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Abstract

The study of random graphs has traditionally been
dominated by the closely-related models G(n, m), in
which a graph is sampled from the uniform distribution
on graphs with n vertices and m edges, and G(n, p), in
which each of the

(

n
2

)

edges is sampled independently
with probability p. Recently, however, there has been
considerable interest in alternate random graph models
designed to more closely approximate the properties of
complex real-world networks such as the Web graph,
the Internet, and large social networks. Two of the most
well-studied of these are the closely related “preferential
attachment” and “copying” models, in which vertices
arrive one-by-one in sequence and attach at random in
“rich-get-richer” fashion to d earlier vertices.

Here we study the infinite limits of the preferential
attachment process — namely, the asymptotic behavior
of finite graphs produced by preferential attachment
(briefly, PA graphs), as well as the infinite graphs
obtained by continuing the process indefinitely. We are
guided in part by a striking result of Erdős and Rényi
on countable graphs produced by the infinite analogue
of the G(n, p) model, showing that any two graphs
produced by this model are isomorphic with probability
1; it is natural to ask whether a comparable result holds
for the preferential attachment process.

We find, somewhat surprisingly, that the answer de-
pends critically on the out-degree d of the model. For
d = 1 and d = 2, there exist infinite graphs R∞d such
that a random graph generated according to the in-
finite preferential attachment process is isomorphic to
R∞d with probability 1. For d ≥ 3, on the other hand,
two different samples generated from the infinite prefer-
ential attachment process are non-isomorphic with pos-
itive probability. The main technical ingredients under-
lying this result have fundamental implications for the
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structure of finite PA graphs; in particular, we give a
characterization of the graphs H for which the expected
number of subgraph embeddings of H in an n-node PA
graph remains bounded as n goes to infinity.

1 Introduction

For decades, the study of random graphs has been dom-
inated by the closely-related models G(n, m), in which
a graph is sampled from the uniform distribution on
graphs with n vertices and m edges, and G(n, p), in
which each of the

(

n
2

)

edges is sampled independently
with probability p. The first was introduced by Erdős
and Rényi in [16], the second by Gilbert in [19]. While
these random graphs have remained a central object
of study and continue to have many important applica-
tions in combinatorics and theoretical computer science,
recently there has also been a great deal of interest in al-
ternative random graph models whose properties more
closely resemble those of complex real-world networks
such as the Web graph, the Internet, and large social
networks. Two of the most well-studied of these are the
closely related “preferential attachment” and “copying”
models; the former was introduced by Barabási and Al-
bert in [3] and subsequently formalized by Bollobás and
Riordan in [8], while the latter was introduced by Ku-
mar et al. in [22].

A random graph in the preferential attachment
model (henceforth, the PA model) is built up one
vertex at a time, with each new vertex v linking to the
preceding ones by d new edges, where the out-degree d
is a parameter of the model. Roughly, the head of each
edge emanating from v is chosen by sampling from the
preceding vertices with probabilities weighted according
to their total degree (in-degree plus out-degree); this
is the preferential, or “rich-get-richer,” aspect of the
model, since nodes of higher in-degree attract new in-
coming edges more readily. (We will sometimes use
the term “PA graph” as an informal shorthand to
refer to a random graph drawn from the distribution
defined by the PA model.) As we discuss further
below, there has been considerable work aimed at
determining fundamental graph-theoretic properties in
the PA model, exposing both similarities and contrasts



with the classical G(n, p) model.
In the present paper, we seek to understand the

infinite limits of the PA model — namely, the asymp-
totic behavior of graphs produced by this model as the
number of nodes goes to infinity, and the distribution
PA∞d on random graphs with countably many vertices
obtained by continuing the PA process indefinitely. We
were inspired by the following classical theorem about
the “infinite version” of the G(n, p) model [17].

Theorem 1.1. Let G(∞, p) denote the probability dis-
tribution on graphs with vertex set N, in which each edge
(i, j) is included independently with probability p. (Here
p is any constant in (0, 1).) There exists an infinite
graph R, such that a random sample from G(∞, p) is
isomorphic to R with probability 1.

When one first encounters this theorem, it can
seem quite startling: infinite random graphs are not
“random” at all; they are almost surely isomorphic to
a single fixed graph R. A rich theory has developed
around the infinite model G(∞, p), with connections
reaching into mathematical logic, algebra, and a number
of other areas (see e.g. [13]).

On the other hand, essentially nothing is known
about the the infinite version of the PA model. Does
something analogous to Theorem 1.1 hold here as well,
or is the situation fundamentally different? At a more
fine-grained level, we are also interested in understand-
ing what can be said about the local structure of finite
graphs produced by the PA model as the number of
nodes goes to infinity. As we discuss further below, the
only prior work addressing the infinite graphs generated
by such processes, as far as we are aware, are some in-
teresting recent papers by Bonato and Janssen [11, 12],
which proposed the notion of studying infinite limits of
random graph evolution processes related to the copy-
ing model of [23]. These papers consider the relationship
between such infinite random graphs and certain deter-
ministic adjacency axioms. Some of these axioms have
a unique infinite model up to isomorphism, while others
are satisfied with probability 1 by the infinite limits of
the random graph processes considered in these papers.
However, none of their theorems resolve the question
of whether an analogue of Theorem 1.1 holds for such
infinite random graphs.

Our first result is the following, where again PA∞d
denotes the distribution associated with the infinite PA
model.

Theorem 1.2. For d = 1, 2, there is a graph R∞d such
that a random sample from PA∞d is isomorphic to R∞d
with probability 1.

For d = 1 this is clear, since the outcome of

the random process will almost surely be a tree with
countably many nodes, in which each node has infinite
degree. For the case of out-degree d = 2, the resulting
graph R∞2 is much more complicated. Its structure can
be characterized axiomatically, but it is also possible to
give explicit constructions of graphs isomorphic to R∞2 .
For example, it is isomorphic to the graph whose vertices
consist of all finite rooted binary trees with integer
labels, where the vertex corresponding to a labeled tree
T has edges to its left sub-tree and to its right sub-tree.

The global structure of the proof for the case d = 2
is a standard “back-and-forth” argument, which will
be familiar to readers acquainted with Theorem 1.1.
The key step, however — establishing that there is an
adequate supply of vertices to sustain the back-and-
forth construction of the isomorphism — is much more
complicated than in the classical case, since the PA
process introduces difficult conditioning problems.

One might imagine that for the cases of out-degrees
d = 3, 4, 5, . . . one could establish isomorphisms with
probability 1 to increasingly complex graphs R∞3 , R∞4 ,
and so on. But in fact, we have the following result.

Theorem 1.3. For each out-degree d ≥ 3, it is not the
case that two independent random samples from PA∞d
are isomorphic with probability 1.

This contrast between the cases of d = 2 and d ≥ 3
comes to us as something of a surprise, since it does not
have an obvious analogue in the prior work on graphs
generated according to the PA process. There, typically,
the out-degree d has a clear quantitative effect on the
underlying graph parameters, but not a qualitative
effect of this sort.

This contrasting pair of results is a particularly suc-
cinct consequence of one of the main technical com-
ponents of the paper, which addresses a fundamental
structural issue for both the finite and infinite versions
of the PA model — a characterization of the graphs H
for which the expected number of subgraph embeddings
of H in an n-node PA graph remains bounded as n goes
to infinity. Phrased equivalently as a statement about
the infinite model PA∞d , we show that if a finite graph
H is equal to its 3-core (i.e. the union of all subgraphs
of H of minimum degree 3), then the number of sub-
graph embeddings of H in a random sample from PA∞d
has a positive finite expectation, while if H is not equal
to its 3-core, then the number of embeddings is almost
surely either zero or infinite.

The existence and relative abundance of small sub-
graphs is a topic of considerable interest for both empir-
ical studies of real networks and for theoretical studies
of their models (see e.g. [20, 23]). Our characterization
theorem has a natural interpretation in this context, as



a precise statement about the lack of dense local struc-
ture in PA graphs G. First, any graph H of minimum
degree 3 appears a bounded number of times in expec-
tation as a subgraph of G, independent of the size of G.
Second, any graph H = (V, E) for which |E|/|V | > 2
has a non-trivial 3-core, and so our result implies that
in any PA graph G, there exists a set of nodes S in G
of bounded expected size, such that any embedded copy
of H in G includes at least one node from S. (In other
words, S serves as a bounded set of “attachment points”
for copies of H .)

This characterization theorem for subgraph embed-
dings yields the non-isomorphism theorem for PA∞d
with d ≥ 3 fairly directly; it also has the following fur-
ther consequence for finite PA graphs. (Here the distri-
bution on n-vertex graphs produced by the PA process

will be denoted by PA(n)
d .)

Theorem 1.4. For d ≥ 3, there exist first-order graph

properties which do not satisfy a zero-one law for PA(n)
d ,

i.e. there is a first-order formula φ(G) such that

0 < lim
n→∞

Pr
G←PA

(n)
d

(φ(G)) < 1.

This contrasts with the situation for G(n, p), where it is
known that every first-order formula satisfies a zero-one
law. (For a very interesting and deep analysis of first-
order properties of G(n, p) when p is a function of n, we
refer the reader to [28].)

Finally, it is worth briefly returning to the original
motivation for these types of models — the complex
structures of graphs such as the Web, the Internet, and
large social networks. The (finite) PA and copying mod-
els are of course stylized abstractions designed to cap-
ture some of the observed properties of these networks;
they were not intended as faithful representations of the
complexities of the true structures. Our study of infi-
nite analogues here follows a theme that is common in
a number of areas, to try gaining insight into extremely
large finite systems by modeling them as infinite — as,
for example, when working with infinite lattice struc-
tures in physics, or with a continuum of agents in eco-
nomics. Thus far, aside from the work of Bonato and
Janssen [11, 12], this has not really been attempted for
complex networks, but the results about finite struc-
tures that emerge from the study of infinite limits of
the graph generation process here provide a suggestion
for the kinds of results one can obtain from this style
of investigation, and we feel there is clearly room for
further study in this direction.

1.1 Relation to prior work The preferential-
attachment model of random graphs was introduced by

Barabási and Albert in [3], motivated in part by the goal
of explaining the power-law degree distribution observed
in the Internet topology by Faloutsos et al [18] and in
the Web topology by Kumar et al [21]. Barabási and
Albert’s original paper contained a heuristic argument
establishing a power law for the degree distribution of
random preferential-attachment graphs; rigorous math-
ematical proofs of this result subsequently appeared in
[1, 10]. An alternative random graph model with power-
law degree distribution, the “evolving copying model,”
was independently proposed and analyzed by Kumar et
al [22, 23], with the aim of modeling the Web graph.
Cooper and Frieze introduced a model which simul-
taneously generalizes these two random graph models,
and again proved that the degree distribution obeys a
power law [14]. A directed version of the preferential-
attachment model was introduced and studied by Bol-
lobas et al in [6], who again established a power-law
distribution both for the in-degrees and the out-degrees.

In addition to their degree distribution, many other
properties of preferential-attachment random graphs
have been rigorously analyzed; these include their di-
ameter [8], conductance [25], eigenvalues [24, 15], “clus-
tering coefficient” [7], and “robustness” under random
vertex deletions [9]. See [2, 7, 26] for various surveys of
work in this area, focusing on different research commu-
nities.

As discussed above, the only other work to our
knowledge that addresses the infinite graphs which arise
as the limit of such processes is [11, 12]. In [11], Bonato
and Janssen formulate a copying model, similar to that
proposed in [23], and they show that an infinite ran-
dom graph generated according to this process satisfies
a certain deterministic adjacency property which they
label “Property (B).” They then study various model-
theoretic and combinatorial properties of graphs satis-
fying property (B) and its generalizations. Of particular
relevance, for our purposes, is their theorem that there
are 2ℵ0 many non-isomorphic graphs satisfying prop-
erty (B). While this suggests the possibility that random
samples from their copying model are not almost surely
isomorphic, the authors explicitly refrain from address-
ing this question since their focus is on studying infinite
graphs satisfying the deterministic property (B) and its
generalizations, regardless of whether such graphs were
generated by a random process or not.

The subsequent paper [12], written independently
and concurrently with our work, generalizes the ran-
dom graph process introduced in [11] and relates it to
some new adjacency properties (ARO, near-ARO, local
near-ARO, n-near-ARO). Only the ARO property has
a unique infinite model up to isomorphism; in fact, the
other properties are shown to be satisfied by 2ℵ0 many



non-isomorphic graphs. Moreover, the infinite random
graphs considered in [12] have a positive probability of
failing to satisfy the near-ARO property. Again, this
suggests the possibility that random samples from this
generalized copying model are not almost surely isomor-
phic, but again the authors refrain from answering this
question, as they leave open the possibility that the in-
finite graphs generated by their random process are al-
most surely isomorphic to a single infinite graph which
fails to satisfy the near-ARO property.

2 Definitions

We begin by defining, for each d > 0, a random graph
process PAd on graphs with vertex set {0, 1, . . .}. PAd

is a probability distribution on sequences of connected
undirected graphs, G0 ⊂ G1 ⊂ . . ., where Gt has vertex
set {0, 1, . . . , t}. Our definition is closely modeled on the
definition of the graph process (Gt

m)t≥0 in [8]; however,
it differs in some technical details because we want
our graphs to be connected and theirs are potentially
disconnected. Graphs in their model are allowed to have
self-loops, and a new connected component is created
every time a new vertex appears and connects to no
vertices other than itself. Our graphs will have parallel
edges but no self-loops, and they will be connected.

The graph process PAd is defined recursively as
follows. G0 has one vertex (labeled 0) and no edges.
Gt+1 is obtained from Gt by adding a new vertex
(labeled t+1) and joining it to vertices 0, 1, . . . , t with d
random edges, sampled independently at random from a
probability distribution (the “preferential attachment”
distribution) specified as follows:

Pr(e = (t + 1, s)) = dt(s)/2dt,

where dt(s) denotes the degree of vertex s in Gt. In
other words, each neighbor of t + 1 is chosen according
to a distribution which weights vertices by their current
degree. The definition of the preferential attachment
distribution makes no sense in the case t = 0, since G0

has no edges. Accordingly, we stipulate that vertex 1
always links to vertex 0 with d parallel edges.

Given a sample G0 ⊂ G1 ⊂ . . . from PAd, let G∞ =
⋃∞

t=0 Gt and define PA∞d to be the resulting probability
distribution on graphs with vertex set {0, 1, 2, . . .}. The
edges of G∞ may be numbered 1, 2, . . ., such that the
edges of Gt+1 \Gt are labeled dt + 1, dt + 2, . . . , dt + d.
An equivalent way of specifying the graph process
PAd would have been to say that edge dt + j (1 ≤
j ≤ d) chooses an edge uniformly at random from
the set {1, 2, . . . , dt}, chooses an endpoint of this edge
uniformly at random, and joins vertex t+1 to the chosen
endpoint.

Although PA∞d was defined as a probability distri-

bution on undirected graphs, the edges of these graphs
come equipped with a natural orientation, directed from
the higher-numbered endpoint to the lower-numbered
one. We will sometimes consider the graphs G∞ as di-
rected graphs, and it will be clear when we are doing
so. The advantage of adopting this dual viewpoint on
the graphs G∞ is that it enables us to state stronger
theorems: our isomorphism theorem holds for directed
graphs sampled from PA∞2 and trivially implies the cor-
responding result for undirected graphs; while our non-
isomorphism theorem holds for undirected graphs and
trivially implies the corresponding result for directed
graphs.

3 Growth rate of vertex degrees

The proofs in this paper hinge on a detailed under-
standing of the growth rate of vertex degrees, i.e. the
asymptotics of dt(i) as a function of t, in a typical se-
quence G0 ⊂ G1 ⊂ . . . sampled from PAd. It has been
known since the introduction of the Barabási-Albert
model that E[dt(i)] = θ(

√
t) for any fixed i. A non-

rigorous argument using differential equations appears
in [3], and a rigorous proof may be found in [8]. A key
ingredient in our proof of Theorem 1.2 is the following
stronger fact:

Proposition 3.1. For any fixed vertex i, with proba-
bility 1, limt→∞ dt(i)/

√
t exists and is positive.

Although the calculations arising in the proof are very
similar to those used in establishing the asymptotics of
E[dt(i)] [8], we require two more techniques from mar-
tingale theory to establish a stronger result: the exis-
tence and positivity of the limit limt→∞ dt(i)/

√
t. The

existence of the limit is established using Doob’s mar-
tingale convergence theorem, and its positivity comes
from the Kolmogorov-Doob inequality combined with
a second-moment computation. (See [5], Chapter 35,
for an introduction to martingales including both of the
aforementioned tools.) The calculations arising in these
proofs are very similar to those used in Lemma 2 of [8],
in which the authors prove (among other things) that
E[dt(i)] = θ(

√
t).

Fix a vertex i, and consider how its degree changes
at time t+1. Each of the d new edges attaches to i with
probability dt(i)/2dt, so

E(dt+1(i) ‖ dt(i)) = dt(i)+d

(

dt(i)

2dt

)

=

(

1 +
1

2t

)

dt(i).

It follows that the sequence of random variables
(dt(i))t≥i may be transformed into a martingale by



rescaling, as follows. Define

ct =

t−1
∏

j=1

(

1 +
1

2j

)

Xt = dt(i)/ct.

Now the sequence (Xt)t≥i is a martingale (adapted to
the σ-field Ft generated by the random variable Gt)
since:

E[Xt+1 ‖ Ft] =
1

ct+1
E[dt+1(i) ‖ Ft]

=
1

ct+1

(

1 +
1

2t

)

dt(i)

=
1

ct
dt(i)

= Xt.

The constant ct is θ(
√

t), as may be seen easily by taking
the logarithm of both sides of the formula defining ct,
and using the identity

x − 1

2
x2 < log(1 + x) < x.

The following two theorems are instrumental in the
proof of Proposition 3.1. Proofs may be found in [5], or
in most books on stochastic processes.

Theorem 3.1. (Doob’s Martingale Conver-
gence Theorem) Let X1, X2, . . . be a submartingale.
If K = supn E(|Xn|) < ∞, then Xn → X with
probability 1, where X is a random variable satisfying
E [|X |] ≤ K.

Theorem 3.2. (Kolmogorov-Doob inequality)
If X1, . . . , Xn is a submartingale, then for α > 0,

Pr

[

max
i≤n

Xi ≥ α

]

≤ 1

α
E [|Xn|] .

Proof of Proposition 3.1. The random variables
Xt are non-negative, so E(|Xt|) = E(Xt) = E(Xi) =
d/ci for all t. This establishes that the Xt satisfy the
hypotheses of Doob’s Martingale Convergence Theorem,
so with probability 1 they approach a finite limit as
t → ∞. Given that ct = θ(

√
t), this implies that

limt→∞ dt(i)/
√

t exists almost surely.
It remains to show that the limit is almost surely

positive. The idea of the proof is simple, and conceptu-
ally similar to Zeno’s Paradox of the Race Course [4].
We will show that after the degree of i exceeds some
threshold, the value of Xt is very unlikely to drop by a
factor of 2 from its current value. In order for limt→∞Xt

to be zero, it must be the case that Xt decreases by a
factor of two infinitely often, an event having probabil-
ity 0. then you that you To make this notion precise,

define a sequence of times n0 < n1 < . . . as follows.
Let n0 = i. Let n1 be the smallest value of n such
that Xn < (1/2)Xn0 , or ∞ if no such n exists. Con-
tinue defining n2, n3, . . . in the same manner, i.e. nj+1

is the smallest n such that Xn < (1/2)Xnj
, or ∞ if

no such n exists or if nj = ∞. We will prove that
Pr(all nj are finite) = 0, and to do so it is sufficient to
prove that Pr(nj+1 < ∞‖nj) < 1− δ for some constant
δ > 0.

To do so, we use the Kolmogorov-Doob inequality
applied to the submartingale X̃n = (Xnj

− Xn)2 (n ≥
nj). (Any convex function applied to a martingale yields
a submartingale, by Jensen’s inequality.) An estimate
for E(X̃n ‖ Xnj

) is computed in Supplementary Sec-
tion A. The result is:

E(X̃n‖Xnj
) < (C/

√
nj)Xnj

.

for some constant C. Now, by the Kolmogorov-Doob
inequality,

Pr(max
n≥nj

X̃n > (Xnj
/2)2‖Xnj

)

= lim
N→∞

Pr( max
nj≤n≤N

X̃n > (Xnj
/2)2‖Xnj

)

≤ 4X−2
nj

lim
N→∞

E(X̃N‖Xnj
)

≤ 4X−2
nj

(C/
√

nj)Xnj

=
4C

√
njXnj

≤ C ′/dnj

for some constant C ′. Recall that our goal is to show
that Pr(nj+1 = ∞‖nj) > δ — or, equivalently, that

Pr(maxn≥nj
X̃n ≤ (Xnj

/2)2‖nj) > δ — for some
constant δ > 0. We now see that this could be
accomplished by establishing that C ′/dnj

≤ 1−δ. So to
finish, it suffices to prove that dnj

grows unboundedly
large as j → ∞. (In fact, it would suffice to prove that
dnj

is eventually greater than C ′/(1 − δ).) But this
is easy: the probability that dn = Y for all n > N
is bounded above by

∏∞

n=N

(

1− Y
2dn

)

= 0, so with
probability 1, dn → ∞ as n → ∞.

4 An isomorphism theorem for d = 1, 2

We begin with the easy proof of Theorem 1.2 in the case
d = 1. Let R∞1 denote a countable rooted arborescence
in which each non-root vertex has infinite indegree and
has a path to the root.

Theorem 4.1. A random sample from PA∞1 is almost
surely isomorphic to R∞1 as a directed graph.

Proof. Let G∞ be a random sample from PA∞1 . By
construction, every vertex except for 0 has outdegree 1,



and vertex 0 has outdegree 0. With probability 1, the
indegree of each vertex is infinite, by Proposition 3.1.
By construction, each vertex except for 0 has a path
to vertex 0. These properties uniquely determine the
isomorphism type of G∞ as a directed graph.

For the rest of this section, we focus on the case
d = 2. Consider the following three axioms for an
infinite directed graph K with countable vertex set.

1. There exists a vertex v0 with outdegree 0. Every
other vertex has outdegree 2.

2. For any pair of (not necessarily distinct) vertices
v, w, there are infinitely many vertices whose two
outgoing edges link to v and w.

3. K does not contain any infinite forward path.

Proposition 4.1. Any two countable directed graphs
K1, K2 satisfying axioms (1)-(3) are isomorphic.

Proof. Let v0, v1, . . . be the vertices of K1, ordered so
that all of the outgoing edges from vj link to vertices
in the set {v0, . . . , vj−1}. Such an ordering may be
constructed recursively as follows. Choose v0 to be the
vertex with outdegree 0. Given v0, . . . , vj−1, start from
an arbitrary vertex of K1 \ {v0, . . . , vj−1} and follow
outgoing edges until a vertex vj with outdegree 0 is
reached; this must happen after a finite number of steps,
since otherwise K1 would contain a cycle or an infinite
forward path. Similarly, let w0, w1, . . . be the vertices
of K2, ordered so that all of the outgoing edges from wj

link to vertices in the set w0, . . . , wj−1.
The proof now proceeds by a back-and-forth argu-

ment. We will construct an isomorphism φ : K1 → K2

by first selecting φ(v0), then φ−1(w0), then φ(v1), then
φ−1(w1), and so on ad infinitum, until a one-to-one cor-
respondence between V (K1) and V (K2) has been de-
fined. The steps in which we select φ(vi) will be called
forward steps, those in which we select φ−1(wi) are re-
verse steps.

To start, set φ(v0) = w0. The construction now
proceeds in a series of steps, each of which starts with a
one-to-one correspondence between finite subsets S1 ⊂
V (K1), S2 ⊂ V (K2) inducing an isomorphism between
the corresponding induced subgraphs, and extends this
one-to-one correspondence to include a single additional
element of each vertex set, while preserving the fact
that it defines an isomorphism of induced subgraphs.
The forward steps alternate with the reverse steps. For
reasons which will soon become apparent, we add an
additional claim into our induction hypothesis: every
outgoing edge from a vertex of S1 (resp. S2) joins it
to another vertex of S1 (resp. S2). This is satisfied
vacuously in the base case where S1 = {v0}, S2 = {0}.

To perform a forward step, take the lowest-
numbered vertex vj in V (K1) \S1. This vertex has two
outgoing edges pointing to vertices vi1 , vi2 ∈ V (K1).
We have i1, i2 < j, so both vi1 and vi2 belong to S1.
Now choose φ(vj) to be any vertex w ∈ V (K2)\S2 such
that w points to φ(vi1 ) and φ(vi2 ). (Such a vertex is
guaranteed to exist, by Axiom 2.) It is now easy to
check that the induction hypothesis is still satisfied. By
construction, φ maps the outgoing edges from vj to the
outgoing edges from w. As for the incoming edges, φ is
only defined at this stage as a mapping from S1∪{vj} to
S2∪{w}, and neither vj nor w have any incoming edges
from vertices in these sets. (This is where we needed the
additional fact that every outgoing edge from a vertex
of S1 (S2) joins it to another vertex of S1 (S2). It is triv-
ial to check that this fact remains true after extending
S1, S2 to include v, i, respectively.)

This completes the proof of the induction hypoth-
esis in the case of a forward step. By symmetry, the
induction hypothesis is proved for reverse steps as well.

Any countable directed graph satisfying axioms (1)-
(3) will be denoted by R∞2 . Theorem 1.2 now follows
from the following more precise result.

Theorem 4.2. If G∞ is sampled at random from PA∞2 ,
then G∞ is almost surely isomorphic to R∞2 .

Proof Sketch. We must check that G∞ satisfies
axioms (1)-(3) almost surely. By construction, there is
a single vertex with outdegree 0, all other vertices have
outdegree 2, and no infinite forward paths exist in G∞.
Finally, we require the following:

Proposition 4.2. Given any two (not necessarily dis-
tinct) vertices j1, j2 in V (G∞), there are infinitely many
i ∈ V (G∞) whose two outgoing edges point to j1, j2.

The proof of this relies on Proposition 3.1. Informally,
that proposition guarantees the existence of constants

x1 = lim
t→∞

dt(j1)/
√

t

x2 = lim
t→∞

dt(j2)/
√

t

so for sufficiently large t, the probability that
vertex t links to j1 and j2 is approximately
(x1

√
t/4t)(x2

√
t/4t) = x1x2/16t. The probability that

no vertex after t0 links to j1 and j2 is approximately
∏∞

t=t0

(

1 − x1x2

16t

)

= 0. Thus, almost surely, there exists
a vertex i ∈ V (G∞)\S2 whose two outgoing edges point
to j1, j2.

The biggest problem with making this informal
argument rigorous is that, by conditioning on the values
of x1 and x2, we change the distribution of the random
outgoing edges from each vertex; it is no longer the



preferential attachment distribution, so we have no
justification for our estimate of the probability that t
links to j1 and j2. While the informal argument gives
the correct intuition, the rigorous version is surprisingly
intricate; for details, see the full version of this paper.

Concrete constructions for R∞2 . Theorem 4.2
supplies an axiomatic characterization of R∞2 , but un-
like Theorem 4.1 it does not concretely specify a graph
which is isomorphic, almost surely, to random samples
from PA∞2 . In this section we present two such con-
structions.

The first construction produces R∞2 as the union
of a countable chain of infinite graphs R0 ⊂ R1 ⊂ . . .,
defined recursively as follows. Let R0 consist of a vertex
v0 of outdegree 0, and countably many other vertices,
each with two parallel edges pointing to v0. Given
Rj , construct Rj+1 as follows: for each pair of (not
necessarily distinct) vertices v, w ∈ V (Rj), adjoin a
countable set of new vertices, each with two outgoing
edges pointing to v, w. Finally, put

R∞2 =

∞
⋃

j=0

Rj .

It is routine to verify that this graph R∞2 satisfies the
axioms (1)-(3).

The second construction defines R∞2 as a graph
whose vertex set is a set of labeled binary trees. Specif-
ically, let Σ be a countable alphabet, and let the vertex
set V (R∞2 ) be the set of finite rooted binary trees whose
edges are labeled with elements of Σ. If T ∈ V (R∞2 ) is
a tree with more than one node, then T has two outgo-
ing edges in R∞2 pointing to its left and right subtrees.
Again, it is straightforward to verify that this definition
of R∞2 satisfies the axioms (1)-(3).

A model-theoretic characterization of R∞2 .

Our goal in this section is to specify a precise sense
in which R∞2 is “axiomatically characterized” by the
conditions given in Section 4. We will exhibit a first-
order theory T , in the language of directed graphs,
such that R∞2 is a prime model of T . (A model M
of a first-order theory T is called prime if every other
model of T contains a submodel isomorphic to M . If
a countable theory has a prime model, this model is
unique up to isomorphism.) Interestingly, T has many
other countable models which are not isomorphic to
R∞2 . (Note the close thematic links between this section
and [11].)

Let T denote the following set of first-order formulas
in the language of directed graphs, consisting of one
axiom Outdegree and two infinite families of axioms
(Acyclicn)n≥2 and (Adjacencyn)n≥1:

Outdegree: G has one vertex of outdegree 0, and all
other vertices have outdegree 2.

Acyclicn: G does not contain an n-cycle.

Adjn: For any pair v, w of vertices of G, there are at
least n distinct vertices whose two outgoing edges
point to v, w.

Proposition 4.3. R∞2 is a prime model of T .

Proof. Clearly R∞2 is a model of T . Given any other
model G, an isomorphic embedding φ : R∞2 → G is
constructed in a manner similar to the back-and-forth
argument used in proving Theorem 4.2, except that this
time the construction is one-directional since we are not
trying to make φ surjective. Let {v0, v1, . . .} be the
vertex set of R∞2 , numbered so that the edges from
vj point to elements of {v0, . . . , vj−1} as before. We
construct φ inductively, by specifying that φ(v0) is the
unique vertex of G having outdegree zero; and that for
j > 0, if the two edges from vj in R∞2 point to w1, w2,
then φ(vj) is any vertex of G whose two outgoing edges
point to φ(w1), φ(w2). It is straightforward to verify
that φ is an isomorphic embedding of R∞2 in G.

Remark 4.1. The theory T has many countable models
which are not isomorphic to R∞2 . To cite a specific
example, let G be the graph whose vertex set V (G) is
the set of all countable or finite rooted binary trees whose
edges are labeled by natural numbers, such that all but
finitely many edges are labeled with the successor of their
parent’s label. For any such tree T with more than one
node, the two outgoing edges from T in G point to its
left and right subtrees.

5 Subgraph embeddings and non-isomorphism

theorem for d ≥ 3

The aim of this section is to characterize, for each finite
graph H , the number of embeddings of H in a random
sample from PA∞d . The non-isomorphism theorem for
d > 2, Theorem 1.3, will be derived as an easy corollary.

Definition 5.1. The ordered arboricity of an undi-
rected graph G is the minimum k such that G admits
a vertex ordering with the following property: for each
vertex v ∈ V (G), there are at most k edges connecting v
to its predecessors. We will denote the ordered arboric-
ity of G by η(G).

If G admits such a vertex ordering, and if we
arbitrarily color the edges from each vertex v to its
predecessors with distinct colors from a set of η(G)
colors, then the color classes constitute a partition of
G’s edge set into η(G) acyclic subgraphs, so the ordered



arboricity of G is bounded below by the arboricity.
The ordered arboricity can be strictly greater than the
arboricity, e.g. the edge set of a 4-clique K4 may be
partitioned into two disjoint paths, but η(K4) = 3
since the last vertex in any ordering is joined to its
precedessors by three edges.

Theorem 5.1. For a finite graph H, let K ⊆ H denote
the union of all subgraphs of H which have minimum
degree 3. If G is a random sample from PA∞d , then:

1. If η(H) > d, there are no embeddings of H in G.

2. If η(H) ≤ d and K = H then, with probability 1,
the number of embeddings of H in G is finite. In
fact, the expected number of embeddings of H in G
is finite and positive.

3. If η(H) ≤ d and K ( H then, with probability 1,
the number of embeddings of H in G is either zero
or infinite.

Proof. If H is any finite subgraph of G and we order
the vertices of H according to their arrival order, then
each vertex has at most d edges to its predecessors,
which proves that η(H) ≤ d for any finite subgraph
of G. Conversely, if H is a finite graph with η(H) ≤
d, let us label the vertices of H with the numbers
1, 2, . . . , |V (H)| in such a way that each edge is joined
to its predecessors by at most d edges, It is easy
to see from the definition of PA∞d that there is a
positive probability the induced subgraph of G on vertex
set {1, 2, . . . , |V (H)|} is precisely H (since any edges
from {1, 2, . . . , |V (H)|} that don’t contribute to the
embedding of H can attach to vertex 0 of G).

If η(H) ≤ d and K = H , we have already shown
that the expected number of embeddings of H in G is
positive. The fact that it is finite is contained in the
following lemma.

Lemma 5.1. If K is a graph of minimum degree 3, then
the expected number of embeddings of K in G is finite.

This lemma forms the crux of the theorem; the complete
proof is given in the full version of this paper. The
basis of the proof is the observation that, while any
two vertices in G almost surely have infinitely many
common neighbors, any three vertices in G almost surely
have finitely many common neighbors. Informally,
this is because any three vertices have degrees θ(

√
t)

when vertex t is added, and so it links to all three
with probability θ(t−3/2); summing over all t then
gives a finite expected value. Making this precise,
however, requires dealing with the conditioning on the
degrees, which also posed difficulties in the proof of
Theorem 4.2. To extend this argument to embeddings of

a graph K of minimum degree 3, we “dismantle” K by
removing one node at a time, controlling the number
of embeddings in this dismantling through a bound
composed of monomials over the random variables Xt

defined in Section 3. Bounding the expectations of such
monomials requires a delicate argument by induction
over the set of all monomials, ordered by a “dominance
ordering”. (For the details of the proof, including the
definition of the monomial ordering, we refer the reader
to the full version of the paper.)

We now complete the final case in the proof of
Theorem 5.1, when η(H) ≤ d and K 6= H . We
claim that if G contains an embedded copy of K, then
the number of embeddings of H in G is infinite with
probability 1. The proof is by induction on the number
of vertices in H \ K. By assumption, K 6= H so
there exists a vertex v ∈ H whose degree is less than
3. By the induction hypothesis or by the assumption
that K embeds in G, we may assume that H \ {v}
embeds in G. Now by Proposition 4.2, the number
of embeddings of H in G is infinite with probability 1
(since this proposition asserts that the event “there are
only a finite number of ways to extend the embedding of
H \{v}” has unconditional probability 0, and here we’re
conditioning on a positive-probability event). Note that
this establishes case 3, and concludes the proof of the
Theorem.

A non-isomorphism theorem for d > 2. The
non-isomorphism theorem for d ≥ 3 (Theorem 1.3)
follows easily from Theorem 5.1. Let N0 > 0 be the
expected number of distinct embeddings of K4 in G,
choose N > N0. and let K denote the graph consisting
of N disjoint copies of K4. We now consider the
probability that G contains a copy of K as a subgraph.
Theorem 5.1 asserts that the expected number of copies
of K is positive, and hence there is a positive probability
that G contains a copy of K. On the other hand,
since N > N0, Markov’s inequality ensures that the
probability of finding N distinct embeddings of K4 is
less than 1, and this implies that the probability that G
contains a copy of K is less than 1.

Thus the property “G contains K as a subgraph”
is an isomorphism-invariant property, whose truth value
has a positive probability of distinguishing two indepen-
dent random samples from PA∞d .

Proof of Theorem 1.4. The graph property spec-
ified in the previous paragraph is expressible by a first-
order formula φ(G). We claim now that

0 < lim
n→∞

Pr
G←PA

(n)
d

(φ(G)) < 1.

The limit is greater than zero for the same reason as
before: Theorem 5.1 implies that G contains K as a



subgraph with positive probability. It is also easy to
see that PrG←PA∞

d
(φ(G)) ≥ Pr

G←PA
(n)
d

(φ(G)), since a

random sample from PA∞d is the union of a chain of
graphs whose n-th member is a random sample from

PA(n)
d , and φ is a monotone property. Now the fact

that φ(G) is bounded away from 1, for graphs of finite
size, follows from the fact that PrG←PA∞

d
(φ(G)) < 1.
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A Bounding E[X̃n ‖ Xnj
]

To estimate E(X̃n‖Xnj
), we transform it into a telescoping

sum:

E(X̃n‖Xnj
) = E(X2

nj
− 2Xnj

Xn + X2
n‖Xnj

)

= X2
nj

− 2Xnj
E(Xn‖Xnj

) + E(X2
n‖Xnj

)

= X2
nj

− 2X2
nj

+ E(X2
n‖Xnj

)

= E(X2
n‖Xnj

) − X2
nj

=

n−1
X

k=nj

E(X2
k+1‖Xnj

) − E(X2
k‖Xnj

).

We bound the sum on the right side term-by-term, using the
following computation. Let Zk = dk+1(i) − dk(i); this is a
sum of d independent Bernoulli random variables, each with
mean dk(i)/2dk. Writing dk for dk(i), a simple computation
yields

E(Zk) = dk/2k

E(Z2
k) = dk/2k + d(d − 1)d2

k/4d2k2

hence

E(d2
k+1‖dk) = E(Z2

k‖dk) + 2dkE(Zk‖dk) + d2
k



= dk/2k +

„

d − 1

d

« „

d2
k

4k2

«

+ 2d2
k/2k + d2

k

= dk/2k +

„

1 +
1

k
+

1

4k2
− 1

4dk2

«

d2
k

< dk/2k +

„

1 +
1

2k

«2

d2
k

E(X2
k+1‖Xk) <

„

1

ck+1

«2

E(d2
k+1‖Xk)

<

„

ck

2kc2
k+1

«

Xk +

„

1 +
1

2k

«2 „

ck

ck+1

«2

X2
k

=

„

ck

2kc2
k+1

«

Xk + X2
k

E(X2
k+1‖Xnj

) =

„

ck

2kc2
k+1

«

E(Xk‖Xnj
) + E(X2

k‖Xnj
)

=

„

ck

2kck+1

«

Xnj
+ E(X2

k‖Xnj
)

This means that

E(X̃n‖Xnj
) <

0

@

n−1
X

k=nj

ck

2kck+1

1

A Xnj

<

0

@

∞
X

k=nj

ck

2kck+1

1

A Xnj

< (C/
√

nj)Xnj
.

for some constant C, using the fact that each term of the
infinite sum is O(k−3/2).


