phase k all packets in
the network are destined for node k with one packet at each queue other than
the queue on the edge from k 3 k 1 1, which has Qk packets in its queue where
the Qk’s form a monotone increasing sequence in k. Thus, by the end of M
phases we derive a contradiction.

We assume an empty initial configuration. For phase 0, the adversary simply
injects n self loops at node 0. Thus the invariant is initially satisfied for k 5 0
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with Q0 5 1. Assume that the invariant is true at the end of phase k 2 1. We
make some observations on the transient behavior in phase k. We start by
observing that once the invariant is established for some time step during phase
k, it continues to hold in all subsequent time steps in phase k. Next notice that
throughout this phase there is at most one packet queued in every queue other
than queues k and k 2 1. The number of packets queued at k 2 1 is monotone
nonincreasing and the number of packets queued at k is monotone non-
decreasing. Furthermore, since the queues at nodes k and k 2 1 are of length at
most M, no packet waits at any queue for more than M time steps. Thus, after at
most Mn time steps in phase k, every packet injected in phase 0 to k 2 1 has
reached its destination. In at most n more time steps, we reach the invariant that
all the queues other than k 2 1 and k have exactly one packet in their queue. To
conclude, we need to show that the queue at node k 2 1 does eventually drain
down to having 0 and then 1 packet; and that the queue size at k at the end of
phase k is strictly larger than the queue size at k 2 1 at the beginning of this
phase.

To verify the first part, notice that the queue size at node k 2 1 (which
consists of both phase k 2 1 packets destined for node k 2 1 as well as phase k
packets destined for node k) is upper bounded by the number of packets in the
system with destination k 2 1. This observation is easily verified by induction on
time. Moreover, since the queue size goes down every time a packet with
destination k 2 1 reaches its destination, the queue becomes empty (for one
time step). Finally, we need to verify that Qk, the number of packets at queue k
at the end of phase k, is greater than Qk21. Assume otherwise. Then, this
implies that the total work remaining in the system has not increased. But this
can not be the case, since there is at least one queue, namely at node k 2 1, that
was idle for one time step (immediately after the last packet destined for k 2 1
reached its destination) during phase k. Since n units of work are added at each
time step, the only way the workload does not go up is if every queue remains
non-idle in every time step in phase k. This concludes the proof for the bound
M.

In order to show that there is (one) adversary that defeats every bound M, we
simply keep changing the goal of the adversary so that after it defeats a given M,
it resets all queues to be empty (by not doing any injections) and then proceeds
to defeat M 1 1, etc. e

6.2. THE FURTHEST-TO-GO PROTOCOL. In this section, we prove that the FTG
protocol is stable for the ring, first (in contrast to the LIS and FIFO instability
result at rate 1) for a deterministic adversary at injection rate 1, and then for a
stochastic adversary at injection rate 1 2 e. We are assuming that all packets are
traveling a simple path (say in a clockwise direction).

We first define a quantity A(i, j, t) for 0 # i, j # n 2 1. (Throughout this
section, all arithmetic on node names is mod n.) The quantity A(i, j, t) denotes
the number of packets at time t in the queues in nodes i, i 1 1, . . . , j (inclusive)
which need to cross the edge from node i 2 1 to node i. We assume that this
quantity is measured at the end of time step t (i.e., at time step t, packets are
inserted, then moved, after which the value of A is determined). Let ! be a
deterministic (w, r) adversary with r 5 1. We next define an appropriate
potential function f(i, t) 5 max{f1(i, t), w 1 n 2 1}, where f1(i, t) 5
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max{A(i, k, t) 1 (i 1 n 2 1 2 k): i # k # i 1 n 2 1}. The crux of the
argument is the following lemma:

LEMMA 7. Let ! be a (w, r) adversary with r 5 1. Then for all t $ 0, f(i, t 1
w) # f(i, t).

PROOF. Clearly the only way A(i, j, t) can increase is due to the insertion of
packets and can only go up by one per insertion of a packet that needs to cross
edge (i 2 1, i). (Note that by assuming simple paths any packet entering the
queue at node i from the queue at i 2 1 will not need to traverse the edge (i 2
1, i) again, and thus is not counted in A(i, j, t).) Thus, after the w time steps
t 1 1, t 1 2, . . . , t 1 w, no A(i, j, t) can increase by more than w and hence
f(i, t) will increase by at most w due to all the packet insertions during these
steps.

If f1(i, t 1 ,) # n 2 1 at any step t 1 , with 0 # , # w 2 1, then f1(i,
t 1 w) can be at most w 1 n 2 1 and hence f(i, t 1 w) 5 w 1 n 2 1 #
f(i, t). If f1(i, t 1 ,) . n 2 1 throughout these w time steps, then we argue
that each routing step causes f1 to decrease by one (offsetting any increase due
to the injection step). To see this, note that there must be at least one packet in
the system at every time step by the definition of f1. Let k be any index that
maximizes the quantity B 5 max{A(i, k, t) 1 (i 1 n 2 1 2 k): i # k # i 1
n 2 1}. If k . i, the queue for edge (k, k 1 1) must be nonempty and contain
a packet destined to cross edge (i 2 1, i) or else the index k 2 1 would yield a
larger value for B. If k 5 i, the queue for edge (i, i 1 1) must be nonempty
since f1(i, t 1 ,) . n 2 1. By the FTG protocol some such packet must
traverse the edge (k, k 1 1) during this routing step and hence the quantity B
must decrease. e

THEOREM 8. Let G denote the n-node cycle and Y the class of rate 1 determin-
istic adversaries (say with window size w). Define Q0(G) to be the total number of
packets initially in the network (i.e., the sum of all edge queue sizes) and let Q0 5
max{Q0(G), w}. Then (G, Y, FTG) is stable and furthermore there are never more
than n(Q0 2 1) 1 w packets in the system.

PROOF. For all k, A(i, k, 0) # Q0, and so f1(i, 0) 5 max{A(i, k, 0) 1
(i 1 n 2 1 2 k): i # k # i 1 n 2 1} is at most Q0 1 i 1 n 2 1 2 i 5 Q0 1
n 2 1, since the (i 1 n 2 1 2 k) term is maximized with k 5 i. Also, w 1 n 2
1 # Q0 1 n 2 1, by definition of Q0. Thus, f(i, 0) 5 max(f1(i, 0), w 1 n 2
1) # Q0 1 n 2 1.

Consider any time t 5 mw for m a non-negative integer. By Lemma 7, we have
f(i, mw) # f(i, 0) # Q0 1 n 2 1. Hence, A(i, i 2 1, mw) 1 (i 1 n 2 1 2
(i 2 1)) 5 A(i, i 2 1, mw) 1 n # f(i, mw) # Q0 1 n 2 1. Subtracting n
from both sides, we have A(i, i 2 1, mw) # Q0 2 1.

The total number of packets in the system at time t 5 mw can then be upper
bounded by ( i50

n21 A(i, i 2 1, mw), which will be no greater than n(Q0 2 1).
Finally, for any time t with mw , t # (m 1 1)w, we have ( i50

n21 A(i, i 2 1,
t) # w 1 ( i50

n21 A(i, i 2 1, mw). e

We now extend the above theorem to the case of a stochastic adversary with
injection rate 1 2 e.
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THEOREM 9. Let G denote the n-node cycle and Y the class of properly bounded
stochastic adversaries with rate 1 2 e for some e . 0. Then (G, Y, FTG) is stable.

The proof here is analogous to the proof for deterministic adversaries. We
need an analogue of Lemma 7 so as to apply Lemma 2.

LEMMA 10. For all i, and for all t $ 0, E[f(i, t 1 w)uf(i, t) $ n 1 2w] 2
f(i, t) # 2we.

PROOF. We argue as in the deterministic case, that as packets are inserted
during steps t 1 1, . . . , t 1 w, the potential increases by at most the number of
inserted packets during these time steps which wish to cross the edge i 2 1 to i.
By the definition of a (w, 1 2 e) stochastic adversary, this implies that the
expected increase in f due to insertions during time steps t 1 1, . . . , t 1 w is
bounded by w(1 2 e). It remains to observe (as in the deterministic case) that
subject to the condition that f(i, t) $ n 1 2w, the decrease in f during these
steps due to packet routing is exactly w.

We combine these facts (about the expected increase due to insertions and the
decrease due to routing steps) to obtain E[f(i, t 1 w) uHt] # f(i, t) 1 w(1 2
e) 2 w provided f(i, t) $ n 1 2w. e

Given Lemma 10 we can now apply Lemma 2 so as to complete the proof of
the Theorem.

7. NTG

Two natural scheduling rules for packet routing are the Nearest-To-Go (NTG)
and Furthest-To-Go (FTG) policies. Andrews et al. [2001] prove that FTG is
stable for any packet routing network at rate r , 1. Tsaparas [1997] generalizes
the Andrews et al. [2001] stability result for FTG to more general queuing
networks by proving the universal stability of Most-Time-To-Go (MTTG) sched-
uling. (When all service times are identical as we assume in packet routing
networks, then MTTG becomes FTG.)

In contrast to the stability of FTG, Andrews et al. [2001] show that there is a
simple 6-node network such that NTG scheduling is unstable for a rate r 5 0.62
path-packing adversary.

We extend this result in two ways. First, we show for every r . 0 there is a
queuing network for which NTG is unstable at rate r. Moreover, this instability
will occur (for some initial configuration) even if packets are generated with
constant rate r. Thus, this instability result is not an adversarial result (except for
the setting of the initial configuration) but was motivated by the adversarial
approach. (Some experimental evidence suggests that this instability would still
occur for Poisson arrivals and an empty initial configuration.)

We shall now describe the network G and only sketch the intuitive reason for
instability. (The details of the instability proof can be found in Tsaparas.) Let
r . 0 be given and without loss of generality assume that 1/r is an integer. We
first construct a “toroidal queuing network” G̃ (where the servers are the nodes
rather than the edges) and describe the instability result in terms of G̃. It is then
easy to convert G̃ to a packet routing network G for which the same instability
phenomenon occurs.
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Let G̃ be an n 3 n torus with nr . 2 and n even. There will be n classes of
jobs. A class i job initiates at node (i, i 1 1) and follows the following path of
(node) servers (i, i 1 1), (i, i 1 2), . . . , (i, i 2 1), (i 1 1, i), (i 1 2, i), . . . ,
(i 2 1, i). (See Figure 1. All node addresses are computed mod n.)

For every i, a new class i job will be generated every 1/r steps. For every node,
exactly two job classes will pass through any given node so that the total induced
load per step on any server is exactly 2r.

For the NTG scheduling rule, jobs moving along a column have priority over
jobs moving along a row. Thus, class i jobs when moving along column i will
intersect and have priority over all other job classes. The intuitive idea to achieve
instability is to initially establish two “walls” of packets, say in column i and
column j 5 i 1 n/ 2. By a wall of packets on column i, we mean that every node
(k, i) with k Þ i is occupied and in addition there may be a large number of
class i jobs queued in node (i, i 2 1),12 which will continue to keep column i
occupied. Such a wall will prevent other jobs from making progress. Eventually,
the walls at columns i and j will drain out but at the same time a pair of walls will
have been formed at columns i 1 1 and i 1 1 1 n/ 2. Moreover, we claim that
the total number of jobs in the system has increased during this “phase” where
the walls are moving over one column. To see this, suppose that there are M
class i jobs in the wall at the start of the phase (and the same for class j 5 i 1
n/ 2). Now assume that there is a total of T jobs in the system at the start of the
phase. The phase lasts M steps during which time exactly nMr new jobs have
entered the system and 2M jobs have left the system. Thus, at the end of the
phase (and the start of the next phase), there are T9 5 T 1 nMr 2 2M . T
jobs in the system since nr . 2.

Tsaparas [1997] provides a careful proof of this intuitive idea. In particular, his
proof requires an initial configuration which is very “symmetric” and then shows
that this symmetry is preserved throughout the process so that new walls are
formed without any breaks occurring in the walls.

12 To be more precise, we consider this queue of jobs at node (i, i 2 1) to include other class i
packets which will reach (i, i 2 1) during the present “phase” when a wall exists at column i.

FIG. 1. Bad network for NTG scheduling.

34 A. BORODIN ET AL.



Finally, we need to indicate how to convert G̃ to a packet routing network G.
For every node, k 5 (i, j) in G̃, we have two nodes uk and vk in G. The edge set
of G consists of a “server” edge ek 5 (uk, vk) for every node k in G̃ and a
“connecting edge” f(k , k9) 5 (vk, uk9) for every pair of nodes k, k9 in G̃ for which
some job traverses from k to k9 in the queuing network; k 5 (i, j) and k9 5
(i9, j9) and either i9 5 i 1 1 and j9 5 j or i9 5 i and j9 5 j 1 1. In the obvious
way, each job class in the queuing network will determine a packet class (and its
path) in the packet routing network. We claim that for n . 3r that the packet
routing network system (G, NTG, !) is unstable where ! is an “adversary”
which is generating packets in each class at constant rate r. Again the proof of
this claim can be found in Tsaparas [1997].

8. Conclusion and Open Problems

We have introduced a new approach for the study of queuing networks. Although
our motivation comes from continuous packet routing, we note that the adver-
sarial approach can be applied more generally to the wider field of queuing
theory (as is done in Tsaparas [1997]). Clearly more general queuing networks
(in which jobs can revisit the same server many times and/or where service time
distributions are class dependent) offer additional challenges. It remains an
interesting open question to find some set of general conditions (depending, for
example, on the rate, queuing discipline, and underlying network) that are
sufficient to guarantee stability. Further work is also needed to better bound
queue sizes and packet delays, and to understand specific networks such as arrays
and hypercubes. We mention a few of the many open problems:

—For packet routing, can FIFO be made unstable for arbitrarily small positive
rates of injection in the adversarial model? More generally, does stability at
some rate r1 . 0 imply stability for all r , 1 (for a “natural” scheduling
policy)?

—Considering the ring as a queuing network allowing arbitrary (i.e., reversing)
paths, is every scheduling policy stable?

—Is NTG unstable for a Poisson input model for packet routing and for
arbitrarily small rates? In particular, does the instability result of Section 7
extend from constant rate arrivals to Poisson arrivals? More generally, when
does adversarial instability from some given initial configuration imply insta-
bility with Poisson arrivals (and say an empty initial configuration). Note that
while FIFO is unstable in an adversarial setting (a special case of class
independent service times), it is stable for Poisson arrivals and class indepen-
dent service times.

—Is there a generic transformation of stability results from deterministic to
stochastic adversaries?

—Our queue size bound for DAGs is exponential in the length d of the longest
path in the network. Indeed Andrews et al. [2001] show that NIS and FTG can
be made to suffer such exponential size queues on DAGs. What is the best
bound on queue size in DAGs that holds for the FIFO scheduling rule?
Recently Adler and Rosén (personal communication) show that LIS has
polynomial size queues (as a function of d) on any DAG. Andrews and Zhang
[2000] show that using LIS, a packet r can have exponential delay as a function
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of l, the path length of the packet. In their construction, l is a logarithm in the
network depth d. Andrews et al. [1996] construct a randomized (“LIS based”)
scheduling rule which has (with high probability) polynomially-sized queues
and note that this randomized policy can be converted to a centralized
deterministic scheduling policy with polynomially sized queues. The obvious
question is whether there exists a (natural) decentralized, deterministic sched-
uling rule that has polynomially-sized (as a function of either d or the size of
the network) queues for all networks.

—What can be said about stability of nonadaptive routing in a network where
each edge e is capable of simultaneously transmitting some number ne packets
in one step? Specifically, if (G, !, 6) is universally stable for any (w, r)
adversary !, does it follow that (G9, !9, 6) is also universally stable for any
(w, r) adversary !9 where G is a graph where all edges have bandwidth 1 and
G9 is the same graph with arbitrary edge bandwidths {ne}. Here the load
condition is modified in the obvious way so that in any window t of w time
steps and for any edge e, the adversary injects at most N(t, e) # r z w z ne

packets which cross edge e. (This can also be viewed as a very special case of
adaptive routing by viewing a “high bandwidth” edge as a set of edges.) More
generally, what “network transformations” preserve stability? Recent results
along these lines have been derived by Borodin et al. [2001].

—Which (natural or efficient) scheduling rules are universally stable for deter-
ministic rate 1 adversaries? Subsequent to asking this question, Gamarnik
[1999] has proven that the “nearest to origin” NTO scheduling rule (which
gives priority to packets that have traversed the fewest edges thus far) is
universally stable for deterministic rate 1 adversaries. It is easy to adapt
Gamarnik’s proof to show that FTG is also universally stable for deterministic
rate 1 adversaries. These proofs yield an exponential bound on the total
number of packets in the network. Gamarnik also observes that using either
NTO or FTG, a rate 1 adversary can prevent some packets from ever reaching
their destination. He asks if there is a scheduling rule (perhaps a modification
of NTO or FTG) that can guarantee bounded or at least finite delivery time
with respect to deterministic rate 1 adversaries.
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