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Abstract

We considera modelfor monitoringthe connectvity of a network subjectto nodeor edgefailures.
In particular we are concernedvith detecting(e, k)-failures eventsin which anadwersarydeletesup
to k network elementgnodesor edges) afterwhich therearetwo setsof nodesA and B, eachat least
ane fractionof the network, thataredisconnectedrom oneanother We saythata setD of nodesis an
(¢, k)-detectionsetif, for any (e, k)-failure of the network, sometwo nodesin D areno longerableto
communicatejn this way, D “witnesses”ary suchfailure. Recentresultsshow thatfor ary graphG,
thereis an (e, k)-detectionsetof sizeboundedby a polynomialin k¥ ande, independentf thesizeof G.

In thispaperwe exposesomerelationshipbetweerboundsondetectiorsetsandtheedge-connectity
A andnode-connectity x of the underlyinggraph. Specifically we shav thatdetectionsetboundscan
be madeconsiderablystrongerwhenparameterizethy theseconnectvity values. We show thatfor an
adwersarythatcandeletek A edgesthereis alwaysa detectiorsetof sizeO(% log %) which canbefound
by randomsampling. Moreover, an (e, A)-detectionsetof minimum size (which is at most%) canbe
computedn polynomialtime. A crucialpointis thattheseboundsareindependentot just of the sizeof
G but alsoof thevalueof .

Extendingtheseboundsto nodefailuresis muchmore challenging. The mosttechnicallydifficult
resultof this paperis thata randomsampleof O(% log %) nodesis a detectionsetfor adwersarieghat
candeletea numberof nodesupto &, the node-connectity.

For the caseof edge-hilureswe useVC-dimensiontechniquesandthe cactusrepresentatiowf all
minimum edge-cutf a graph; for nodefailures,we develop a novel approachfor working with the
muchmorecomplex setof all minimumnode-cutof agraph.

1 Introduction

Monitoring network connectivity. As links or nodesfail in a network, it is importantto maintaininfor-
mationaboutbasicpropertiessuchasconnectiity. For large, unstructuredhetworks, this is often doneby
recoursdo samplingandotherapproximataneasurementgerformingsuchmeasurements arobustand
accurateway is an active researchopic (e.g. [4, 5, 17, 19, 18]). A generalproblemhereis to minimize
the costof network monitoringandmeasuremenin termsof communicationcomputationandresource
usage.

Herewe considera modelproposedy the first authorfor monitoringnetwork connectyity [14]. We
aregiven a connectechodegraphG onn nodes,andwe wantto detect‘failure events”in which at most
k network elementgnodesor edgesyredeleted afterwhich therearetwo setsof nodesA and B, eachof
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size> en, suchthatno nodein A hasa pathto any nodein B. We will call sucha pair of setssepaated
andwe will call suchaneventan (e, k)-failure. (To reflectthe factthatthe £ nodeor edgefailurescanbe
arbitrary we will sometimespeakof themasbeingselectedy anadwersary)

To detectsuchfailures, we considerthe stratgy of placing “detectors”at a subsetD of the nodes
of G. Now, if we find thattwo detectorsare unableto communicate— either becausehereis no path
betweenthem, or becausene hasbeendeleted— we canrecorda fault in the network. We would like
our set D to have the propertythat wheneer an (e, k)-failure occurs,sometwo detectorsare unableto
communicatewe will referto suchasetD asan (e, k)-detectionset. Note the natureof this condition: D
mustdetectall possible(e, k)-failures,sowe imagine D asbeingchoserbefoe the adwersaryselectsa set
of k network elementgo delete.Theemphasisn [14] wason finding a boundon the numberof nodesthat
mustbe randomlyselectedrom a graphG in orderto obtainan (e, k)-detectionsetwith high probability
Improvementdo theseboundswereobtainedby [7].

In this paper we adopta somavhat differentapproacho this issue,by exposingsomeinterestingand
non-trivial connectiondbetweenthe size of the smallestdetectionsetfor a graphG andthe valuesof its
edge-andnode-conneatity. (Theedge-conneatity of G, denoted\(G), is the smallesimumberof edges
thatmustbe deletedn orderto disconnecti. Thenode-conneatity of G, denoteds(G), is theanalogous
guantity for nodedeletions.) We shawv that strongerboundson detectionset size can be obtainedif we
parameterizéheseboundsby the connectiity values) andx; andfor somecasesye usethis relationship
with connectiity to provide thefirst perinstanceguaranteefor detectiornsets.

Becauseour resultsare differentdependingon whetherthe adwersaryis deletingedgesor nodes,we
considerthesetwo caseseparately

Detection sets for edge failures. We begin with adwersarieghat candeleteup to k£ edges;assuch,we
will be concernedvith (e, k)-edge-failures which are (e, k)-failuresin which only edgesaredeleted.lt is
known thatarandomsetof O(% log %) nodess an (e, k)-detectiorsetfor edgefailureswith high probability
[14], andthatevery graphcontainsan (e, k)-detectionsetfor edgefailuresof sizeO(%) [7]; notethatboth
boundsareindependentf the sizeof thegraphG. It is notdifficult to shav thatboth boundsaretight, and
sothereis no prospecf obtainingan improvementthatappliesto all graphs.However, it makessensdo
askwhetheretterboundsarepossiblein termsof naturalparametersf thegraphG.

An obvious parameteto considethereis the edge-conneatity \; indeed therecanbeno (e, k)-edge-
failuresin G if k& < A. Our first mainresultestablisheshat ) is indeeda naturalway to parameterizéhe
problem;we show thatevery graphG hasan (e, \)-detectionsetfor edgefailuresof sizeat most%. Note
thatthereis no leadingconstanin this bound,andthatit is independenhot just of the sizeof G but also
of the value of A\. Extendingthis result,we shawv further thatan (e, \)-detectionsetfor edgefailuresof
minimumsizefor a graphG canbe computedn polynomialtime. The algorithmsusedto establishthese
resultsarebasedn the cactusrepresentationf all minimumedge-cutof G [6, 8].

Given that strongboundsare possiblefor detectingan adwersarythat can deleteone minimum cut’s
worth of edgesiit is naturalto askwhat canbe said aboutan adwersarycapableof deletinga numberof
edgesequalto k£ timesthe size of a minimum cut. We shav thata randomset of O(% log %) nodesis a
(k X, e)-detectionsetfor edgefailureswith high probability Thisis essentiallyafactorof A timesstronger
thanthe boundsof [7, 14], which did not take edgeconnectiity into account.Our proof of this resultuses
aVC-dimensionagumentin the style of [14]; theboundon the VC-dimensionis obtainedusinga resultof
Mader[16, 9]. thatextendsresultsof Lovasz[15] andof Cherkasski[3] on edge-disjoinpathsin graphs.

Detection setsfor nodefailures. We now consideradwersariedhatcandeleteupto & nodes.By analogy
with our resultsfor edgefailures,we considerthe sizeof detectionsetsin termsof thenode-connedtity «.
Ourmainresulthereis thatevery graphG (with & = O(e?n)) hasan (e, x)-detectionsetfor nodefailuresof



sizeO(1); moreaer, arandomsetof O(Z log 1) nodesformsan (¢, x)-detectionsetfor nodefailureswith
high probability Again, notethattheseboundsareindependenmotjustof thesizeof G but alsoof thevalue
of k. Extendingourresultsto adwersarieshatdeletekx nodedor k& > 1 is avery interestingandapparently
difficult openquestion.

We notethe distinction,raisedby Gupta[7], betweenstrong andweakdetectionsetsfor nodefailures.
A strongdetectionsetD hasthe propertythat,afterary (e, k)-node-ailure, two nodesof D lie in different
connecteccomponents.A weakdetectionset D’ hasthe propertythat, after ary (e, k)-node-ailure, two
nodesof D lie in differentconnecteccomponentor an elementof D hasbeendeleted. Either of these
definitionsarguably forms a plausibledefinition of network failure detection. Improving a boundof [14],
Fakcharoenphathavedthatarandomsetof O(% log k log 1) nodesis astrong(e, k)-detectionsetfor node
failures[7], and Guptashaved that every graphhasa weak (¢, k)-detectionsetfor nodefailuresof size
O(f). As we notein Section4, weak detectionappeardo be a more useful notion whenthe problemis
parameterizetdy nodeconnectiity; in particular our mainresultis aboutweakdetectionsets.Henceforth,
we will assumehatall detectionsetsfor nodefailuresareweakunlessotherwisespecified.

Our analysisfor nodefailuresis significantlymore complicatedthanfor edgefailures,andthis is not
surprising;notonly is no analogueof the cactusrepresentatioknown for min-node-cutsbut this appearso
beintrinsic dueto the # P-completenessf even countingthe numberof min-node-cutg2]. Indeed given
the lack of tractablerepresentationfor min-node-cutswe believe that our analysisdevelopssomeuseful
propertiesof their structure. We beagin by constructinga detectionset of minimum size for adwersaries
that can deleteshreddes [2, 13] — min-node-cutsvhosedeletion producesat leastthree components.
The constructiorof the detectionsetthenproceedsy greedilyisolatinga maximalcollectionof relatively
balancednin-node-cutghat producejust two componentsandwhose“small sides”aredisjoint; the small
sideof eachsuchcutis requiredio have atleast; nodes Wethenshaw thatby placingdetectorsothatone
lies on the small side of eachof thesecuts,thereis no way for a min-node-cufproducingtwo components
of sizeatleasten eachto avoid beingdetected.

Further Discussion. A simplecalculatiorbasednKarger'salgorithmgivesanupperboundof O(% logn)
on arandomsampleof nodesthatforms an (e, k\)-detectionsetfor edgefailurest However, our goalin
this paperis to find boundsthatdo not dependon the sizeof the graph.

Following [14], we canextendour resultsto amodelin whichthenodesof thenetwork G arepartitioned
into two sets— asetV} of endnodesandasetV; of internal nodes We assumehatwe areonly allowedto
placedetectorsat endnodes,andcorrespondinghareonly interestedn monitoringthe connectiity of the
endnodes. Specifically we re-define(e, k)-failuresasfailuresof < &k network elementsafter which two
disjoint subsetf Vp, eachof size> ¢|V;|, areseparatedrom eachother We canshav thatthe bounds
obtainedabove carryoverto this moregeneraketting;we omit furtherdiscussiorof thegeneralizatiorirom
this versionof the paper

Our work is similar in spirit to someof the work on vertex connectiity and augmentatiorthereof,
e.g.[12, 2, 13, 11]. The actualtechnicalissuesare quite different, however, sincewe areonly interested
in balancedcuts. In generalone could view our work hereasintegrating notionsfrom edge-and node-
connectvity with the problemof balancedseparator®f graphs— two topicsthat have traditionally been
approachedeparatelylueto their greatdifferencesn tractability

Notation. In thispaperall graphsareassumedndirectedpurstandardhotationfor agraphis G = (V, E).
An edge(node)-cus asetX of edgeqnodes)suchthatG \ X is disconnected.

INotethatno suchsimpleboundis availablefor the caseof node-ilures,which is yet anotherevidenceof its difficulty.



A min-edge(node)-cus an edge(node)-cubf minimum size. This sizeis alsoknown asedge(node)-
connectivityand denotedby A\ and k respectrely. We will write min-cutwhenit is clearwhetherwe are
talking aboutedge-cut®r node-cutsA setof nodess tight if it is aunionof some(but notall) components
of amin-cut. A cut X is callede-balancedf therearetwo setsof verticesof size> en thataredisconnected
from oneanotherin G \ X. An e-balancectutof < k edges(nodes$ calledan (e, k)-cut.

If setsX, Y have anon-emptyintersectionwe say X meetsY . To help clarify the notationin places,
we will sometimeswrite X + Y to denotethe union of disjointsetsX andY, and X — Y to denotethe
differenceof setsX andY for whichY C X.

2 Detection setsfor edge failures

In this sectionall cutsare edge-cutsandall detectionsetsarefor edgefailures. Let D be a setof nodes,
representinghelocationsof our detectors.D detectsacut X if somepairof detectorss separateth G\ X.
D isan(e, k)-detectionsetif it detectevery (e, k)-edge-cut.

Therearetwo subsectionsin thefirst onewe constructa smallest(e, A)-detectionsetandprove it has
size< 1. Inthesecondnewe prove thatasetof O(% log 1) randomlysamplechodesis an(e, k)-detection
setwith high probability

2.1 Detection setsfor min-edge-cuts

Cactusrepresentation. Edgeswill beviewedascyclesof lengthtwo; cyclesof length3 or morearecalled
proper. A cactusis a connectedyraphsuchthatarny two of its cycleshave at mostonevertex in common.
An arbitrary cactuscan be obtainedstartingfrom a cycle andrecursvely addingnew cyclesthat sharea
singlevertex with the existing graph.In a cactussomeedgesarecontainedn a propercycle (cycleedges,
andsomearent (pathedge9. Supposeve give eachcycle edgecapacityl/2, andeachpathedgecapacity
1. Thenthemin-cutsof a cactushave capacityl: eachpathedgeis a min-cut; ary pair of cycle edgesfrom
the samecycle is amin-cut;andthereareno othermin-cuts(seeFactA.1).

In a cactusnodesof degreeonewill be calledleaves nodesof degreetwo thatarecontainedn acycle
will be calledcyclenodes andall othernodeswill be calledbranch nodes Considera branchnodewv of a
cactusT'. It connectdwo or morecycles.By FactA.2, theremoval of v splitsT into two or moreconnected
componentgv-componen)s Eachv-componentX is tight: for somecycle C containing, it is obtained
by remaoving theedge(s)pf C thatareadjacento v.

Fact 2.1 Suppose is atight setin cactusT’, v is a branc node Then:
(a) if v € S thenS containsat leastonev-component.
(c) if v € S thenS is containedn a v-component.
(c) for anywv-componeniX of 7', eitherX C S,orSC X,or X CV —-S,orV —-§C X.
Proof: SeeAppendixA. O

Let G beaweightedgraphonn vertices.A cactus-pairof G is a pair (T, 7) whereT is a cactus,and
7 is amappingfrom V(G) to V(T') suchthatif M is atight setin T then7—!(M) is atight setin G. For
eachtight setM of T saythat (T, 7) represent¢he min-cutC' of G suchthatw—! (M) is a C-component.
A cactusrepresentatiorof G is a cactus-paiof G thatrepresentsll min-cutsof G. Dinits etal. [6] proved
that every capacitatedyraphhasa cactusrepresentationf size O(n). Furtherresultsshav thata cactus
representationof sizeO(n) canbeefficiently constructedSeetheintroductionof [8] for discussion.



Balanced cactus representation. Herewe areonly interestedn e-balancednin-cuts,andsothe cactus
representatiors too generaffor our purposesThis motivatesthefollowing definitions.

Let an e-cactus-pairbe a cactus-pairthat representsll e-balancedmin-cuts. Let an e-cactusbe the
cactusin suchcactus-pai(if themappingis clear).A subsetS of verticesof acactuss heawyif |7=1(S)| >
en. Call a cactus-paireducedif every v-componenis heary. A reducede-cactus-paircanbe efficiently
computedrom a standarccactusrepresentatioby consecutiely applyingthe following reduction.

Lemma 2.2 Supposé’ is ane-cactusy is a branch node X is a v-componenthatis notheavy LetT’ be
T with X contractedinto v. ThenT” is alsoan e-cactus.

Proof: For eache-balancednin-cutC of G thereis amin-cutC’ of T thatrepresent#t. By Fact2.1cthere
is acomponentS of C’ suchthatX ¢ Sor S C X. SinceS is heary and X isn't, it mustbethe casethat
X is apropersubsebf S. Thenv € S, soC’ is amin-cutin T", too. Thereforel” represents. O

Characterizing detection sets for min-cuts. Let G be a capacitatedyraph. Let (7', 7) be a reducede-
cactus-paiof G. We will characterizge, A)-detectionsetsof minimumsizein termsof 7.

Let asubcycleneasetof consecutie cycle nodesof a(proper)cyclein T'. Considethenon-degjenerate
casewhenthereis at leastonebranchnode. Thenthe weight|z 1 (-)| of eachleaf andeachsubgcle is at
most(1 — ¢)n. Let acanonicalsubcactude a setof nodesof T' thatcontainseachleaf, hasanelementin
every heary subgcle, andcontainsno branchnodes.Let D C V(G) be a setof detectors(nohecessarily
an (e, \)-detectionset). Say D is T-canonicalif (D) is a canonicalsubcactusandat mostonedetectoris
mappedo eachnodeof T'. Thefollowing two lemmasshav thatary smallest(e, A)-detectionsetis in fact
asmallestr’-canonicaket.

Call S C V heawyif |S| > en, andbalancedif bothS andV \ S areheay. Call S’ C V(T') balanced
if #=1(S") is balanced For eachbalancedight setS of G let 7' (S) bea (balanced}ight setS’ of T such
thatS = = 1(5").

Lemma 2.3 Anysmallest(e, A)-detectionsetis T-canonical.

Proof: Let D beasmallest(e, \)-detectionset. Call elementf D detectos. We needto prove that(1) at
mostonedetectoris mappedo eachnodeof T, (2) thereis a detectommappedo eachleaf andeachheary
subgcle of T', (3) andno detectorsaaremappedo branchnodesof T'. We’'ll prove thesethreestatementin
order

(1) Supposeawo detectorsl;, do mapto anodev of T'. To obtaina contradictionit sufficesto shav an
(e, A)-detectionsetsmallerthanD. We claimthat D — d; is alsoan (e, A)-detectionset. Supposenot. Then
thereis abalancedight setS of G thatcontainsD — d;. Obviouslyd; ¢ S. LetS" = #(S). Sinced, € S,
v =m(dy) € S',sod; € S, too,acontradiction.

(2) Thereis a detectomappedo eachheavy tight setof T, in particular to eachleaf andeachheary
subgcle.

(3) Supposea detectord is mappedo abranchnodev of T'. By analogywith (1), we claimthatD — d
is alsoan (e, A)-detectionset. For supposeiot. ThenD — d is disjoint with somebalancedight setS. Let
S" = 7'(S). SinceD is an (¢, A)-detection set,d € S, sov € S’. Thereforeby Fact2.1a$’ contains
somev-components”. SinceT is reducedS” is heary, sothereis adetectomappedo it. So.S containsa
detectorotherthand, a contradiction.

In view of (1), (2), and(3), we seethat D is T-canonical. O

Lemma 2.4 AnyT-canonicalsetis an (e, A)-detectionset.

Proof: SupposeD C V andw(D) meetseachleaf andeachheay subgcle of 7. We needto prove that
(D) meetseachheavy tight setof 7'. To shav thiswe claimthatary heavy tight setS of T' containsaleaf
or aheary subgcle.



Figure1: An e-cactuswith detectors.Branchnodesare denotedby 'e’, detectorsby '*. In the central
cycle, therearethreesubgclesbetweenthe branchnodes. The smallestof themis not heary, hencedoes
not containa detector The othertwo arebig enoughsothatthey needtwo detectoreach.Eachof thethree
smallercyclesis heary (evenwithoutits branchnode),sinceotherwiseit would have beencontracted.

We'll useinductiononthesizeof S. Thebasecasecorresponds$o an S thatconsistsof onevertex, say
v. By Fact2.lav cannotbe a branchnode. So eitherw is aleaf or it is a heary subgcle consistingof a
singlecycle node.

For theinductionstep,notethatif S containsabranchnodev thenby Fact2.1a$ containssome(heary)
v-componentss’, to which theinductionhypothesisapplies.If S doesnot containany branchnodesthen
it lieswithin asinglecycle,so S is a (heary) subgcle. Theclaim follows. O

Theorem 2.5 A smallest(e, A)-detectionsetis of sizeat most%. Thee is a polynomial-timealgorithmto

constructit.

Proof: Let (T, 7) be areducede-cactus-pairof G. We have seenthat smallest(e, \)-detectionsetsare
(mappedo) smallestcanonicakubcactiof T'. Thereforet sufficesto computea smallestcanonicakubcac-
tusof T'.

Let S beasubsebf apropercycle C'in T. Call S a C-detectionsetif S doesnot containary branch
nodes,and every heary subgcle of C' containsan elementof S. By definition, if thereare no heary
subgclesin C thenanemptysetis a C-detectionset. Obviously, a subsetof T' is a canonicalsubcactus
iff it is a union of leavesof T and (disjoint) C-detectionsets,onefor eachpropercycle of T. Therefore
to computea smallestcanonicalsubcactusf 7' it suficesto constructa smallestC-detectionsetfor each
propercycle C of T'.

The constructions asfollows. AssumingT’ consistsof morethanonecycle, C containsone or more
branchnodes AssumingC containscycle nodespick ary branchnodew, followedby acycle nodev. Start
with ». In the iteratve step,startwith a cycle nodeand move clockwisealongC' till a heary subgcle is
detectedcall this subgcle selectedl or abranchnodeis reached Starta new stepwith the next cycle node.
Stopwhenwy is reachedLet S bethesetof thelastnodes(clockwise)of selectedsubgcles.

Obviously S is a C-detectionset. S is a smallestsuchsetby the following obseration. Let S’ be a
C-detectiorset.Letv € C beabranchnodeor anelemenif S’. Letv’ bethenext nodeclockwise.Let C’
bethe smallestheary subgcle startingwith ', if it exists. Let w bethelastnodeof C’. ThenC’ contains
atleastoneelemenif S. Theobsenrationis thatS’ — C’ 4+ w is a C-detectionsetwith the sameor smaller
numberof elementsConsecutiely applyingthis obseration, we cantransformS’ to S withoutincreasing
thenumberof detectors.

Our constructiomputsonedetectorinto eachleaf of T' andeachselectedsubgcle. Sinceleavesof T' are
heary andselectedsubgclesareheary anddisjoint, our constructioncoversat leasten weightwith each
detector Sincethetotal weightof (nodesof) T' is n, thetotal numberof detectorss at most%. O

2.2 Smaller detection setsfor edgefailures

A setS of nodeds k-edge-sepaableif thereexistsasetZ of < k edgessuchthatS is aunionof components
of G\ Z. Let F bethefamily of all k-edge-separablgets.We saythat A C V is shatteed by F if for all
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B C AthereexistsanF' € F suchthatB = AN F. TheVC-dimensiorf F is definedto bethemaximum
cardinalityof asubsebf V thatis shatteredy F.

In [14], it wasshavn thatonecanconnectthe VC-dimensiond of F with (e, k)-detectionsetsvia the
notion of ane-net which is a setthatmeetseachF' € F of size> en. Specifically atheoremby [1] says
thata setof O(% log% + %log %) randomlysamplechodesis ane-netfor F with probabilityatleastl — 6.2
Moreover, it is easyto shav [14] thatane-netfor F is an (¢, k)-detectionset.

In [14], it wasshawvn thatthe VC-dimensionof F is atmost2k + 1, yielding aboundof O(% log %) on
thesizeof an (e, k)-detectionset. In this sectionwe strengtherthe VC-dimensiornboundon F to O(§). As
aconsequencaye will obtainthefollowing theorem.

Theorem 2.6 A setof O(% log %) randomlysampledhodess an (¢, k)-detectionsetwith high probability.

We now turnto the new boundon the VC-dimensionjo prove it, we will usethefollowing theoremby
Mader[16] on edge-disjointpathsbetweenelementf a given setof vertices.Let R be a subseof V' of
sizer. Letd(R) bethenumberof edgedeaving R. Let ¢(R) bethenumberof component€ of G — R for
whichd(C) is odd. Let an R-pathbea pathconnectinglistinctelementf R.

Theorem 2.7 [16] Themaximalnumberof edge-disjoint R-pathsis %min(z d(V;) — q(UV;)), wheethe
minimumis takenover all collectionsof disjoint subset®f verticesVy, Vs, ... , V,. sud that|V; N R| = 1.

Corollary 2.8 Thereare Q(r\) edge-disjoint R-paths.
Proof: Considera collection of disjoint subsetwf verticesVy, V,,... , V. suchthat|V; N R| = 1. Let
d =>d(V;), g = q(UV;). By theabore theoremit sufiicesto provethatd — g = Q(r)).

Notethatd > rA sinced(V;) > A. Let C; ... C, bethecomponentg’ of G — UV} suchthatd(C) is
odd. All edgesxiting eachC; areto UV;. Sod > d(UV;) > > d(C;) > gA. If r > gthend—q > rA—q >
r(A—1). If r < gthend — g > g\ — ¢ > r(A—1). Therefored — ¢ = Q(r ). O

Thefollowing is awell-knowvn applicationof the probabilisticmethod.

Lemma 2.9 Let(R, F') beamulti-graphon R. Thenthere existsa partition of R into setsR;, Re sud that
there are at least | F| edgsbetweenR; and R;.

Lemma 2.10 TheVC-dimensiorof F is O(%).
Proof: Let R beasubsebf V of sizer. By Cor. 2.8thereexistsafamily P of Q(rc) edge-disjointR-paths.
Let (R, F') beamulti-graphon R suchthatthereis a 1-1 correspondenceetweenuv-pathsin P andedges
uv € F. By Lemma2.9thereexistsapartitionof R into setsR;, R, suchthat(in theoriginal graph)there
areQ(rA) edge-disjoinpathsbetweenR; and Ry. We canchooser = ®(§) sothatthereis guaranteedo
beafamily P’ of (atleast)k + 1 edge-disjoinpathsbetweenR; andR,.

We claimthat R cannotbeshatteredby F. Supposeot. Thenthereexists X € F suchthatXNR = R;.
X is aunionof component®f somecut Z of k or lessedges.Z is disjointwith (atleast)onepathp € P'.
The endsof p arein the sameZ-componentso eitherthey arebothin X, or bothnotin X. In bothcases
this contradictsX N R = R;. Thus,the claimis proved, andit follows that the VC-dimensionof F is
r= O(%) O

2[14, 7] usedaslightly wealer theoremwith a correspondindgpoundof O(% log % + Llog $).



3 Detection setsfor node failures

Themaintheoremof this section(Thm. 3.6) s thatfor x < O(e?n) asetof O(< log ) randomlysampled
nodess aweak(e, k)-detectionsetwith high probability We rely on aspecialcaseof e-shredderswhichis
acorollary of ourresulton strong detectionthereof(Thm. 3.1). We alsopresenta partialresult(Thm. B.1)
on extendingstrongdetectionsetsfor e-shredderso thosefor general(e, x)-cuts.

Beforewe proceed]et’s review the definitions. In this sectionall cutsarenode-cutsall detectionsets
arefor nodefailures. A cut X is calledtwo-wayif G \ X hasexactly two connecteccomponentscalled
the sidesof X. A shredderis a min-cutwith threeor more componentsAn e-shredderis an e-balanced
shredder A setD of nodesstrongly detectsa cut X if somepair of detectords separatedh G \ X. If D
eithermeetsor stronglydetectsX, say D weaklydetectsX. D detectq(is a detectionsetfor) a family of
cutsif it detectsevery cutin thefamily.

The restof this sectionis organizedasfollows. In the first subsectiorwe shav how to find a strong
detectionsetsfor e-shreddersin the secondwve useshredderso geta detectionsetfor two-way e-balanced
min-cuts.Combiningthesetwo resultsgivesusthe maintheorem.

3.1 Strong detection setsfor shredders

It is awell-known factthattherecanbe exponentiallymary min-cuts.Furthermoregvencountingmin-cuts
is #P-completd2]. However, therecanbeonly O(n) shredder$13], with a polynomial-timeenumeration
algorithm[2]. We startby statingthe mainresultof this subsection.

Theorem 3.1 Suppose: < en. Thena setof O(% log %) randomlysampledhodesds a strongdetectionset
for e-shreddes with probability at least1 — . Moreover, a smallesistrongdetectionsetfor e-shreddes has
size< % andcanbeconstructedn polynomialtime

Before we prove this theoremwe needto establishsomebasicfactsaboutmin-cuts. For a cut X the
connectecomponent®f G \ X arealsocalled X -componentsLet S, T' bemin-cuts.SayS meshed if S
meetsat leasttwo T-componentsBy [2, Lemma4.3(1)]if S meshed” thenT meetsevery S-component.
Thusmeshings a symmetricrelation. If S meshed” (andT meshesS), thetwo cutsaremeshing Else S
andT arenon-meshing

Lemma 3.2 ([2], Lemma4.3(2))If min-cutsS andT are meshingthenthereis a component of either S
or T'sut that @ containsV — S —T.

Corollary 3.3 If k < en thenanytwo e-shreddes are non-meshing

Lemma 3.4 Let S and T be non-meshinghreddes. Let C bethe S-componenthat meetsT. ThenC
containsall T-componentsut ong call it C’. Moreover, C’ containsV — S — C, i.e. all S-components
otherthanC.

Proof: Pickary v € S — T. By minimality of S, v hasedgedo eachS-componentelse,S — v is acut).
Thus,V — S — C + {v} is connected.SinceT C SUC,V — T — C is connectedandhencelies in a
T-component’. Soall otherT-componentarecontainedn CandV —S—-CcV -T-Cc C'. O

For a family F of e-shreddersye call a componenbf a shredderan F-headif it meetsat leastone
shreddein F. Now, supposeve have an (e, k)-detectionsetfor shreddersand.S is ane-shreddefvith an
F-headH. ThenthereexistsT € F thatmeetsH ; soby Lemma3.4 H containsall T-componentdut one,
andhencecontainsa detector This givesthefollowing lemma.



Lemma 3.5 LetF bea family of e-shreddes, with k < en, andlet S bean e-shredderwith an F-headH .
Thenanydetectionsetfor F meetsH.

Proof of Thm. 3.1: Let Fy bethe family of all e-shredders.Startwith F = F;. While thereexists an
e-shreddelS € F with two or more F-headsgdeleteS from F. Let F; betheresultingfamily of shredders.
By Lemma3.5ary strongdetectionsetfor F; is a strongdetectionsetfor Fj.

LetS € F;. LettheheadH of S bethe(single)F;-headof S. Letthetail of S beV —S — H. Notethat
by Lemma3.4for ary S, T € F; thetail of S is containedn theheadof T' (andvice versa).In particular
tails are pairwisedisjoint. Sinceeachheadcontainssomeoneelses tail, a setD of nodesis a detection
setfor F; iff D meetsthe tail of eachS € F;. Therefore,a smallestdetectionsetfor F; hassize|F;|.
Sincetails areof size> en each,|F;| < % The randomsamplingresultfollows by a simpleprobabilistic
computation. O

3.2 Detecting two-way min-cuts

In this subsectionve constructa weakdetectiorsetfor two-way (e, x)-cuts. Firstwe give anon-eficientde-
terministicconstructionWe consider( 15, x)-cutsanduseagreedy-typealgorithmto construct“maximal”
family of two-way ({5, x)-cutswith sidesA; and B; suchthat A; C B; for all i # j. In particular4;’s are
pairwisedisjoint,sothereareatmost% of them. It turnsoutthatif x < O(e?n) thenputtinga detectoiinto
eachA; sufiices. More preciselywe shav (Thm. 3.8) thatthesedetectorgogethemwith ary weakdetection
setfor shreddergjive aweak(e, k)-detectionset. Thena simpleprobabilisticagumentyieldsarandomized
resultstatedbelow.

Theorem 3.6 Supposes < 622—5’ Thena setof O( log &) randomlysamplednodesis a weak (e, x)-

detectionsetwith probability at least1 — 4.

We startwith somenotationanda simplebut very usefullemmaaboutcrossingmin-cuts.Let S beaset
of nodes.Call S connectedf thesubgraptof G inducedby S is connectedElsesayS is disconnectedSay
acut X preservesS if X disjointwith S andS liesin onecomponendf G \ X. Notethata connectedset
of nodess presered by X if andonly if it is disjointwith X. N(S) denoteghe setof neighborsf S, i.e.
thesetof all nodesn V' — S thathave anedgeto S. Notethatif V' — S — N(S) is non-emptythenN (S) is
acut.

Saytwo-way min-cutsX andY arestrongly crossingif eachsideof X meetseachsideof Y. Say X
andY areweaklycrossingif X meetsbothsidesof Y andvice versa’ It is easyto seethatstrongcrossing
impliesweakcrossing but notthe otherway round.

To formulate the promisedlemma, we will usethe following notation. The sidesof X andY are
respectiely P, P, andQ1, Q2. Theirintersectiong*quarters”)areC;; = P, N Q;. Alsolet X; = Q; N X
andY; = P,NYandXNY = 6.

Lemma 3.7 (The Two-QuartersLemma) Supposéwo-waymin-cutsX andY areweaklycrossingsothat
thetwo quartets Cy; andC;5 are non-emptyThen

(@) [X1] = [Y1| and|Y2| = [X3],

(b) Cs; andC1y aretight, with N(Cl]) = Y} + X; + S,

(¢) V — C9, — N(Cq) is connectedsamefor C1s.

3Note thatif X meetshothsidesof Y, sayatv; andws, respectiely, thenY meetsbothsidesof X. Indeed,for the sale of
contradictionsupposé&” doesnot meetaside P; of X. Then,sinceary nodein X hasatleastoneedgeto P; andP; is connected,
thereis av1v2 pathin G/Y', contradiction.



(a) X andY arestronglycrossing (b) X andY areweaklycrossing

Figure2: Two applicationsof the Two-Quarterd.emma.

Figure3: Partitioning of thegraphaftertheth iterationof the algorithm

Proof: T = X1 + Y, + S andU = X, + Y7 + S separate’y; andC'o respectrely from the restof the
graph.lt follows thatY, > X, (else|T'| < |X|), X; > Y; (else|T| < |Y|), X2 > Y; (else|U| < |Y|) and
Y1 > X, (else|U| < |X|). Therefore|X;| = |Y7| and|X2| = |Y2|, soU andT aremin-cutsandC}, and
Cy; aretight. Finally, V' — Cy; — N(C21) is connectedsa unionof two connectedets(Q; and ) with a
non-emptyintersectionC1s). |

This lemmais similar to the resultof Jordan [12] on intersectingtiight sets. Notethatif X andY are
strongly crossingour lemmayields | X;| = |X3| = [Y1| = |Y2| (Fig. 2a). We will alsouseit for {5-
balancednin-cutsthatarecrossingweakly but not strongly Thenoneof the“quarters”,sayCi1, is empty
so,assumings < {3, Co1 andCiy arenot (Fig. 2b).

Now we arereadyto describehe construction.

Construction

1. Let F denotefamily of all 15-balancedwo-way min-cuts,andlet A(F) denotethefamily of thesides
of all F € F. Stopif F is empty

2. Chooseary inclusion-wiseminimal component4, from A(F), let X, = N(Ay) bethecorrespond-
ing cutand B, bethesecondcomponenbf X,. Putdetectorsn Ay andBy.

3. Deletefrom F all cutswhichdonotpresere A,. For X € F let A(X) bethesideof X thatdoesnot
containAy.

4. Startwith thefirstiteration.For thei-th iterationchooseacut X; € F sothat A(X;) doesnotcontain
ary otherA(X) for X € F. Let A; = A(X;). Let B; betheothersideof X;.

5. Putadetectoiinto A;. Remore from F all cutswhichdo notpresere Aq U A; U--- U A;. Stoplf F
is empty;elseiterate.

10



A X2
(b) ()

Figure4: Threedifferentoptionsof how Y caninteractwith X;’s. For (c) we prove thatthe portionof Y
betweercuts X; and X, shrinksto anemptyset,andX; NY = X, NY.

By constructiorall A;’s arepairwisedisjoint,andeachA; > ;. Thereforeouralgorithmwill terminate
afteratmost? stepsafterputtingat most? detectors Denotethis setof detectorsy D,. Let D; beary
weakdetectionsetfor shreddersD = D; U Ds.

Theorem 3.8 If k < %n thenany e-balancedwo-waymin-cutis weaklydetectecy D.

Beforeproving this theoremwe will statesomesimplepropertiesof our construction.

Lemma3.9 Foralli # j A; C B;. In particular Xj; is disjointwith A;.

Proof: Wewill provethatforary < # j, X; is disjointwith A; (whichwouldimmediatelyimply A; C B;).
If 7 <4 thenby constructionX; is disjointwith all A; for 5 <iandA; C B;. Ontheotherhand,if j > 1
thenB; containsA; andsupposed; N X; # 0 thenv € A; N X; hasatleastoneedgeto A; andthusto B;,
so A; andB; arenotseparateda contradiction. 0

Corollary 3.10 Each B; containsat leastonedetector

Lemma3.11 If atightsetA C A4; is of size> {5 thenthecut N (A) is a shredder
Proof: Supposeot. ThenN(A) is atwo-way (5, x)-cut preservingB; andhenceU;;% Aj. ThusN(A)
washot deletedirom F until iterations, soit shouldhave beenchosennsteadof X;, contradiction. O

In what follows we assumes < %n The next lemmashawvs how D; (a detectionsetfor shredders)
helpsto detecttwo-way min-cuts.

Lemma3.12 LetY bean {5-balancedwo-waymin-cutwith sidesC and D. SupposeD containsa setiW
of sizeatleast{j sut that N (W) is a shredder ThenD + Y containsat leastonedetectorfromD;.

Proof: TheshreddeZ = N(W) is {;;-balancedsoit is weaklydetectedy D;. SinceY is acut,thereare
no edgeshetweeniw andC, i.e. Z liesin D + Y. It follows thatC' is connectedn G \ Z, henceliesin a
singleconnecteccomponenthereof. Thusatleastonedetectorfrom D; isnotin C, soitisinD +Y. O

Now we arereadyto sketchthe proof of Thm. 3.8; thedetailsarein the next subsection.
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Proof of Thm. 3.8 (sketch). LetY be ane-balancedwo-way min-cutwith sidesC and D. We needto
shav thatD meetsY or bothsidesthereof.For the sale of contradictionsupposét is notso. Thenwithout
lossof generalityD C C, whichimpliesthatC' meetsavery A; andB;. ClearlythenA; € D+ Y, for every
i. Also notethatby Lemma3.12 D cannotcontaindisconnectedight setslargerthan$

Therearenow threecasedo consider dependingon the relationof Y to the setsX;. First, suppose
Y doesnot stronglycrossary X;. We shav that N(D\ U X;) is a two-way {5-balancectut thatwasnot
excludedfrom F (seeFig. 4a), andthis contradictshe stoppingconditionof the algorithm. If Y strongly
crosse®xactly one X;, thenwe replaceY” by thecutY’ = N(D N B;) (seeFig. 4b). Y’ doesnot strongly
crossary X;, sowe applytheamumentfrom the caseabove to shav thatY” is detected Thereforethereis
at leastonedetectorin set.D, which contradictsour assumption.Finally if noneof thesetwo casesapply
thenY stronglycrossestleasttwo setsamong{ X;}, say X; andX;. An agumentusingthe Two-Quarters
Lemmathenshaws that X; and X; partitionY” into the samesubsetgseeFig. 4c). We thenprove that X;
andX; cutoff alargeconnectedsubsetD’ of D suchthat N (D') is atwo-way (15, #)-cut notdeletedirom
F, which thusviolatesthe stoppingcondition. O

3.3 Full proof of Thm. 3.8

Lemma 3.13 Suppos&” is e-balancedand A; meetsD. Theneitherthere is a detectorin D + Y or the
following conditionshold:

(a) Y stronglycrossesX;, and

(b) N(D n B;) is atwo- way -balancedmin-cut.
Proof: Supposéhereis no detectonn D +Y. SinceA; andB; eachcontaina detectorthey meetC. Now
we caninvoke the Two- Quartersl_emmato quartersB; N C andA; N D andconcludethat 4; N D is tight.
We claim that |B; N D| > %¢n. Indeed,otherwise|4; N D| > <, soby Lemma3.12N(4; N D) is a
two-way cut, which contradictd.emma3.11. Claim proved.

This proves(a) andshavs that N (B; N D) is an —-balanced:ut To complete(b), notethat B; N D is

tight by the Two-Quarterd. emma,soby Lemmaa3. 12N(B N D) is two-way. O

LetY beane-balancedwo-way min-cutwith sidesC andD. We needto shav thatD meetsY” or both
sidesthereof. For the sale of contradictionsupposet is not so. Thenwithout lossof generalityD C C,
which impliesthat C meetsevery A; and B;. ClearlythenA; € D + Y, for everyi. Also notethat, by
Lemma3.12 D cannotcontaindisconnectedight setslargerthan 5. Therearethreepossiblecasesvhich
we prove separately:

1. Y doesnotstronglycrossary X;.
2. Y stronglycrossesxactly one X;.
3. Y stronglycrossestleasttwo X;'s.

1 CutY does not strongly crossany X;. To re-usethis prooffor the secondcase we will assumehat
Yis onIy -balancedratherthane-balanced,

Slncewe assumedhat X; doesnot stronglycrossY by Lemma3.13we have all 4;'s aredisjointwith
D. Usingthis factwe shawv thateachX; excisesa smalla pieceof sizeat mostx from D, andfinally we
shav that D\ U X; is large, tight, connectedand preseres UA;, andthusalgorithm could have madeat
leastonemorestep.

Let X;,, X;,,... X;, beall cutswhich areintersectingwith D. Let D; = D — D N U 1 Xy, Y =
N(Dj;) andC; =V —Y; — D;. Firstof all

10 3€
D;:| > |D X; >— —Kk— > —
Dy > D] - Z| N w—>in
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Thelasttransitionis because; < %n

We will prove by inductionthat eachD; is tight, connectecand correspondingutY; = N(D;) is
two-way for every 0 < j < t.

Supposeve did that, then D; by its constructionis disjoint with ary X;, andthusall A;'s aredisjoint
with Y%, andhencelie inV — D; —Y;, thereforeY; preseresUA (becausé&; is atwo-way cut). Onthe
otherhand|D;| > 2n and|C;| > |C| > eN. SoY; is %-balancedwo-way min-cutandpreseres|J 4;,
thusouralgorlthmcould have madeonemorestep, andsowe cometo contradiction.

Now we have to prove our claim. Clearly Dy is tight, connectecand N (D) = Y is two-way by our
definitionof Y andD. Supposeheclaim holdsfor D;_,, we now proveit for D;. We have

Dj = Dj—l — Dj—l N Xij = Bij N Dj—l

If Dj is disjointwith X;, thenD; = D;_; andwe areimmediatelydone.Otherwise,Y;_, weaklycrosses
Xi;. (Indeed,D;_, is notpresered by X;., andC;_; 2 C andhencemeetsboth A;, and B;; andsonot
presered.) But thenwe satisfyconditionsof the Two-Quarterd emma,whereA;, N C;_; andB;; N D4
is notempty andthusD; = B;; N D;_; istight. Thereforeby Lemma3s.12 D; is connectednd N (D;) is
atwo-way cut. This provestheclaim.

2. Y strongly crosses exactly one X;. Indeed,considersetD’ = D N B;. By Lemma3.13 andour
assumptiorthattherewereno detectordn D + Y, it hassizeat Ieastf—gn, is tight and correspondingut
Y'=DnX,;+ X;NY +Y N B; is two-way min-cut.

SinceD’ C D, andonly one 4; meetsD (andit doesnot meetwith D’ by our construction)no 4;
meetswith D’. Thereforeby Lemma3.13Y’ doesnotstronglycrossary X; andthusby thecase(3.3)Y" is
detectedy D. Thisprovesthatthereis atleastonedetectoin Y'+D’, andby constructiory”’+ D’ C D+Y,
andthereforethereis atleastonedetectonin D + Y, contradiction.

3. Y strongly crosses at least two X;’s.  We have to prove thateitherD + Y containsatleastonedetector
from D (andthuscontradictingour assumption)or we could have doneonemorestepof thealgorithm A2.
Withoutlossof generalityY” stronglycrossesX; and X». (Fig.4c).

First we prove that eachof the triples (A, X1, B;) and (A2, X5, By) partition setY into the same
subsets.Namely X1 NY = XoNY, A NY = BNYandBi1NY = Ay NY. Indeed,Y =
YNA +YNX;, +Y N B;, andsinceA; C By, we have thatY N A; C Y N By, andanalogously
Y N Az C YN By, butbytheTwo-Quarterd emmawehave |Y NA;| = |[Y NBy| and|Y NAg| = |Y N Bs|
andthusYNA; =Y NByandY N4, =Y N By,andthusX; NY = XoNY.

We will prove thateitherthereis aleftover part D' in D, which could have usedfor the next stepof the
algorithm,orY is detected.

SinceX; (i=1 or 2) stronglycrosses”, D is partitionedby X; onthreenonemptypartsD; = D N B;,
D! = Dn A; andD}’ = D N X;. Now, by Lemma3.13andour assumptiorthatD N (D +Y) = 0, we
concludethat D} is tight, D] > % and N (D)) is two-way min-cut.

ConsiderD’' = D} N Dj. We claim thatthe correspondingut Z = N (D') is a two-way (15, %)-cut
thatpreseresUA;. This contradictghe stoppingconditionof the algorithm: it could have madeonemore
iteration. Thereforeit remainsto prove theclaim.

Firstly, D' is tight by the Two-Quarterd emmaappliedto cuts N (D] ) and N (D)). Its sizeis

|D'| = |Dy N Dy| = |D — (DY + DY) U (Dg + Dy')| > = k) >

( 6e

10 = 10"
so(1) Z is {5-balancedand(2) D' is connectedy lemma3.12andthe assumptiorthatD is disjoint with
Y + D. SinceZ = (X1 U Xs) N (D UY), we concludethat (1) Z is two-way, sinceV — D' — Z is
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connectedasa unionof threenon-disjointconnectedubsets’, A; and Ay, and(2) Z is disjoint with UA4;
by Lemma3.9.

To prove that Z preseresUA; it remainsto shav thatall A4;’s aredisjoint with D’. Indeed,suppose
someA; meetsD’. It cannotbe properlycontainedn D, hencein D’. So,sinceA; is connectedit meets
Z, contradiction.Claim proved. O

4 Extensions and further directions

Thereare a numberof naturalquestiondeft openby this work. Oneis to investigatewhetheran (e, x)-
detectionsetfor nodefailuresof minimum size canbe computedn polynomialtime for a givengraphG,
this would parallelthe perinstanceresultwe obtainfor edgefailures. We notethat Section3.1 provides
suchanoptimality resultfor nodefailureswhenthe adwersaryis restrictedto deletinga shredder

We believe it would be interestingto extend our resultson nodefailuresto obtain boundsfor strong
detectiorsets.In fact,ourbounddor shredderspplyalreadyto thecaseof strongdetectionandin Theorem
B.1 in the Appendixwe provide a further stepin this direction. Essentially TheoremB.1 assertghat
it sufiicesto have a strong (e, x)-detectionset D' for somesubgraphG’ = (V, E’) of G of the same
connectiity . In particular we canwithoutlossof generalityassumehatG is minimally k-connected.

It would clearly be interestingto obtain resultson detectionsetswith respectto adwersarieshat can
deletea numberof nodesequalto a constantimesthe node-conneatity, by analogywith our resultsfor
edge-connedtity. To obtain detectionsetboundsherethat are independenbdf the value of &, it is not
difficult to seethatwe needto focuson weakdetection;indeed thereexist graphsin which we would need
atleastk — x nodesin ary strong(e, k)-detectionsetfor nodefailures.

Finally, the problemof decidingwhethera givensetD is an (e, k)-detectionsetprovidesanotherclear
connectionto the problemof balancedseparatorén graphs:indeed,decidingwhetherthe emptysetis an
(e, k)-detectionsetis coNP-completédbecausef its equivalenceto a balancedseparatoproblem. On the
otherhand,usingtechniquesrom[10, 20], we canobtaina polynomial-timealgorithmfor decidingwhether
D isan (e, k)-detectionsetfor nodefailureswhenk = k; thisis non-trivial dueto thefactthattherecanbe
exponentiallymary min-node-cuts.

Acknowledgments. It is ourpleasurgo acknavledgethecontritution of LaszloLovasz;discussionsvith
him aboutthe prospecof parameterizingletectionsetsby the minimum cut size provided a portion of the
motivationfor this work, andalsoled to theresultsdescribedn Section2.2.
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Appendix A: Cacti

For thesale of completeneswe’ll prove sereralwell-known factsaboutcactithatwe usein Subsection
3.1. Let'srestatedhedefinitions.Cactusis agraphwhereary two cycleshave atmostonevertex in common.
In a cactus,someedgesarecontainedn a propercycle (cycleedgy, andsomearent (pathedges. Each
cycle edgehascapacityl/2; eachpathedgehascapacityl. Nodesof degreeonearecalledleaves nodesof
degreetwo thatarecontainedn acycle arecyclenodesandall othernodesarebranch nodes For abranch
nodev of a cactusT’, v-componentarethe connectedcomponent®f 7' — v.

Fact A.1 Characterizationof min-cutsof a cactus:

(a) ead pathedgeis a cut,

(b) anytwo cycleedgsfromthe samecycleforma cut,

(c) amin-cutis eithera pathedge or a pair of cycleedgsfromthe samecycle
Proof: LetT beacactus.

(a) Letuv beapathedge.If thereexistsauv-pathp not containingthe edgeuw, thenp + uwv is acycle,
contradictingthe definition of a pathedge.Thereforeu andv areseparateéth T' — uv. Souw is acut
inT.

(b) Leteq, eo becycle edgedrom thesamecycle C. e; + e, splitsC' into two arcs,call themC; andCs.
Suppos&’; andCy areconnectedn T' — e; — eo. Thenthereexist verticesu € Cq, v € Cy suchthat
thereis auwv-pathp thatdoesnotintersectwith C' exceptfor theendpointsLet C’ betheuv-arcof C
thatcontainse;. Thenp + C’ is acyclein T thatshares> 2 verticeswith C, contradiction.So C;
andCy arenotconnectedn 7' — e; — es. Thereforee; + eq isacutin T'.

(c) SupposeX is amin-cutof T' thatis neithera pathedgenor a pair of cycle edgedrom thesamecycle.
Sincethe capacityof X is < 1, it consistsof oneor two cycle edges.Sothereis a (proper)cycle
C suchthat X containsexactly oneedgeuv € C. SinceX is a min-cut,it mustseparate; andwv.
However, they areconnectedy C — uv. Contradiction.

Fact A.2 Letv beabrand nodeof a cactusT. Thenthecyclesthat containv are pairwisedisconnecteth
T — .

Proof: Let C, C' be cyclesthatcontainv. Let uw, u’v be edgesin C, C’, resp. Supposeu andu’ are
connectedn T — v, i.e. thereis auwu'-pathp notcontainingv. Thenp + uv + vu' is acycle thatshares> 2
verticeswith C (andC"), contradiction.SoC andC’ aredisconnecteih T' — v. O

Proof of Fact 2.1:
(a) Let S beacomponenbf amin-cutC. By FactA.1 C is containedn acycle,soC C T[X + v] for
somev-componentX . Thereforeif Y is ary otherv-componenthenY + v is connectedn 7'\ C.
Y c S follows sincev € S andS is connectedn T'\ C.
(b) Supposes meetstwo v-componentshenthey areconnectedn T — v (via S), contradiction.
(c) SupposeX meetshothS andV — S. Thenby (b)if v € SthenV — S C X, elseS C X.
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Appendix B: Strong detection

We present partial resulton extendingstrongdetectionsetsfor e-shredderso thosefor general(e, «)-
cuts. Essentiallywe shawv thatit suficesto have a strong(e, x)-detectionset D’ for somesubgraphG’ =
(V, E") of G of thesameconnectiity x.

Theorem B.1 Suppose: < en andwe havea strong (e, x)-detectionset D' for a k-connectedsubgaph
G' = (V, E') of G. ThenwecanuseD' to constructa strong (e, x)-detectionsetfor G. Specificallyfor a
high-probability resultit suficesto add O(% log %) randomlysampleddetectos. Alternatively it suficesto
addat most% detectos, andthere is a polynomial-timealgorithmto constructthem.

Proof: Let D" beasmallestletectiorsetfor e-shreddersf G. Let S bean(e, k)-cutG. ThenS isan(e, x)-
cutin G’ suchthateachS-componentn G is aunionof S-componentsn G'. Obviously, if S-components
arethesamen G andin G', thenD’ detectsS. Thereforejf D' U D" doesnotdetectS, thenS is atwo-way
(¢, k)-cutin G butashreddein G'. Call suchcutsevil. Thereforeit suficesto detectall evil cuts.

For anevil cutS, thetwo component®f S in G arecalledS-shoes We needto put adetectorin each
S-shore. For the restof the proof we canforget aboutG. We operate(only) on G’ andtreat S-shoresas
unionsof component®f S in G'. Theproofis similarto thatof Thm.3.1.

Evil cutsaree-shreddersn G’, sothereareat mostn of themandthey canbe efficiently listed. Let F
bethefamily of all evil cuts. Startwith 7 = F,. While thereexists S € F suchthateachS-shorecontains
an F-headof S, deleteS from F (becauséoy Lemma3.5 S is detectecby D’). Let F; bethe resulting
family of evil cuts.Clearlyif D is adetectionsetfor F; thenD U D’ is adetectionsetfor Fy.

SayH C Visaheadof S if H isanF;-headof S. Letthetail shoeof S € F; bethe S-shorethatdoes
not containary headsof S (suchshoreexists by constructiorof ;). Obsere thatfor ary two S, T € F;
thetail shoreof T' is containedn aheadof S (andvice versa).Why? T' meetsexactly onecomponentf S,
sayH (soH isahead).By Lemma3.4 H containsall T-component$ut one,call it C. C meetsS, thusC
is ahead.Thereforethetail shoreof T" is containedn H.

By the obserationabore, thetail shoresof cutsin F; arepairwisedisjointandmorewer (assumingF;
consistsof at leasttwo cuts) putting a detectorin eachof theseshoresstrongly detectsF;. Sincethe tail
shoreshave size> en each,|F;| < 1. Thereforewe need?i detectorsfor Fy, which togethemwith D" is
< % detectors For arandomsamplingresultnotethatit suficesto augmentD’ by a hitting setfor the tail
shoresof F; andthetails of e-shreddersf G, asdefinedin the proofof Thm. 3.1. O
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