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Abstract

We considera modelfor monitoringtheconnectivity of a network subjectto nodeor edgefailures.
In particular, we areconcernedwith detecting �����	��
 -failures: eventsin which an adversarydeletesup
to � network elements(nodesor edges),afterwhich therearetwo setsof nodes� and 
 , eachat least
an � fractionof thenetwork, thataredisconnectedfrom oneanother. We saythata set � of nodesis an�����	��
 -detectionsetif, for any �����	��
 -failureof thenetwork, sometwo nodesin � areno longerableto
communicate;in this way, � “witnesses”any suchfailure. Recentresultsshow that for any graph � ,
thereis an �����	��
 -detectionsetof sizeboundedby a polynomialin � and � , independentof thesizeof � .

In thispaper, weexposesomerelationshipsbetweenboundsondetectionsetsandtheedge-connectivity�
andnode-connectivity � of theunderlyinggraph.Specifically, we show thatdetectionsetboundscan

be madeconsiderablystrongerwhenparameterizedby theseconnectivity values.We show that for an
adversarythatcandelete� � edges,thereis alwaysadetectionsetof size ����� ���������� 
 whichcanbefound
by randomsampling. Moreover, an ����� � 
 -detectionsetof minimum size(which is at most � � ) canbe
computedin polynomialtime. A crucialpoint is thattheseboundsareindependentnot justof thesizeof� but alsoof thevalueof

�
.

Extendingtheseboundsto nodefailuresis muchmorechallenging.The mosttechnicallydifficult
resultof this paperis thata randomsampleof ��� � � �!�"� � � 
 nodesis a detectionsetfor adversariesthat
candeletea numberof nodesup to � , thenode-connectivity.

For the caseof edge-failureswe useVC-dimensiontechniquesandthe cactusrepresentationof all
minimum edge-cutsof a graph; for nodefailures,we develop a novel approachfor working with the
muchmorecomplex setof all minimumnode-cutsof a graph.

1 Introduction

Monitoring network connectivity. As links or nodesfail in a network, it is importantto maintaininfor-
mationaboutbasicpropertiessuchasconnectivity. For large,unstructurednetworks, this is oftendoneby
recourseto samplingandotherapproximatemeasurements;performingsuchmeasurementsin a robustand
accurateway is an active researchtopic (e.g. [4, 5, 17, 19, 18]). A generalproblemhereis to minimize
the costof network monitoringandmeasurement,in termsof communication,computation,andresource
usage.

Herewe considera modelproposedby the first authorfor monitoringnetwork connectivity [14]. We
aregiven a connectednodegraph # on $ nodes,andwe want to detect“f ailure events” in which at most%

network elements(nodesor edges)aredeleted,afterwhich therearetwo setsof nodes& and ' , eachof
(
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size )+*,$ , suchthatno nodein & hasa pathto any nodein ' . We will call sucha pair of setsseparated,
andwe will call suchaneventan -.*0/ %21 -failure. (To reflectthefact that the

%
nodeor edgefailurescanbe

arbitrary, wewill sometimesspeakof themasbeingselectedby anadversary.)
To detectsuchfailures,we considerthe strategy of placing “detectors”at a subset3 of the nodes

of # . Now, if we find that two detectorsareunableto communicate— eitherbecausethereis no path
betweenthem,or becauseonehasbeendeleted— we canrecorda fault in the network. We would like
our set 3 to have the propertythat whenever an -.* / %21 -failure occurs,sometwo detectorsare unableto
communicate;we will referto sucha set 3 asan -.* / %21 -detectionset.Notethenatureof this condition: 3
mustdetectall possible-.* / %21 -failures,sowe imagine 3 asbeingchosenbefore theadversaryselectsa set
of

%
network elementsto delete.Theemphasisin [14] wason finding a boundon thenumberof nodesthat

mustbe randomlyselectedfrom a graph # in orderto obtainan -.*0/ %21 -detectionsetwith high probability.
Improvementsto theseboundswereobtainedby [7].

In this paper, we adopta somewhat differentapproachto this issue,by exposingsomeinterestingand
non-trivial connectionsbetweenthe sizeof the smallestdetectionset for a graph # andthe valuesof its
edge-andnode-connectivity. (Theedge-connectivity of # , denoted45-6# 1

, is thesmallestnumberof edges
thatmustbedeletedin orderto disconnect# . Thenode-connectivity of # , denoted78-6# 1

, is theanalogous
quantity for nodedeletions.) We show that strongerboundson detectionset sizecanbe obtainedif we
parameterizetheseboundsby theconnectivity values4 and 7 ; andfor somecases,we usethis relationship
with connectivity to provide thefirst per-instanceguaranteesfor detectionsets.

Becauseour resultsaredifferentdependingon whetherthe adversaryis deletingedgesor nodes,we
considerthesetwo casesseparately.

Detection sets for edge failures. We begin with adversariesthat candeleteup to
%

edges;assuch,we
will beconcernedwith -.*0/ %21 -edge-failures, which are -.* / %21 -failuresin which only edgesaredeleted.It is
known thatarandomsetof 9:-<; =?>A@CBED= 1 nodesis an -.*0/ %21 -detectionsetfor edgefailureswith highprobability
[14], andthatevery graphcontainsan -.* / %21 -detectionsetfor edgefailuresof size 9F- ; = 1 [7]; notethatboth
boundsareindependentof thesizeof thegraph # . It is notdifficult to show thatbothboundsaretight, and
sothereis no prospectof obtainingan improvementthatappliesto all graphs.However, it makessenseto
askwhetherbetterboundsarepossiblein termsof naturalparametersof thegraph # .

An obviousparameterto considerhereis theedge-connectivity 4 ; indeed,therecanbeno -.* / %21 -edge-
failuresin # if

%HG 4 . Our first mainresultestablishesthat 4 is indeeda naturalway to parameterizethe
problem;we show thatevery graph # hasan -.* /�4 1 -detectionsetfor edgefailuresof sizeat most D= . Note
that thereis no leadingconstantin this bound,andthat it is independentnot just of thesizeof # but also
of the valueof 4 . Extendingthis result,we show further that an -.* /�4 1 -detectionset for edgefailuresof
minimumsizefor a graph # canbe computedin polynomialtime. Thealgorithmsusedto establishthese
resultsarebasedon thecactusrepresentationof all minimumedge-cutsof # [6, 8].

Given that strongboundsarepossiblefor detectingan adversarythat candeleteoneminimum cut’s
worth of edges,it is naturalto askwhat canbe saidaboutan adversarycapableof deletinga numberof
edgesequalto

%
timesthe sizeof a minimum cut. We show that a randomsetof 9:-<; = >I@CBED= 1 nodesis a

- % 4J/K* 1 -detectionsetfor edgefailureswith high probability. This is essentiallya factorof 4 timesstronger
thantheboundsof [7, 14], which did not take edgeconnectivity into account.Our proof of this resultuses
aVC-dimensionargumentin thestyleof [14]; theboundon theVC-dimensionis obtainedusinga resultof
Mader[16, 9]. thatextendsresultsof Lovász[15] andof Cherkasskij[3] on edge-disjointpathsin graphs.

Detection sets for node failures. Wenow consideradversariesthatcandeleteup to
%

nodes.By analogy
with our resultsfor edgefailures,we considerthesizeof detectionsetsin termsof thenode-connectivity 7 .
Ourmainresulthereis thateverygraph# (with 7MLN9F-.*PO<$ 1 ) hasan -.*0/K7 1 -detectionsetfor nodefailuresof
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size 9F- D= 1 ; moreover, a randomsetof 9F- D=5>A@CB D= 1 nodesformsan -.* /K7 1 -detectionsetfor nodefailureswith
highprobability. Again,notethattheseboundsareindependentnot justof thesizeof # but alsoof thevalue
of 7 . Extendingour resultsto adversariesthatdelete

% 7 nodesfor
%RQTS

is avery interestingandapparently
difficult openquestion.

We notethedistinction,raisedby Gupta[7], betweenstrongandweakdetectionsetsfor nodefailures.
A strongdetectionset 3 hasthepropertythat,afterany -.* / %21 -node-failure, two nodesof 3 lie in different
connectedcomponents.A weakdetectionset 3MU hasthe propertythat, after any -.* / %21 -node-failure, two
nodesof 3 lie in differentconnectedcomponentsor an elementof 3 hasbeendeleted. Either of these
definitionsarguablyforms a plausibledefinition of network failure detection.Improving a boundof [14],
Fakcharoenpholshowedthata randomsetof 9:- ; = >I@CB % >A@CB D= 1 nodesis astrong -.* / %21 -detectionsetfor node
failures[7], andGuptashowed that every graphhasa weak -.* / %21 -detectionset for nodefailuresof size
9F- ; = 1 . As we notein Section4, weakdetectionappearsto be a moreusefulnotion whenthe problemis
parameterizedby nodeconnectivity; in particular, ourmainresultis aboutweakdetectionsets.Henceforth,
we will assumethatall detectionsetsfor nodefailuresareweakunlessotherwisespecified.

Our analysisfor nodefailuresis significantlymorecomplicatedthanfor edgefailures,andthis is not
surprising;notonly is noanalogueof thecactusrepresentationknown for min-node-cuts,but thisappearsto
beintrinsic dueto the VEW -completenessof evencountingthenumberof min-node-cuts[2]. Indeed,given
the lack of tractablerepresentationsfor min-node-cuts,we believe that our analysisdevelopssomeuseful
propertiesof their structure. We begin by constructinga detectionset of minimum size for adversaries
that can deleteshredders [2, 13] — min-node-cutswhosedeletionproducesat least threecomponents.
Theconstructionof thedetectionsetthenproceedsby greedilyisolatinga maximalcollectionof relatively
balancedmin-node-cutsthatproducejust two components,andwhose“small sides”aredisjoint; thesmall
sideof eachsuchcut is requiredto haveat least

=YX
D[Z nodes.Wethenshow thatby placingdetectorssothatone

lies on thesmallsideof eachof thesecuts,thereis no way for a min-node-cutproducingtwo components
of sizeat least *,$ eachto avoid beingdetected.

Further Discussion. A simplecalculationbasedonKarger’salgorithmgivesanupperboundof 9F-<; = >A@CB\$ 1
on a randomsampleof nodesthat forms an -.* / % 4 1 -detectionsetfor edgefailures.1 However, our goal in
thispaperis to find boundsthatdo notdependon thesizeof thegraph.

Following [14], wecanextendourresultsto amodelin whichthenodesof thenetwork # arepartitioned
into two sets— aset ] Z of endnodesandaset ] D of internalnodes. Weassumethatweareonly allowedto
placedetectorsat endnodes,andcorrespondinglyareonly interestedin monitoringtheconnectivity of the
endnodes.Specifically, we re-define -.* / %21 -failuresasfailuresof ^ %

network elements,afterwhich two
disjoint subsetsof ] Z , eachof size )_*"`a] Z ` , areseparatedfrom eachother. We canshow that thebounds
obtainedabovecarryover to thismoregeneralsetting;weomit furtherdiscussionof thegeneralizationfrom
thisversionof thepaper.

Our work is similar in spirit to someof the work on vertex connectivity and augmentationthereof,
e.g. [12, 2, 13, 11]. The actualtechnicalissuesarequite different,however, sincewe areonly interested
in balancedcuts. In generalonecould view our work hereas integrating notionsfrom edge-andnode-
connectivity with theproblemof balancedseparatorsof graphs— two topicsthat have traditionally been
approachedseparatelydueto their greatdifferencesin tractability.

Notation. In thispaperall graphsareassumedundirected;ourstandardnotationfor agraphis #NL+-6]b/Pc 1
.

An edge(node)-cutis aset d of edges(nodes)suchthat #fe\d is disconnected.

1Notethatno suchsimpleboundis availablefor thecaseof node-failures,which is yetanotherevidenceof its difficulty.
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A min-edge(node)-cutis an edge(node)-cutof minimum size. This sizeis alsoknown asedge(node)-
connectivityanddenotedby 4 and 7 respectively. We will write min-cutwhenit is clearwhetherwe are
talkingaboutedge-cutsor node-cuts.A setof nodesis tight if it is aunionof some(but notall) components
of amin-cut.A cut d is called * -balancedif therearetwo setsof verticesof size )g*,$ thataredisconnected
from oneanotherin #gehd . An * -balancedcut of ^ %

edges(nodes)is calledan -.* / %21 -cut.
If setsd , i have a non-emptyintersection,we say d meetsi . To helpclarify thenotationin places,

we will sometimeswrite dkjli to denotethe unionof disjoint sets d and i , and dnmoi to denotethe
differenceof setsd and i for which iqpod .

2 Detection sets for edge failures

In this sectionall cutsareedge-cuts,andall detectionsetsarefor edgefailures. Let 3 be a setof nodes,
representingthelocationsof ourdetectors.3 detectsacut d if somepairof detectorsis separatedin #resd .
3 is an -.*0/ %21 -detectionsetif it detectsevery -.* / %21 -edge-cut.

Therearetwo subsections.In thefirst onewe constructa smallest-.* /�4 1 -detectionsetandprove it has
size ^ D= . In thesecondoneweprovethatasetof 9:- ;t = >A@CB D= 1 randomlysamplednodesis an -.* / %21 -detection
setwith highprobability.

2.1 Detection sets for min-edge-cuts

Cactus representation. Edgeswill beviewedascyclesof lengthtwo; cyclesof length3 or morearecalled
proper. A cactusis a connectedgraphsuchthatany two of its cycleshave at mostonevertex in common.
An arbitrarycactuscanbe obtainedstartingfrom a cycle andrecursively addingnew cyclesthat sharea
singlevertex with theexisting graph.In acactus,someedgesarecontainedin apropercycle (cycleedges),
andsomearen’t (pathedges). Supposewe give eachcycle edgecapacity1/2, andeachpathedgecapacity
1. Thenthemin-cutsof a cactushave capacity1: eachpathedgeis a min-cut;any pair of cycle edgesfrom
thesamecycle is amin-cut;andthereareno othermin-cuts(seeFactA.1).

In a cactus,nodesof degreeonewill becalledleaves, nodesof degreetwo thatarecontainedin a cycle
will becalledcyclenodes, andall othernodeswill becalledbranch nodes. Considera branchnode u of a
cactusv . It connectstwo or morecycles.By FactA.2, theremoval of u splits v into two or moreconnected
components( u -components). Each u -componentd is tight: for somecycle w containingu , it is obtained
by removing theedge(s)of w thatareadjacentto u .

Fact 2.1 Supposex is a tight setin cactusv , u is a branch node. Then:
(a) if uMyzx then x containsat leastone u -component.
(c) if uz{yzx then x is containedin a u -component.
(c) for any u -componentd of v , either d}|lx , or x~|od , or d}|l]Tm~x , or ]Nm�x�|od .

Proof: SeeAppendixA. �
Let # bea weightedgraphon $ vertices.A cactus-pairof # is a pair -�v�/P� 1 where v is a cactus,and

� is a mappingfrom ]M-6# 1
to ]M-�v 1

suchthat if � is a tight setin v then ��� D -�� 1
is a tight setin # . For

eachtight set � of v saythat -�v�/P� 1 representsthemin-cut w of # suchthat � � D -�� 1
is a w -component.

A cactusrepresentationof # is acactus-pairof # thatrepresentsall min-cutsof # . Dinits et al. [6] proved
that every capacitatedgraphhasa cactusrepresentationof size 9:-Y$ 1 . Furtherresultsshow that a cactus
representationof size 9F-Y$ 1 canbeefficiently constructed.Seetheintroductionof [8] for discussion.
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Balanced cactus representation. Herewe areonly interestedin * -balancedmin-cuts,andso thecactus
representationis toogeneralfor ourpurposes.Thismotivatesthefollowing definitions.

Let an * -cactus-pairbe a cactus-pairthat representsall * -balancedmin-cuts. Let an * -cactusbe the
cactusin suchcactus-pair(if themappingis clear).A subsetx of verticesof acactusis heavyif ` ��� D -6x 1 `�)
*,$ . Call a cactus-pairreducedif every u -componentis heavy. A reduced* -cactus-paircanbe efficiently
computedfrom astandardcactusrepresentationby consecutively applyingthefollowing reduction.

Lemma 2.2 Supposev is an * -cactus,u is a branch node, d is a u -componentthat is notheavy. Let v U be
v with d contractedinto u . Thenv�U is alsoan * -cactus.
Proof: For each* -balancedmin-cut w of # thereis amin-cut w�U of v thatrepresentsit. By Fact2.1cthere
is a componentx of w U suchthat d�|Nx or xf|ld . Since x is heavy and d isn’t, it mustbethecasethat
d is apropersubsetof x . Then uMyzx , so w�U is amin-cutin v�U , too. Thereforev�U representsw . �
Characterizing detection sets for min-cuts. Let # be a capacitatedgraph. Let -�v�/P� 1 be a reduced* -
cactus-pairof # . Wewill characterize-.* /�4 1 -detectionsetsof minimumsizein termsof v .

Let asubcyclebeasetof consecutive cyclenodesof a(proper)cycle in v . Considerthenon-degenerate
casewhenthereis at leastonebranchnode.Thentheweight ` ��� D -	� 1 ` of eachleaf andeachsubcycle is at
most - S m~* 1 $ . Let a canonicalsubcactusbea setof nodesof v thatcontainseachleaf, hasanelementin
every heavy subcycle, andcontainsno branchnodes.Let 3�|�]M-6# 1

bea setof detectors(notnecessarily
an -.* /�4 1 -detectionset).Say 3 is v -canonicalif �b-�3 1

is a canonicalsubcactus,andat mostonedetectoris
mappedto eachnodeof v . Thefollowing two lemmasshow thatany smallest-.*0/�4 1 -detectionsetis in fact
asmallestv -canonicalset.

Call xo|�] heavyif `ax�`�)�*,$ , andbalancedif both x and ]�e�x areheavy. Call x U |�]M-�v 1
balanced

if ��� D -6x�U 1 is balanced.For eachbalancedtight set x of # let ��U6-6x 1
bea (balanced)tight set x�U of v such

that x�L���� D -6x�U 1 .
Lemma 2.3 Anysmallest-.* /�4 1 -detectionsetis v -canonical.
Proof: Let 3 beasmallest-.* /�4 1 -detectionset.Call elementsof 3 detectors. We needto prove that(1) at
mostonedetectoris mappedto eachnodeof v , (2) thereis a detectormappedto eachleaf andeachheavy
subcycle of v , (3) andno detectorsaremappedto branchnodesof v . We’ll prove thesethreestatementsin
order.

(1) Supposetwo detectors� D , � O mapto a node u of v . To obtaina contradictionit sufficesto show an
-.* /�4 1 -detectionsetsmallerthan 3 . Weclaim that 3�mz� D is alsoan -.* /�4 1 -detectionset.Supposenot. Then
thereis abalancedtight set x of # thatcontains3�mr� D . Obviously � D {yzx . Let x�U2L���U6-6x 1

. Since� O yzx ,
uFL��b-�� O

1 yzx U , so � D y�x , too,acontradiction.
(2) Thereis a detectormappedto eachheavy tight setof v , in particular, to eachleaf andeachheavy

subcycle.
(3) Supposea detector� is mappedto a branchnodeu of v . By analogywith (1), we claim that 3�m~�

is alsoan -.* /�4 1 -detectionset.For supposenot. Then 3�m�� is disjoint with somebalancedtight set x . Let
x U L�� U -6x 1

. Since 3 is an -.* /�4 1 -detection set, �oy�x , so uoy�x U . Thereforeby Fact 2.1a x U contains
someu -componentx�U U . Sincev is reduced,x�UaU is heavy, sothereis adetectormappedto it. So x containsa
detectorotherthan � , acontradiction.

In view of (1), (2), and(3), weseethat 3 is v -canonical. �
Lemma 2.4 Any v -canonicalsetis an -.*0/�4 1 -detectionset.
Proof: Suppose3�|�] and �b-�3 1

meetseachleaf andeachheavy subcycle of v . We needto prove that
�b-�3 1

meetseachheavy tight setof v . To show thisweclaim thatany heavy tight set x of v containsa leaf
or a heavy subcycle.
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Figure1: An * -cactuswith detectors.Branchnodesaredenotedby ’ � ’, detectorsby ’*’. In the central
cycle, therearethreesubcyclesbetweenthebranchnodes.Thesmallestof themis not heavy, hencedoes
not containadetector. Theothertwo arebig enoughsothatthey needtwo detectorseach.Eachof thethree
smallercyclesis heavy (evenwithout its branchnode),sinceotherwiseit wouldhave beencontracted.

We’ll useinductionon thesizeof x . Thebasecasecorrespondsto an x thatconsistsof onevertex, say
u . By Fact 2.1a u cannotbe a branchnode. So either u is a leaf or it is a heavy subcycle consistingof a
singlecyclenode.

For theinductionstep,notethatif x containsabranchnodeu thenby Fact2.1a x containssome(heavy)
u -componentsx?U , to which the inductionhypothesisapplies.If x doesnot containany branchnodes,then
it lieswithin asinglecycle,so x is a (heavy) subcycle. Theclaim follows. �

Theorem 2.5 A smallest-.*0/�4 1 -detectionsetis of sizeat most D= . There is a polynomial-timealgorithmto
constructit.
Proof: Let -�v�/P� 1 be a reduced* -cactus-pairof # . We have seenthat smallest -.* /�4 1 -detectionsetsare
(mappedto) smallestcanonicalsubcactiof v . Thereforeit sufficesto computeasmallestcanonicalsubcac-
tusof v .

Let x bea subsetof a propercycle w in v . Call x a w -detectionsetif x doesnot containany branch
nodes,and every heavy subcycle of w containsan elementof x . By definition, if thereare no heavy
subcycles in w thenan emptysetis a w -detectionset. Obviously, a subsetof v is a canonicalsubcactus
iff it is a union of leavesof v and(disjoint) w -detectionsets,onefor eachpropercycle of v . Therefore
to computea smallestcanonicalsubcactusof v it sufficesto constructa smallestw -detectionsetfor each
propercycle w of v .

Theconstructionis asfollows. Assumingv consistsof morethanonecycle, w containsoneor more
branchnodes.Assumingw containscyclenodes,pick any branchnodeuC� followedby acyclenodeu . Start
with u . In the iterative step,startwith a cycle nodeandmove clockwisealong w till a heavy subcycle is
detected(call this subcycle selected) or abranchnodeis reached.Startanew stepwith thenext cyclenode.
Stopwhen uC� is reached.Let x bethesetof thelastnodes(clockwise)of selectedsubcycles.

Obviously x is a w -detectionset. x is a smallestsuchsetby the following observation. Let x U be a
w -detectionset.Let u�yzw beabranchnodeor anelementof x�U . Let u�U bethenext nodeclockwise.Let w�U
bethesmallestheavy subcycle startingwith u U , if it exists. Let � bethelastnodeof w U . Then w U contains
at leastoneelementof x . Theobservation is that x�U�mHw�U�jH� is a w -detectionsetwith thesameor smaller
numberof elements.Consecutively applyingthis observation,we cantransformx�U to x without increasing
thenumberof detectors.

Ourconstructionputsonedetectorinto eachleafof v andeachselectedsubcycle. Sinceleavesof v are
heavy andselectedsubcyclesareheavy anddisjoint, our constructioncoversat least *,$ weight with each
detector. Sincethetotal weightof (nodesof) v is $ , thetotalnumberof detectorsis at most D= . �
2.2 Smaller detection sets for edge failures

A set x of nodesis
%
-edge-separable if thereexistsaset   of ^ %

edgessuchthat x is aunionof components
of #le�  . Let ¡ bethefamily of all

%
-edge-separablesets.We saythat &+p�] is shatteredby ¡ if for all
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'�pf& thereexistsan ¢�y£¡ suchthat '+L�&H¤F¢ . TheVC-dimensionof ¡ is definedto bethemaximum
cardinalityof asubsetof ] that is shatteredby ¡ .

In [14], it wasshown thatonecanconnecttheVC-dimension� of ¡ with -.* / %21 -detectionsetsvia the
notionof an * -net, which is a setthatmeetseach¢¥y¦¡ of size )�*P$ . Specifically, a theoremby [1] says
thatasetof 9F-<§ = >A@CB D= j D= >A@CB D¨ 1 randomlysamplednodesis an * -netfor ¡ with probabilityat least

S mz© .2
Moreover, it is easyto show [14] thatan * -netfor ¡ is an -.* / %21 -detectionset.

In [14], it wasshown thattheVC-dimensionof ¡ is atmost ª % j S
, yielding aboundof 9:-<; = >A@CBFD= 1 on

thesizeof an -.* / %21 -detectionset.In thissection,westrengthentheVC-dimensionboundon ¡ to 9F- ;t 1 . As
aconsequence,we will obtainthefollowing theorem.

Theorem 2.6 A setof 9F-«;t = >A@CB:D= 1 randomlysamplednodesis an -.*0/ %21 -detectionsetwith highprobability.

We now turn to thenew boundon theVC-dimension;to prove it, we will usethefollowing theoremby
Mader[16] on edge-disjointpathsbetweenelementsof a given setof vertices.Let ¬ bea subsetof ] of
size ­ . Let �®-�¬ 1

bethenumberof edgesleaving ¬ . Let ¯°-�¬ 1
bethenumberof componentsw of #fmz¬ for

which �s-6w 1
is odd.Let an ¬ -pathbeapathconnectingdistinctelementsof ¬ .

Theorem 2.7 [16] Themaximalnumberof edge-disjoint ¬ -pathsis DO²±
³I´ -6µ¶�s-6]2· 1 m¸¯°-6¹b]°· 1,1 , where the

minimumis takenover all collectionsof disjoint subsetsof vertices] D /�] O / º º º5/�]2» such that `a]°·2¤R¬:`CL S
.

Corollary 2.8 Thereare ¼½-Y­�4 1 edge-disjoint ¬ -paths.
Proof: Considera collectionof disjoint subsetsof vertices ] D /�] O / º º º5/�]2» suchthat `a]°·?¤¦¬:`¾L S

. Let
�EL µ �s-6] · 1 , ¯½L�¯°-6¹b] · 1 . By theabove theoremit sufficesto prove that �¿m�¯¿L�¼½-Y­�4 1 .

Note that ��)�­�4 since �®-6]°· 1 )+4 . Let w D º º º�whÀ be thecomponentsw of #Nmf¹b]2· suchthat �s-6w 1
is

odd.All edgesexiting eachw · areto ¹b] · . So �:)o�®-6¹b] · 1 ) µ �s-6w · 1 )f¯�4 . If ­Á)g¯ then �²mF¯Á)o­�4ÂmF¯Á)
­2-64Em S�1

. If ­ G ¯ then �½mH¯Á)f¯�4FmH¯Á)o­2-64Em S�1
. Therefore�¿mH¯¿L�¼½-Y­�4 1 . �

Thefollowing is awell-known applicationof theprobabilisticmethod.

Lemma 2.9 Let -�¬Ã/P¢ 1
bea multi-graphon ¬ . Thenthereexistsa partition of ¬ into sets¬ D /P¬ O such that

there are at least DO ` ¢M` edgesbetween¬ D and ¬ O .
Lemma 2.10 TheVC-dimensionof ¡ is 9:- ;t 1 .
Proof: Let ¬ beasubsetof ] of size ­ . By Cor. 2.8thereexistsafamily Ä of ¼½-Y­CÅ 1 edge-disjoint¬ -paths.
Let -�¬Ã/P¢ 1

beamulti-graphon ¬ suchthatthereis a1-1correspondencebetweenÆÇu -pathsin Ä andedges
ÆÇu£y�¢ . By Lemma2.9 thereexistsa partitionof ¬ into sets¬ D /P¬ O suchthat(in theoriginal graph)there
are ¼½-Y­�4 1 edge-disjointpathsbetween¬ D and ¬ O . We canchoose­ÁL�ÈE- ;t 1 sothatthereis guaranteedto
bea family Ä U of (at least)

% j S
edge-disjointpathsbetween¬ D and ¬ O .

Weclaimthat ¬ cannotbeshatteredby ¡ . Supposenot. Thenthereexists dÉyR¡ suchthat d�¤\¬NL�¬ D .d is a unionof componentsof somecut   of
%

or lessedges.  is disjoint with (at least)onepathÊ�yzÄ�U .
Theendsof Ê arein thesame  -component,soeitherthey areboth in d , or bothnot in d . In bothcases
this contradictsdn¤�¬ÉLk¬ D . Thus, the claim is proved, and it follows that the VC-dimensionof ¡ is
­¿LT9F- ;t 1 . �

2[14, 7] useda slightly weaker theorem,with a correspondingboundof ËÂÌ,Í Î2ÏÑÐ�Ò\Í Î5Ó~ÔÎ2ÏÑÐ�Ò�ÔÕ�Ö .
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3 Detection sets for node failures

Themaintheoremof this section(Thm.3.6) is that for 7 G 9F-.*KO<$ 1 a setof 9F- D= >A@CB D= 1 randomlysampled
nodesis aweak -.*0/K7 1 -detectionsetwith highprobability. Werely onaspecialcaseof * -shredders,which is
a corollaryof our resulton strongdetectionthereof(Thm.3.1). We alsopresenta partial result(Thm.B.1)
on extendingstrongdetectionsetsfor * -shreddersto thosefor general-.* /K7 1 -cuts.

Beforewe proceed,let’s review thedefinitions. In this sectionall cutsarenode-cuts,all detectionsets
arefor nodefailures. A cut d is called two-wayif #Te�d hasexactly two connectedcomponents,called
the sidesof d . A shredderis a min-cut with threeor morecomponents.An * -shredder is an * -balanced
shredder. A set 3 of nodesstrongly detectsa cut d if somepair of detectorsis separatedin #�e�d . If 3
eithermeetsor stronglydetectsd , say 3 weaklydetectsd . 3 detects(is a detectionsetfor) a family of
cutsif it detectsevery cut in thefamily.

The restof this sectionis organizedasfollows. In the first subsectionwe show how to find a strong
detectionsetsfor * -shredders.In thesecondwe useshreddersto geta detectionsetfor two-way * -balanced
min-cuts.Combiningthesetwo resultsgivesusthemaintheorem.

3.1 Strong detection sets for shredders

It is awell-known factthattherecanbeexponentiallymany min-cuts.Furthermore,evencountingmin-cuts
is #P-complete[2]. However, therecanbeonly 9F-Y$ 1 shredders[13], with a polynomial-timeenumeration
algorithm[2]. Westartby statingthemainresultof this subsection.

Theorem 3.1 Suppose7 G *,$ . Thena setof 9F-"D= >A@CB�D= ¨ 1 randomlysamplednodesis a strongdetectionset
for * -shredders with probabilityat least

S mz© . Moreover, a smalleststrongdetectionsetfor * -shredders has
size ^×D= andcanbeconstructedin polynomialtime.

Beforewe prove this theoremwe needto establishsomebasicfactsaboutmin-cuts. For a cut d the
connectedcomponentsof #�e�d arealsocalled d -components. Let x , v bemin-cuts.Say x meshesv if x
meetsat leasttwo v -components.By [2, Lemma4.3(1)] if x meshesv then v meetsevery x -component.
Thusmeshingis a symmetricrelation. If x meshesv (and v meshesx ), thetwo cutsaremeshing. Else x
and v arenon-meshing.

Lemma 3.2 ([2], Lemma4.3(2))If min-cutsx and v aremeshing, thenthere is a componentØ of either x
or v such that Ø contains]Tm~xzm¦v .

Corollary 3.3 If 7 G *P$ thenanytwo * -shredders are non-meshing.

Lemma 3.4 Let x and v be non-meshingshredders. Let w be the x -componentthat meetsv . Then w
containsall v -componentsbut one, call it w�U . Moreover, w�U contains ]+mgx�mgw , i.e. all x -components
otherthan w .
Proof: Pick any uÙy�x¦mHv . By minimality of x , u hasedgesto eachx -component(else, x�m~u is a cut).
Thus, ]+mgx�mgw�jNÚ0uÇÛ is connected.Since vÜ|�x¦¹¦w , ]Ým�vTmgw is connected,andhencelies in a
v -componentw U . Soall other v -componentsarecontainedin w and ]Tm~x�m�w+|l]Nm�vfm~wÝ|�w U . �

For a family ¡ of * -shredders,we call a componentof a shredderan ¡ -head if it meetsat leastone
shredderin ¡ . Now, supposewe have an -.* / %21 -detectionsetfor shredders,and x is an * -shredderwith an
¡ -headÞ . Thenthereexists vNyR¡ thatmeetsÞ ; soby Lemma3.4 Þ containsall v -componentsbut one,
andhencecontainsa detector. This givesthefollowing lemma.
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Lemma 3.5 Let ¡ bea family of * -shredders, with 7 G *,$ , andlet x bean * -shredderwith an ¡ -head Þ .
Thenanydetectionsetfor ¡ meetsÞ .

Proof of Thm. 3.1: Let ¡ Z be the family of all * -shredders.Startwith ¡ßLà¡ Z . While thereexists an
* -shredderx�y£¡ with two or more ¡ -heads,deletex from ¡ . Let ¡ D betheresultingfamily of shredders.
By Lemma3.5any strongdetectionsetfor ¡ D is astrongdetectionsetfor ¡ Z .

Let x�y£¡ D . Let theheadÞ of x bethe(single) ¡ D -headof x . Let thetail of x be ]�mMxÁmFÞ . Notethat
by Lemma3.4 for any x�/áv�yz¡ D thetail of x is containedin theheadof v (andvice versa).In particular,
tails arepairwisedisjoint. Sinceeachheadcontainssomeoneelse’s tail, a set 3 of nodesis a detection
set for ¡ D if f 3 meetsthe tail of each x¸yg¡ D . Therefore,a smallestdetectionset for ¡ D hassize ` ¡ D ` .
Sincetails areof size )�*,$ each, ` ¡ D `�^¶D= . Therandomsamplingresultfollows by a simpleprobabilistic
computation. �
3.2 Detecting two-way min-cuts

In thissubsectionweconstructaweakdetectionsetfor two-way -.*0/K7 1 -cuts.Firstwegiveanon-efficientde-
terministicconstruction.Weconsider- =D[Z /K7

1
-cutsanduseagreedy-typealgorithmto constructa“maximal”

family of two-way - =
D[Z /K7

1
-cutswith sides&�· and 'â· suchthat &�·bpg'äã for all åâ{Lfæ . In particular &�· ’s are

pairwisedisjoint,sothereareatmost D[Z= of them.It turnsout thatif 7 G 9:-.*PO<$ 1 thenputtingadetectorinto
each&�· suffices.More preciselywe show (Thm.3.8) thatthesedetectorstogetherwith any weakdetection
setfor shreddersgiveaweak -.* /K7 1 -detectionset.Thenasimpleprobabilisticargumentyieldsarandomized
resultstatedbelow.

Theorem 3.6 Suppose7 G =.çèX
O Z . Thena set of 9:- D= >A@CB D= ¨ 1 randomlysamplednodesis a weak -.* /K7 1 -

detectionsetwith probability at least
S m�© .

Westartwith somenotationandasimplebut veryusefullemmaaboutcrossingmin-cuts.Let x beaset
of nodes.Call x connectedif thesubgraphof # inducedby x is connected.Elsesay x is disconnected. Say
a cut d preservesx if d disjoint with x and x lies in onecomponentof #feäd . Notethata connectedset
of nodesis preservedby d if andonly if it is disjoint with d . é~-6x 1

denotesthesetof neighborsof x , i.e.
thesetof all nodesin ]lm¦x thathave anedgeto x . Notethatif ]lm�x£m�é~-6x 1

is non-emptythen é~-6x 1
is

acut.
Saytwo-way min-cuts d and i arestronglycrossingif eachsideof d meetseachsideof i . Say d

and i areweaklycrossingif d meetsbothsidesof i andvice versa.3 It is easyto seethatstrongcrossing
impliesweakcrossing,but not theotherway round.

To formulatethe promisedlemma,we will usethe following notation. The sidesof d and i are
respectively W D , W O and Ø D , Ø O . Their intersections(“quarters”)are w\·Ñã�L�W8·Ç¤£Ø�ã . Also let dE·5LTØ�·2¤Rd
and iÇ·JL�W8·Ç¤Ri and d×¤Ri+LTx .

Lemma 3.7 (The Two-Quarters Lemma) Supposetwo-waymin-cutsd and i areweaklycrossingsothat
thetwoquarters w O D and w D O arenon-empty. Then

(a) ` d D `�L�` i D ` and ` i O `CL¸` d O ` ,
(b) w O D and w D O are tight, with é~-6w\·Ñã 1 L�i�ã¾j~dE·Çjox ,
(c) ]Tm�w O D m�é~-6w O D

1
is connected,samefor w D O .

3Note that if ê meetsbothsidesof ë , sayat ì Ô and ì�ç , respectively, then ë meetsbothsidesof ê . Indeed,for thesake of
contradictionsupposeë doesnotmeetaside í Ô of ê . Then,sinceany nodein ê hasat leastoneedgeto í Ô and í Ô is connected,
thereis a ì Ô ì ç pathin î²ï ë , contradiction.
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Figure2: Two applicationsof theTwo-QuartersLemma.
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Figure3: Partitioningof thegraphafterthe å th iterationof thealgorithm

Proof: v�L+d D jgi O jgx and ðqLÝd O jfi D jlx separatew O D and w D O respectively from therestof the
graph.It follows that i O )ld O (else ` vE` G ` d�` ), d D )�i D (else ` vÃ` G ` i£` ), d O )li O (else `ñðE` G ` i£` ) and
i D )�d D (else `ñðE` G ` d�` ). Thereforè d D `°L×` i D ` and ` d O `°L×` i O ` , so ð and v aremin-cutsand w D O and
w O D aretight. Finally, ]gm¦w O D m�é�-6w O D

1
is connectedasaunionof two connectedsets( Ø D and W O ) with a

non-emptyintersection( w D O ). �
This lemmais similar to the resultof Jord́an [12] on intersectingtight sets.Note that if d and i are

strongly crossingour lemmayields ` d D `�Lò` d O `äLò` i D `�Lò` i O ` (Fig. 2a). We will also useit for
=
D[Z -

balancedmin-cutsthatarecrossingweaklybut not strongly. Thenoneof the“quarters”,say w D,D , is empty,
so,assuming7 G =YX

D[Z , w O D and w D O arenot (Fig. 2b).
Now we arereadyto describetheconstruction.

Construction

1. Let ¡ denotefamily of all
=
D[Z -balancedtwo-waymin-cuts,andlet ó£-�¡ 1

denotethefamily of thesides
of all ¢�y£¡ . Stopif ¡ is empty.

2. Chooseany inclusion-wiseminimal component& Z from óR-�¡ 1
, let d Z L�é�-�& Z

1
bethecorrespond-

ing cut and ' Z bethesecondcomponentof d Z . Putdetectorsin & Z and ' Z .
3. Deletefrom ¡ all cutswhichdonotpreserve & Z . For d}y£¡ let &Ã-Yd 1

bethesideof d thatdoesnot
contain & Z .

4. Startwith thefirst iteration.For the å -th iterationchooseacut dE·?y£¡ sothat &Á-YdE· 1 doesnotcontain
any other &Á-Yd 1

for d}y£¡ . Let & · L�&Á-Yd · 1 . Let ' · betheothersideof d · .
5. Putadetectorinto &�· . Remove from ¡ all cutswhichdo notpreserve & Z ¹�& D ¹r� � �"¹�&�· . StopIf ¡

is empty;elseiterate.
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Figure4: Threedifferentoptionsof how i caninteractwith dE· ’s. For (c) we prove that theportionof i
betweencuts d D and d O shrinksto anemptyset,and d D ¤�i�Lld O ¤Ri .

By constructionall &�· ’sarepairwisedisjoint,andeach&�·�) =
D[Z . Thereforeouralgorithmwill terminate

afterat most D[Z= stepsafterputtingat most D[Z= detectors.Denotethis setof detectorsby ô O . Let ô D beany
weakdetectionsetfor shredders,ô�Llô D ¹�ô O .
Theorem 3.8 If 7õ^ = ç

O Z $ thenany * -balancedtwo-waymin-cutis weaklydetectedby ô .

Beforeproving this theoremwe will statesomesimplepropertiesof our construction.

Lemma 3.9 For all å�{Löæ�&Âã�pf'â· . In particular dE· is disjoint with &hã .
Proof: Wewill provethatfor any å�{Löæ , dE· is disjointwith &Âã (whichwould immediatelyimply &hã½pf'â· ).
If æ G å thenby constructiond · is disjoint with all & ã for æR^�å and & ã p�' · . On theotherhand,if æ Q å
then 'äã contains&�· andsuppose&hã²¤:dE·\{LT÷ then uMyr&hã²¤:dE· hasat leastoneedgeto &�· andthusto 'äã ,
so &hã and 'äã arenot separated,acontradiction. �
Corollary 3.10 Each '�· containsat leastonedetector.

Lemma 3.11 If a tight set &�|f&�· is of size ) =YX
D[Z thenthecut é�-�& 1

is a shredder.

Proof: Supposenot. Then é�-�& 1
is a two-way - =

D[Z /K7
1
-cut preserving'�· andhenceø · � Dã�ù Z &Âã . Thus é~-�& 1

wasnotdeletedfrom ¡ until iteration å , soit shouldhave beenchoseninsteadof d · , contradiction. �
In what follows we assume7g^ = ç

O Z $ . The next lemmashows how ô D (a detectionsetfor shredders)
helpsto detecttwo-way min-cuts.

Lemma 3.12 Let i bean
=
D[Z -balancedtwo-waymin-cutwith sidesw and 3 . Suppose3 containsa set ú

of sizeat least
=YX
D[Z such that é�-6ú 1

is a shredder. Then3Ýj�i containsat leastonedetectorfrom ô D .
Proof: Theshredder �L�é�-6ú 1

is
=
D[Z -balanced,soit is weaklydetectedby ô D . Sincei is acut, thereare

no edgesbetweenú and w , i.e.   lies in 3¸jöi . It follows that w is connectedin #�e�  , hencelies in a
singleconnectedcomponentthereof.Thusat leastonedetectorfrom ô D is not in w , soit is in 3+j�i . �

Now we arereadyto sketchtheproofof Thm.3.8; thedetailsarein thenext subsection.
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Proof of Thm. 3.8 (sketch). Let i bean * -balancedtwo-way min-cutwith sides w and 3 . We needto
show that ô meetsi or bothsidesthereof.For thesake of contradictionsupposeit is not so.Thenwithout
lossof generalityôq|lw , which impliesthat w meetsevery &�· and 'â· . Clearlythen &�·h{pf3gjri , for every
å . Also notethatby Lemma3.12 3 cannotcontaindisconnectedtight setslargerthan

=YX
D[Z .

Therearenow threecasesto consider, dependingon the relationof i to the sets d · . First, suppose
i doesnot stronglycrossany dE· . We show that é~-�3£e�¹õdE· 1 is a two-way

=
D[Z -balancedcut thatwasnot

excludedfrom ¡ (seeFig. 4a),andthis contradictsthestoppingconditionof thealgorithm. If i strongly
crossesexactly one dE· , thenwe replacei by thecut i U LNé�-�3+¤Ù'â· 1 (seeFig. 4b). i U doesnot strongly
crossany dE· , sowe applytheargumentfrom thecaseabove to show that iûU is detected.Thereforethereis
at leastonedetectorin set 3 , which contradictsour assumption.Finally if noneof thesetwo casesapply
then i stronglycrossesat leasttwo setsamongÚ0dE·	Û , say dE· and d¿ã . An argumentusingtheTwo-Quarters
Lemmathenshows that d · and d ã partition i into thesamesubsets(seeFig. 4c). We thenprove that d ·
and d¿ã cutoff a largeconnectedsubset3 U of 3 suchthat é�-�3 U 1 is a two-way - =

D[Z /K7
1
-cut notdeletedfrom

¡ , which thusviolatesthestoppingcondition. �
3.3 Full proof of Thm. 3.8

Lemma 3.13 Supposei is * -balancedand &�· meets3 . Theneither there is a detectorin 3qjli or the
followingconditionshold:

(a) i stronglycrossesdE· , and
(b) é~-�3�¤�'â· 1 is a two-way ü =D[Z -balancedmin-cut.

Proof: Supposethereis nodetectorin 3Nj�i . Since&�· and '�· eachcontainadetector, they meet w . Now
we caninvoke theTwo-QuartersLemmato quarters'â·2¤õw and &�·Ç¤R3 andconcludethat &�·Ç¤£3 is tight.
We claim that ` ' · ¤�3¦`¾) ü =D[Z $ . Indeed,otherwise ` & · ¤¦3¦`¾) =YX

D[Z , so by Lemma3.12 é~-�& · ¤¦3 1
is a

two-way cut,whichcontradictsLemma3.11.Claim proved.
This proves(a) andshows that é�-�' · ¤£3 1

is an ü =D[Z -balancedcut. To complete(b), notethat ' · ¤£3 is
tight by theTwo-QuartersLemma,soby Lemma3.12 é~-�'â·Ç¤�3 1

is two-way. �
Let i bean * -balancedtwo-waymin-cutwith sidesw and 3 . Weneedto show that ô meetsi or both

sidesthereof. For thesake of contradictionsupposeit is not so. Thenwithout lossof generalityô}|�w ,
which implies that w meetsevery &�· and 'â· . Clearly then &�·Ã{pq3×jli , for every å . Also notethat,by
Lemma3.12 3 cannotcontaindisconnectedtight setslarger than

=YX
D[Z . Therearethreepossiblecaseswhich

we prove separately:
1. i doesnot stronglycrossany dE· .
2. i stronglycrossesexactlyone dE· .
3. i stronglycrossesat leasttwo dE· ’s.

1. Cut i does not strongly cross any d · . To re-usethis proof for thesecondcase,we will assumethat
i is only ü =D[Z -balanced,ratherthan * -balanced,

Sincewe assumedthat dE· doesnot stronglycrossi by Lemma3.13we have all &�· ’s aredisjoint with
3 . Using this factwe show thateachdE· excisesa smalla pieceof sizeat most 7 from 3 , andfinally we
show that 3Re�¹�dE· is large, tight, connected,andpreserves ¹?&�· , andthusalgorithmcould have madeat
leastonemorestep.

Let dE· Ô /,dE· ç / º º º�dE·þý beall cutswhich areintersectingwith 3 . Let 3½ãFL�3¥mö3�¤ ø ã ÿ ù D dE·�� , i�ãFL
é�-�3 ã 1 and w ã LT]TmHi ã mH3 ã . First of all

` 3½ã�`�)Ý` 3�`"m
ã�

ÿ ù D
` dE·��2`�)�� *S��«$£m�7

S��
* )�� *S��«$
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Thelasttransitionis because7Ù^ =.ç
O Z $ .

We will prove by induction that each 3½ã is tight, connectedandcorrespondingcut i�ã�LÉé�-�3½ã 1 is
two-way for every

� ^�æ:^
	 .
Supposewe did that, then 3�� by its constructionis disjoint with any dE· , andthusall &�· ’s aredisjoint

with i � , andhencelie in ]�m�3 � m�i � , thereforei � preserves ø & · (becausei � is a two-way cut). On the
otherhand ` 3���`s) O =D[Z $ and `aw
��`s)q`awM`s)�*Pé . So i�� is O =D[Z -balancedtwo-way min-cutandpreserves ø &�· ,
thusouralgorithmcouldhave madeonemorestep,andsowe cometo contradiction.

Now we have to prove our claim. Clearly 3 Z is tight, connectedand é~-�3 Z
1 L�i is two-way by our

definitionof i and 3 . Supposetheclaimholdsfor 3½ã � D , we now prove it for 3½ã . Wehave

3½ã�L�3½ã � D mH3½ã � D ¤�dE·��âL�'â·��h¤R3½ã � D º
If 3½ã is disjoint with dE·�� then 3½ã�L�3½ã � D andwe areimmediatelydone.Otherwise,i�ã � D weaklycrosses
dE·�� . (Indeed,3½ã � D is not preservedby dE·�� , and w?ã � D�� w andhencemeetsboth &�·�� and 'â·�� andsonot
preserved.)But thenwe satisfyconditionsof theTwo-QuartersLemma,where&�·��b¤Rw?ã � D and 'â·��b¤M3½ã � D
is notempty, andthus 3½ãâL�'â·��\¤£3½ã � D is tight. Thereforeby Lemma3.12 3½ã is connectedand é�-�3½ã 1 is
a two-way cut. Thisprovestheclaim.

2. i strongly crosses exactly one dE· . Indeed,considerset 3 U L 3Ü¤H'â· . By Lemma3.13 andour
assumptionthat therewereno detectorsin 3�jli , it hassizeat least ü =D[Z $ , is tight andcorrespondingcut
i U Ll3+¤�dE·Çj~dE·Ç¤�iTj~iT¤�'�· is two-way min-cut.

Since 3:Uäp×3 , andonly one &�· meets3 (andit doesnot meetwith 3:U by our construction),no &�·
meetswith 3MU . Thereforeby Lemma3.13 iûU doesnotstronglycrossany d · andthusby thecase(3.3) iûU is
detectedby ô . Thisprovesthatthereisatleastonedetectorin iûU�j�3:U , andbyconstructioniûUIj�3:U®pf3£j�i ,
andthereforethereis at leastonedetectorin 3Ýj�i , contradiction.

3. i strongly crosses at least two dE· ’s. Wehave to prove thateither 3�jzi containsat leastonedetector
from ô (andthuscontradictingourassumption),or wecouldhave doneonemorestepof thealgorithm &âª .
Without lossof generalityi stronglycrossesd D and d O . (Fig. 4c).

First we prove that eachof the triples -�& D /,d D /P' D
1

and -�& O /,d O /P' O
1

partition set i into the same
subsets. Namely, d D ¤�i Lßd O ¤~i , & D ¤�i L ' O ¤~i and ' D ¤�i L & O ¤�i . Indeed, i L
i¸¤H&�·�jNi¸¤�dE·�jTi¸¤H'â·è/ andsince & D pk' O , we have that iq¤H& D p¶i¸¤�' O , andanalogously
i�¤û& O pgi�¤û' D , but by theTwo-QuartersLemmawehave ` i�¤û& D `�L¸` i�¤û' D ` and ` i�¤û& O `CL�` i~¤¿' O `
andthus i�¤R& D L�i�¤R' O and i�¤R& O L�i�¤R' D , andthus d D ¤Ri+Lld O ¤Ri .

Wewill prove thateitherthereis a leftover part 3MU in 3 , whichcouldhave usedfor thenext stepof the
algorithm,or i is detected.

SincedE· (i=1 or 2) stronglycrossesi , 3 is partitionedby dE· on threenonemptyparts 3MU· LN3�¤R'â· ,
3MU U· LÝ3¸¤õ& · and 3:U U U· L+3¸¤£d · . Now, by Lemma3.13andour assumptionthat ô�¤H-�3¸jfi 1 L+÷ , we
concludethat 3 U· is tight, 3 U· )¥ü =D[Z $ and é~-�3 U· 1 is two-way min-cut.

Consider3MUbL_3:UD ¤z3:UO . We claim that thecorrespondingcut  _L_é�-�3:U 1 is a two-way - =
D[Z /K7

1
-cut

thatpreserves ¹?&�· . This contradictsthestoppingconditionof thealgorithm: it couldhave madeonemore
iteration.Thereforeit remainsto prove theclaim.

Firstly, 3:U is tight by theTwo-QuartersLemmaappliedto cuts é�-�3:UD
1

and é�-�3:UO
1
. Its sizeis

` 3 U `CL�` 3 UD ¤�3 UO `�L¸` 3¸mg-�3 U UD jö3 U U UD
1 ¹¦-�3 U UO j�3 U U UO

1 `�)g*P$£m�ª°- *,$S�� jo7 1 )�� *S�� $²/
so(1)   is

=
D[Z -balanced,and(2) 3 U is connectedby lemma3.12andtheassumptionthat ô is disjoint with

i¸jN3 . Since  nL -Yd D ¹¦d O
1 ¤o-�3Ü¹Hi 1

, we concludethat (1)   is two-way, since ]�ml3:U«mT  is
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connectedasa unionof threenon-disjointconnectedsubsetsw , & D and & O , and(2)   is disjoint with ¹?&�·
by Lemma3.9.

To prove that   preserves ¹?&�· it remainsto show that all &�· ’s aredisjoint with 3 U . Indeed,suppose
some&�· meets3MU . It cannotbeproperlycontainedin 3 , hencein 3:U . So,since &�· is connected,it meets
  , contradiction.Claim proved. �

4 Extensions and further directions

Therearea numberof naturalquestionsleft openby this work. Oneis to investigatewhetheran -.* /K7 1 -
detectionsetfor nodefailuresof minimumsizecanbecomputedin polynomialtime for a givengraph # ;
this would parallel the per-instanceresultwe obtain for edgefailures. We notethat Section3.1 provides
suchanoptimality resultfor nodefailureswhentheadversaryis restrictedto deletinga shredder.

We believe it would be interestingto extendour resultson nodefailuresto obtainboundsfor strong
detectionsets.In fact,ourboundsfor shreddersapplyalreadyto thecaseof strongdetection;andin Theorem
B.1 in the Appendix we provide a further step in this direction. Essentially, TheoremB.1 assertsthat
it suffices to have a strong -.*0/K7 1 -detectionset 3 U for somesubgraph# U L -6]²/Pc U 1 of # of the same
connectivity 7 . In particular, we canwithout lossof generalityassumethat # is minimally

%
-connected.

It would clearly be interestingto obtain resultson detectionsetswith respectto adversariesthat can
deletea numberof nodesequalto a constanttimesthenode-connectivity, by analogywith our resultsfor
edge-connectivity. To obtain detectionset boundsherethat are independentof the value of 7 , it is not
difficult to seethatwe needto focuson weakdetection;indeed,thereexist graphsin which we would need
at least

% m�7 nodesin any strong -.* / %21 -detectionsetfor nodefailures.
Finally, theproblemof decidingwhethera givenset 3 is an -.*0/ %21 -detectionsetprovidesanotherclear

connectionto theproblemof balancedseparatorsin graphs:indeed,decidingwhethertheemptysetis an
-.* / %21 -detectionset is coNP-completebecauseof its equivalenceto a balancedseparatorproblem. On the
otherhand,usingtechniquesfrom [10, 20], wecanobtainapolynomial-timealgorithmfor decidingwhether
3 is an -.* / %21 -detectionsetfor nodefailureswhen

% L�7 ; this is non-trivial dueto thefactthattherecanbe
exponentiallymany min-node-cuts.

Acknowledgments. It is ourpleasureto acknowledgethecontribution of LaszloLovász;discussionswith
him abouttheprospectof parameterizingdetectionsetsby theminimumcut sizeprovideda portionof the
motivationfor thiswork, andalsoled to theresultsdescribedin Section2.2.
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Appendix A: Cacti

For thesakeof completenesswe’ll proveseveralwell-known factsaboutcactithatweusein Subsection
3.1.Let’srestatethedefinitions.Cactusis agraphwhereany two cycleshaveatmostonevertex in common.
In a cactus,someedgesarecontainedin a propercycle (cycleedges), andsomearen’t (pathedges). Each
cycleedgehascapacity1/2; eachpathedgehascapacity1. Nodesof degreeonearecalledleaves, nodesof
degreetwo thatarecontainedin acyclearecyclenodes, andall othernodesarebranch nodes. For abranch
nodeu of acactusv , u -componentsaretheconnectedcomponentsof vfmHu .

Fact A.1 Characterizationof min-cutsof a cactus:
(a) each pathedge is a cut,
(b) anytwocycleedgesfromthesamecycleforma cut,
(c) a min-cutis eithera pathedge or a pair of cycleedgesfromthesamecycle.

Proof: Let v beacactus.

(a) Let ÆÇu bea pathedge.If thereexistsa Æsu -pathÊ not containingtheedgeÆsu , then ÊEjöÆÇu is a cycle,
contradictingthedefinitionof apathedge.ThereforeÆ and u areseparatedin vfm�ÆÇu . So ÆÇu is acut
in v .

(b) Let � D , � O becycleedgesfrom thesamecycle w . � D j�� O splits w into two arcs,call them w D and w O .
Supposew D and w O areconnectedin v~m�� D m�� O . Thenthereexist verticesÆõyzw D , u�yzw O suchthat
thereis a Æsu -pathÊ thatdoesnot intersectwith w exceptfor theendpoints.Let w�U bethe ÆÇu -arcof w
thatcontains� D . Then ÊMj�w U is a cycle in v thatshares)Ýª verticeswith w , contradiction.So w D
and w O arenot connectedin vfm�� D m�� O . Therefore� D j�� O is acut in v .

(c) Supposed is amin-cutof v thatis neitherapathedgenorapairof cycleedgesfrom thesamecycle.
Sincethe capacityof d is ^ S

, it consistsof oneor two cycle edges.So thereis a (proper)cycle
w suchthat d containsexactly oneedgeÆsu�y�w . Since d is a min-cut, it mustseparateÆ and u .
However, they areconnectedby w�m¦ÆÇu . Contradiction.

Fact A.2 Let u bea branch nodeof a cactusv . Thenthecyclesthatcontain u arepairwisedisconnectedin
vfm�u .
Proof: Let w , w�U be cycles that contain u . Let ÆÇu , ÆÇU�u be edgesin w , w�U , resp. SupposeÆ and ÆsU are
connectedin v�mzu , i.e. thereis a ÆsÆ U -pathÊ notcontainingu . ThenÊ¿jHÆÇu�j�u�Æ U is acycle thatshares)gª
verticeswith w (and w�U ), contradiction.So w and w�U aredisconnectedin vgm�u . �
Proof of Fact 2.1:

(a) Let x bea componentof a min-cut w . By FactA.1 w is containedin a cycle, so w_|�v�� d�j�u�� for
someu -componentd . Thereforeif i is any other u -componentthen i�jöu is connectedin vge�w .
i�|gx follows sinceu:yzx and x is connectedin v�eäw .

(b) Supposex meetstwo u -componentsthenthey areconnectedin vfm�u (via x ), contradiction.
(c) Supposed meetsboth x and ]Nm�x . Thenby (b) if uMyzx then ]�m~xö|od , else x�|od .
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Appendix B: Strong detection

Wepresentapartialresulton extendingstrongdetectionsetsfor * -shreddersto thosefor general-.* /K7 1 -
cuts. Essentially, we show that it sufficesto have a strong -.* /K7 1 -detectionset 3MU for somesubgraph#�U5L
-6]b/Pc½U 1 of # of thesameconnectivity 7 .

Theorem B.1 Suppose7 G *,$ and we havea strong -.* /K7 1 -detectionset 3 U for a 7 -connectedsubgraph
#�U«L×-6]b/Pc½U 1 of # . Thenwecanuse 3MU to constructa strong -.* /K7 1 -detectionsetfor # . Specifically, for a
high-probability resultit sufficesto add 9F- D=�>A@CB D= 1 randomlysampleddetectors. Alternatively, it sufficesto
addat most O = detectors, andthere is a polynomial-timealgorithmto constructthem.
Proof: Let 3 U U beasmallestdetectionsetfor * -shreddersof # . Let x bean -.* /K7 1 -cut # . Then x is an -.* /K7 1 -
cut in #�U suchthateachx -componentin # is a unionof x -componentsin #�U . Obviously, if x -components
arethesamein # andin #�U , then 3MU detectsx . Therefore,if 3:UK¹½3:U U doesnotdetectx , then x is a two-way
-.* /K7 1 -cut in # but ashredderin # U . Call suchcutsevil. Thereforeit sufficesto detectall evil cuts.

For anevil cut x , thetwo componentsof x in # arecalled x -shores. Weneedto put a detectorin each
x -shore. For the restof theproof we canforget about # . We operate(only) on # U andtreat x -shoresas
unionsof componentsof x in #�U . Theproof is similar to thatof Thm.3.1.

Evil cutsare * -shreddersin #�U , sothereareat most $ of themandthey canbeefficiently listed. Let ¡ Z
bethefamily of all evil cuts.Startwith ¡�Lg¡ Z . While thereexists x~y£¡ suchthateachx -shorecontains
an ¡ -headof x , delete x from ¡ (becauseby Lemma3.5 x is detectedby 3:U ). Let ¡ D be the resulting
family of evil cuts.Clearlyif 3 is adetectionsetfor ¡ D then 3Ý¹�3 U is adetectionsetfor ¡ Z .

Say Þ}|l] is aheadof x if Þ is an ¡ D -headof x . Let thetail shoreof x~yÙ¡ D bethe x -shorethatdoes
not containany headsof x (suchshoreexistsby constructionof ¡ D ). Observe that for any two x�/áv�y¦¡ D
thetail shoreof v is containedin aheadof x (andviceversa).Why? v meetsexactlyonecomponentof x ,
say Þ (so Þ is ahead).By Lemma3.4 Þ containsall v -componentsbut one,call it w . w meetsx , thus w
is ahead.Therefore,thetail shoreof v is containedin Þ .

By theobservationabove, thetail shoresof cutsin ¡ D arepairwisedisjointandmoreover (assuming¡ D
consistsof at leasttwo cuts)putting a detectorin eachof theseshoresstronglydetects¡ D . Sincethe tail
shoreshave size )q*P$ each, ` ¡ D `8^�D= . Thereforewe need D= detectorsfor ¢ Z , which togetherwith 3MU U is
^ O = detectors.For a randomsamplingresultnotethat it sufficesto augment3 U by a hitting setfor thetail
shoresof ¡ D andthetailsof * -shreddersof # , asdefinedin theproof of Thm.3.1. �
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