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By David Easley and Jon Kleinberg. Cambridge University Press, 2010.
Complete preprint on-line at http://www.cs.cornell.edu/home/kleinber/networks-book/

14.1 Searching the Web: The Problem of Ranking

When you go to Google and type ÒCornell,Ó the Þrst result it shows you is www.cornell.edu,
the home page of Cornell University. ItÕs certainly hard to argue with this as a Þrst choice,
but how did Google ÒknowÓ that this was the best answer? Search engines determine how to
rank pages using automated methods that look at the Web itself, not some external source
of knowledge, so the conclusion is that there must be enough informationintrinsic to the
Web and its structure to Þgure this out.

Before discussing some of the ideas behind the ranking of pages, letÕs begin by considering
a few of the basic reasons why itÕs a hard problem. First, search is a hard problem for com-
puters to solve in any setting, not just on the Web. Indeed, the Þeld ofinformation retrieval
[36, 360] has dealt with this problem for decades before the creation of the Web: automated
information retrieval systems starting in the 1960s were designed to search repositories of
newspaper articles, scientiÞc papers, patents, legal abstracts, and other document collections
in reponse to keyword queries. Information retrieval systems have always had to deal with
the problem that keywords are a very limited way to express a complex information need;
in addition to the fact that a list of keywords is short and inexpressive, it su!ers from the
problems ofsynonymy(multiple ways to say the same thing, so that your search for recipes
involving scallions fails because the recipe you wanted called them Ògreen onionsÓ) andpol-
ysemy(multiple meanings for the same term, so that your search for information about the
animal called a jaguar instead produces results primarily about automobiles, football players,
and an operating system for the Apple Macintosh.)

For a long time, up through the 1980s, information retrieval was the province of reference
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librarians, patent attorneys, and other people whose jobs consisted of searching collections of
documents; such people were trained in how to formulate e!ective queries, and the documents
they were searching tended to be written by professionals, using a controlled style and
vocabulary. With the arrival of the Web, where everyone is an author and everyone is a
searcher, the problems surrounding information retrieval exploded in scale and complexity.

To begin with, the diversity in authoring styles makes it much harder to rank documents
according to a common criterion: on a single topic, one can easily Þnd pages written by
experts, novices, children, conspiracy theorists Ñ and not necessarily be able to tell which is
which. Once upon a time, the fact that someone had the money and resources to produce a
professional-looking, typeset, bound document meant that they were very likely (even if not
always) someone who could be taken seriously. Today, anyone can create a Web page with
high production values.

There is a correspondingly rich diversity in the set of people issuing queries, and the
problem of multiple meanings becomes particularly severe. For example, when someone
issues the single-word query ÒCornell,Ó a search engine doesnÕt have very much to go on.
Did the searcher want information about the university? The universityÕs hockey team? The
Lab of Ornithology run by the university? Cornell College in Iowa? The Nobel-Prize-winning
physicist Eric Cornell? The same ranking of search results canÕt be right for everyone.

These represent problems that were also present in traditional information retrieval sys-
tems, just taken to new extremes. But the Web also introduces new kinds of problems. One
is the dynamic and constantly-changing nature of Web content. On September 11, 2001,
many people ran to Google and typed ÒWorld Trade Center.Ó But there was a mismatch
between what people thought they could get from Google and what they really got: since
Google at the time was built on a model in which it periodically collected Web pages and
indexed them, the results were all based on pages that were gathered days or weeks earlier,
and so the top results were all descriptive pages about the building itself, not about what
had occurred that morning. In response to such events, Google and the other main search
engines built specialized ÒNews SearchÓ features, which collect articles more or less contin-
uously from a relatively Þxed number of news sources, so as to be able to answer queries
about news stories minutes after they appear. Even today, such news search features are
only partly integrated into the core parts of the search engine interface, and emerging Web
sites such as Twitter continue to Þll in the spaces that exist between static content and
real-time awareness.

More fundamental still, and at the heart of many of these issues, is the fact that the
Web has shifted much of the information retrieval question from a problem ofscarcity to a
problem ofabundance. The prototypical applications of information retrieval in the pre-Web
era had a Òneedle-in-a-haystackÓ ßavor Ñ for example, an intellectual-property attorney
might express the information need, ÒÞnd me any patents that have dealt with the design
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of elevator speed regulators based on fuzzy-logic controllers.Ó Such issues still arise today,
but the hard part for most Web searches carried out by the general public is in a sense the
opposite: to Þlter, from among an enormous number of relevant documents, the few that
are most important. In other words, a search engine has no problem Þnding and indexing
literally millions of documents that are genuinely relevant to the one-word query ÒCornellÓ;
the problem is that the human being performing the search is going to want to look at only
a few of these. Which few should the search engine recommend?

An understanding of the network structure of Web pages will be crucial for addressing
these questions, as we now discuss.

14.2 Link Analysis using Hubs and Authorities

So weÕre back to our question from the beginning of the chapter: in response to the one-word
query ÒCornell,Ó what are the clues that suggest CornellÕs home page, www.cornell.edu, is a
good answer?

Voting by In-Links. In fact, there is a natural way to address this, provided we start
from the right perspective. This perspective is to note that there is not really any way to
use features purely internal to the page www.cornell.edu to solve this problem: it does not
use the word ÒCornellÓ more frequently or more prominently than thousands of other pages.
and so there is nothing on the page itself that makes it stand out. Rather, it stands out
because of features on other Web pages: when a page is relevant to the query ÒCornell,Ó
very often www.cornell.edu is among the pages it links to.

This is the Þrst part of the argument that links are essential to ranking: that we can use
them to assess the authority of a page on a topic, through the implicit endorsements that
other pages on the topic confer through their links to it. Of course, each individual link
may have many possible meanings: it may be o!-topic; it may convey criticism rather than
endorsement; it may be a paid advertisement. It is hard for search engines to automatically
assess the intent of each link. But we hope that in aggregate, if a page receives many links
from other relevant pages, then it is receiving a kind of collective endorsement.

In the case of the query ÒCornell,Ó we could operationalize this by Þrst collecting a large
sample of pages that are relevant to the query Ñ as determined by a classical, text-only,
information retrieval approach. We could then let pages in this sample ÒvoteÓ through their
links: which page on the Web receives the greatest number of in-links from pages that are
relevant to Cornell? Even this simple measure of link-counting works quite well for queries
such as ÒCornell,Ó where, ultimately, there is a single page that most people agree should be
ranked Þrst.
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Figure 14.1: Counting in-links to pages for the query Ònewspapers.Ó

A List-Finding Technique. ItÕs possible to make deeper use of the network structure
than just counting in-links, and this brings us to the second part of the argument that links
are essential. Consider, as a typical example, the one-word query Ònewspapers.Ó Unlike
the query ÒCornell,Ó there is not necessarily a single, intuitively ÒbestÓ answer here; there
are a number of prominent newspapers on the Web, and an ideal answer would consist of a
list of the most prominent among them. With the query ÒCornell,Ó we discussed collecting
a sample of pages relevant to the query and then let them vote using their links. What
happens if we try this for the query ÒnewspapersÓ?

What you will typically observe, if you try this experiment, is that you get high scores for a
mix of prominent newspapers (i.e. the results youÕd want) along with pages that are going to
receive a lot of in-links no matter what the query is Ñ pages like Yahoo!, Facebook, Amazon,
and others. In other words, to make up a very simple hyperlink structure for purposes of
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Figure 14.2: Finding good lists for the query ÒnewspapersÓ: each pageÕs value as a list is
written as a number inside it.

this example, weÕd see something like Figure 14.1: the unlabeled circles represent our sample
of pages relevant to the query Ònewspapers,Ó and among the four pages receiving the most
votes from them, two are newspapers (New York Times and USA Today) and two are not
(Yahoo! and Amazon). This example is designed to be small enough to try by hand; in
a real setting, of course there would be many plausible newspaper pages and many more
o!-topic pages.

But votes are only a very simple kind of measure that we can get from the link structure
Ñ there is much more to be discovered if we look more closely. To try getting more, we
ask a di!erent question. In addition to the newspapers themselves, there is another kind of
useful answer to our query: pages that compile lists of resources relevant to the topic. Such
pages exist for most broad enough queries: for Ònewspapers,Ó they would correspond to lists
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Figure 14.3: Re-weighting votes for the query ÒnewspapersÓ: each of the labeled pageÕs new
score is equal to the sum of the values of all lists that point to it.

of links to on-line newspapers; for ÒCornell,Ó one can Þnd many alumni who maintain pages
with links to the University, its hockey team, its Medical School, its Art Museum, and so
forth. If we could Þnd good list pages for newspapers, we would have another approach to
the problem of Þnding the newspapers themselves.

In fact, the example in Figure 14.1 suggests a useful technique for Þnding good lists. We
notice that among the pages casting votes, a few of them in fact voted formany of the pages
that received a lot of votes. It would be natural, therefore, to suspect that these pages have
some sense where the good answers are, and to score them highly as lists. Concretely, we
could say that a pageÕs value as a list is equal to the sum of the votes received by all pages
that it voted for. Figure 14.2 shows the result of applying this rule to the pages casting votes
in our example.
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The Principle of Repeated Improvement. If we believe that pages scoring well as lists
actually have a better sense for where the good results are, then we should weight their votes
more heavily. So, in particular, we could tabulate the votes again, but this time giving each
pageÕs vote a weight equal to its value as a list. Figure 14.3 shows what happens when we
do this on our example: now the other newspapers have surpassed the initially high-scoring
Yahoo! and Amazon, because these other newspapers were endorsed by pages that were
estimated to be good lists.

In fact, you can recognize the intuition behind this re-weighting of votes in the way we
evaluate endorsements in our everyday lives. Suppose you move to a new town and hear
restaurant recommendations from a lot of people. After discovering that certain restaurants
get mentioned by a lot of people, you realize that certainpeoplein fact had mentioned most
of these highly-recommended restaurants when you asked them. These people play the role
of the high-value lists on the Web, and itÕs only natural to go back and take more seriously
the more obscure restaurants that they recommended, since you now particularly trust their
judgment. This last step is exactly what we are doing in re-weighting the votes for Web
pages.

The Þnal part of the argument for link analysis is then the following: Why stop here? If
we have better votes on the right-hand-side of the Þgure, we can use these to get still more
reÞned values for the quality of the lists on the left-hand-side of the Þgure. And with more
reÞned estimates for the high-value lists, we can re-weight the votes that we apply to the
right-hand-side once again. The process can go back and forth forever: it can be viewed
as aPrinciple of Repeated Improvement, in which each reÞnement to one side of the Þgure
enables a further reÞnement to the other.

Hubs and Authorities. This suggests a ranking procedure that we can try to make
precise, as follows [247]. First, weÕll call the kinds of pages we were originally seeking Ñ the
prominent, highly endorsed answers to the queries Ñ theauthorities for the query. WeÕll call
the high-value lists thehubsfor the query. Now, for each pagep, weÕre trying to estimate
its value as a potential authority and as a potential hub, and so we assign it two numerical
scores:auth(p) and hub(p). Each of these starts out with a value equal to 1, indicating that
weÕre initially agnostic as to which is the best in either of these categories.

Now, voting Ð in which we use the quality of the hubs to reÞne our estimates for the
quality of the authorities Ð is simply the following:

Authority Update Rule: For each pagep, update auth(p) to be the sum of the
hub scores of all pages that point to it.

On the other hand, the list-Þnding technique Ð in which we use the quality of the authorities
to reÞne our estimates for the quality of the hubs, is the following:
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Figure 14.4: Re-weighting votes after normalizing for the query Ònewspapers.Ó

Hub Update Rule:For each pagep, update hub(p) to be the sum of the authority
scores of all pages that it points to.

Notice how a single application of the Authority Update Rule (starting from a setting in
which all scores are initially 1) is simply the original casting of votes by in-links. A single
application of the Authority Update Rule followed by a single application the Hub Update
Rule produces the results of the original list-Þnding technique. In general, the Principle of
Repeated Improvement says that to obtain better estimates, we should simply apply these
rules in alternating fashion, as follows.

• We start with all hub scores and all authority scores equal to 1.

• We choose a number of stepsk.
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Figure 14.5: Limiting hub and authority values for the query Ònewspapers.Ó

• We then perform a sequence ofk hub-authority updates. Each update works as follows:

– First apply the Authority Update Rule to the current set of scores.

– Then apply the Hub Update Rule to the resulting set of scores.

• At the end, the hub and authority scores may involve numbers that are very large. But
we only care about their relative sizes, so we cannormalize to make them smaller: we
divide down each authority score by the sum of all authority scores, and divide down
each hub score by the sum of all hub scores. (For example, Figure 14.4 shows the result
of normalizing the authority scores that we determined in Figure 14.3.)

What happens if we do this for larger and larger values ofk? It turns out that the
normalized values actually converge to limits ask goes to inÞnity: in other words, the



406 CHAPTER 14. LINK ANALYSIS AND WEB SEARCH

results stabilize so that continued improvement leads to smaller and smaller changes in the
values we observe. We wonÕt prove this right now, but we provide a proof in Section 14.6 at
the end of this chapter. Moreover, the analysis in that section shows that something even
deeper is going on: except in a few rare cases (characterized by a certain kind of degenerate
property of the link structure), we reach the same limiting values no matter what we choose
as theinitial hub and authority values, provided only that all of them are positive. In other
words, the limiting hub and authority values are a property purely of the link structure,
not of the initial estimates we use to start the process of computing them. (For the record,
the limiting values for our ÒnewspapersÓ example are shown, to three decimal places, in
Figure 14.5.)

Ultimately, what these limiting values correspond to is a kind of equilibrium: their relative
sizes remain unchanged if we apply the Authority Update Rule or the Hub Update Rule. As
such, they reßect the balance between hubs and authorities that provided the initial intuition
for them: your authority score is proportional to the hub scores of the pages that point to
you, and your hub score is proportional to the authority scores of the pages you point to.

14.3 PageRank

The intuition behind hubs and authorities is based on the idea that pages play multiple
roles in the network, and in particular that pages can play a powerful endorsement role
without themselves being heavily endorsed. For queries with a commercial aspect Ñ such
as our query for newspapers in the previous section, or searches for particular products to
purchase, or more generally searches that are designed to yield corporate pages of any type
Ñ there is a natural basis for this intuition. Competing Þrms will not link to each other,
except in unusual circumstances, and so they canÕt be viewed as directly endorsing each
other; rather, the only way to conceptually pull them together is through a set of hub pages
that link to all of them at once.

In other settings on the Web, however, endorsement is best viewed as passing directly
from one prominent page to another Ñ in other words, a page is important if it is cited
by other important pages. This is often the dominant mode of endorsement, for example,
among academic or governmental pages, among bloggers, or among personal pages more
generally. It is also the dominant mode in the scientiÞc literature. And it is this mode of
endorsement that forms the basis for the PageRank measure of importance [79].

As with hubs and authorities, the intuition behind PageRank starts with simple voting
based on in-links, and reÞnes it using the Principle of Repeated Improvement. In particular,
the Principle is applied here by having nodes repeatedly pass endorsements across their
out-going links, with the weight of a nodeÕs endorsement based on the current estimate of
its PageRank: nodes that are currently viewed as more important get to make stronger
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Figure 14.6: A collection of eight pages:A has the largest PageRank, followed byB and C
(which collect endorsements fromA).

endorsements.

The basic definition of PageRank. Intuitively, we can think of PageRank as a kind of
ÒßuidÓ that circulates through the network, passing from node to node across edges, and
pooling at the nodes that are the most important. SpeciÞcally, PageRank is computed as
follows.

• In a network with n nodes, we assign all nodes the same initial PageRank, set to be
1/n .

• We choose a number of stepsk.

• We then perform a sequence ofk updatesto the PageRank values, using the following
rule for each update:

Basic PageRank Update Rule:Each page divides its current PageRank equally
across its out-going links, and passes these equal shares to the pages it points
to. (If a page has no out-going links, it passes all its current PageRank to
itself.) Each page updates its new PageRank to be the sum of the shares it
receives.
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Figure 14.7: Equilibrium PageRank values for the network of eight Web pages from Fig-
ure 14.6.

Notice that the total PageRank in the network will remain constant as we apply these
steps: since each page takes its PageRank, divides it up, and passes it along links, PageRank
is never created nor destroyed, just moved around from one node to another. As a result,
we donÕt need to do any normalizing of the numbers to prevent them from growing, the way
we had to with hub and authority scores.

As an example, letÕs consider how this computation works on the collection of 8 Web
pages in Figure 14.6. All pages start out with a PageRank of 1/ 8, and their PageRank
values after the Þrst two updates are given by the following table:

Step A B C D E F G H
1 1/2 1/16 1/16 1/16 1/16 1/16 1/16 1/8
2 3/16 1/4 1/4 1/32 1/32 1/32 1/32 1/16

For example,A gets a PageRank of 1/ 2 after the Þrst update because it gets all ofF Õs,
GÕs, andH Õs PageRank, and half each ofDÕs andEÕs. On the other hand,B and C each
get half of AÕs PageRank, so they only get 1/ 16 each in the Þrst step. But onceA acquires
a lot of PageRank,B and C beneÞt in the next step. This is in keeping with the principle of
repeated improvement: after the Þrst update causes us to estimate thatA is an important
page, we weigh its endorsement more highly in the next update.
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Equilibrium Values of PageRank. As with hub-authority computations, one can prove
that except in certain degenerate special cases the PageRank values of all nodes converge to
limiting values as the number of update stepsk goes to inÞnity.

Because PageRank is conserved throughout the computation Ñ with the total PageRank
in the network equal to one Ñ the limit of the process has a simple interpretation. We can
think of the limiting PageRank values, one value for each node, as exhibiting the following
kind of equilibrium: if we take the limiting PageRank values and apply one step of the Basic
PageRank Update Rule, then the values at every node remain the same. In other words,
the limiting PageRank values regenerate themselves exactly when they are updated. This
description gives a simple way to check whether an assignment of numbers to a set of Web
pages forms such an equilibrium set of PageRank values: we check that they sum to 1, and
we check that when we apply the Basic PageRank Update Rule, we get the same values
back.

For example, on the network of Web pages from Figure 14.6, we can check that the
values shown in Figure 14.7 have the desired equilibrium property Ñ assigning a PageRank
of 4/ 13 to pageA, 2/ 13 to each ofB and C, and 1/ 13 to the Þve other pages achieves this
equilibrium.

Now, depending on the network structure, the set of limiting values may not be the
only ones that exhibit this kind of equilibrium. However, one can show that if the network
is strongly connected Ñ that is, each node can reach each other node by a directed path,
following the deÞnition from Chapter 13 Ñ then there is a unique set of equilibrium values,
and so whenever the limiting PageRank values exist, they are the only values that satisfy
this equilibrium.

Scaling the definition of PageRank. There is a di"culty with the basic deÞnition
of PageRank, however: in many networks, the ÒwrongÓ nodes can end up with all the
PageRank. Fortunately, there is a simple and natural way to Þx this problem. yielding the
actual deÞnition of PageRank that is used in practice. LetÕs Þrst describe the problem and
then its solution.

To trigger the problem, suppose we take the network in Figure 14.6 and make a small
change, so thatF and G now point to each other rather than pointing toA. The result is
shown in Figure 14.8. Clearly this ought to weakenA somewhat, but in fact a much more
extreme thing happens: PageRank that ßows fromC to F and G can never circulate back
into the rest of the network, and so the links out ofC function as a kind of Òslow leakÓ that
eventually causes all the PageRank to end up atF and G. We can indeed check that by
repeatedly running the Basic PageRank Update Rule, we converge to PageRank values of
1/ 2 for each ofF and G, and 0 for all other nodes.

This is clearly not what we wanted, but itÕs an inevitable consequence of the deÞnition.
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Figure 14.8: The same collection of eight pages, butF and G have changed their links to
point to each other instead of toA. Without a smoothing e!ect, all the PageRank would go
to F and G.

And it becomes a problem in almost any real network to which PageRank is applied: as
long as there are small sets of nodes that can be reached from the rest of the graph, but
have no paths back, then PageRank will build up there.1 Fortunately, there is a simple and
natural way to modify the deÞnition of PageRank to get around this problem, and it follows
from the ÒßuidÓ intuition for PageRank. SpeciÞcally, if we think about the (admittedly
simplistic) question of why all the water on earth doesnÕt inexorably run downhill and reside
exclusively at the lowest points, itÕs because thereÕs a counter-balancing process at work:
water also evaporates and gets rained back down at higher elevations.

We can use this idea here. We pick ascaling factors that should be strictly between 0
and 1. We then replace the Basic PageRank Update Rule with the following:

Scaled PageRank Update Rule:First apply the Basic PageRank Update Rule.
Then scale down all PageRank values by a factor ofs. This means that the total
PageRank in the network has shrunk from 1 tos. We divide the residual 1− s
units of PageRank equally over all nodes, giving (1− s)/n to each.

1If we think back to the bow-tie structure of the Web from Chapter 13, there is a way to describe the
problem in those terms as well: there are many Òslow leaksÓ out of the giant SCC, and so in the limit, all
nodes in the giant SCC will get PageRank values of 0; instead, all the PageRank will end up in the setOUT
of downstream nodes.
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This rule also preserves the total PageRank in the network, since it is just based on redis-
tribution according to a di!erent Òwater cycleÓ that evaporates 1− s units of PageRank in
each step and rains it down uniformly across all nodes.

The Limit of the Scaled PageRank Update Rule. One can show that repeated appli-
cation of the Scaled PageRank Update Rule converges to a set of limiting PageRank values
as the number of updatesk goes to inÞnity. Moreover, for any network, these limiting values
form the unique equilibrium for the Scaled PageRank Update Rule: they are the unique set
of values that remain unchanged under the application of this update rule. Notice, of course,
that these values depend on our choice of the scaling factors: we should really think of there
being a di!erent update rule for each possible value ofs.

This is the version of PageRank that is used in practice, with a scaling factors that is
usually chosen to be between 0.8 and 0.9.2 The use of the scaling factor also turns out to
make the PageRank measure less sensitive to the addition or deletion of small numbers of
nodes or links [268, 422].

Random walks: An equivalent definition of PageRank. To conclude our discussion
in this section, we now describe an equivalent formulation of PageRank that looks quite
di!erent on the surface, but in fact leads to exactly the same deÞnition.

It works as follows. Consider someone who is randomly browsing a network of Web pages,
such as the one in Figure 14.6. They start by choosing a page at random, picking each page
with equal probability. They then follow links for a sequence ofk steps: in each step, they
pick a random out-going link from their current page, and follow it to where it leads. (If their
current page has no out-going links, they just stay where they are.) Such an exploration of
nodes performed by randomly following links is called arandom walkon the network. We
should stress that this is not meant to be an accurate model of an actual person exploring
the Web; rather, it is a thought experiment that leads to a particular deÞnition.

In Section 14.6, we analyze this random walk and show the following fact:

Claim: The probability of being at a pageX after k steps of this random walk is
precisely the PageRank ofX after k applications of the Basic PageRank Update
Rule.

2As an aside about our earlier motivating example, one can check that using a value ofs in this range
doesnÕt completely Þx the problem with Figure 14.8: nodesF and G still get most (though no longer all)
of the PageRank under the scaled update rule with such values ofs. The problem is that an eight-node
example is simply too small for the redistribution of the PageRank to truly o!set the problem of a slow leak
into a dead-end region of the network: on only eight nodes, a Òslow leakÓ isnÕt actually so slow. However,
on large networks such as are used in real applications, the redistribution of PageRank works well to give
nodes outside the giant strongly connected component of the network very small limiting PageRank values.
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Given that the two formulations of PageRank Ñ based on repeated improvement and random
walks respectively Ñ are equivalent, we do not strictly speaking gain anything at a formal
level by having this new deÞnition. But the analysis in terms of random walks provides some
additional intuition for PageRank as a measure of importance: the PageRank of a pageX
is the limiting probability that a random walk across hyperlinks will end up atX , as we run
the walk for larger and larger numbers of steps.

This equivalent deÞnition using random walks also provides a new and sometimes useful
perspective for thinking about some of the issues that came up earlier in the section. For
example, the ÒleakageÓ of PageRank to nodesF and G in Figure 14.8 has a natural interpre-
tation in terms of the random walk on the network: in the limit, as the walk runs for more
and more steps, the probability of the walk reachingF or G is converging to 1; and once it
reaches eitherF or G, it is stuck at these two nodes forever. Thus, the limiting probabilities
of being atF and G are converging to 1/ 2 each, and the limiting probabilities are converging
to 0 for all other nodes.

We will also show in Section 14.6 how to formulate the Scaled PageRank Update Rule
in terms of random walks. Rather than simply following a random edge in each step, the
walker performs a ÒscaledÓ version of the walk as follows: With probabilitys, the walker
follows a random edge as before; and with probability 1− s, the walker jumps to a random
node anywhere in the network, choosing each node with equal probability.

14.4 Applying Link Analysis in Modern Web Search

The link analysis ideas described in Sections 14.2 and 14.3 have played an integral role
in the ranking functions of the current generation of Web search engines, including Google,
Yahoo!, MicrosoftÕs search engine Bing, and Ask. In the late 1990s, it was possible to produce
reasonable rankings using these link analysis methods almost directly on top of conventional
search techniques; but with the growth and enormously expanding diversity of Web content
since then, link analysis ideas have been extended and generalized considerably, so that they
are now used in a wide range of di!erent ways inside the ranking functions of modern search
engines.

It is hard to say anything completely concrete about the current ranking functions of the
main search engines, given that they are constantly evolving in complexity, and given that
the search engine companies themselves are extremely secretive about what goes into their
ranking functions. (There are good reasons for this secrecy, as we will discuss later.) But
we can make general observations, coupled with sentiments that represent the conventional
wisdom of the search community. In particular, PageRank was one of the original and central
ingredients of Google, and it has always been a core component of its methodology. The
importance of PageRank as a feature in GoogleÕs ranking function has long been claimed
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to be declining over time, however. For example, in 2003 and 2004, a signiÞcant overhaul
of GoogleÕs ranking function was generally believed to involve non-PageRank styles of link
analysis, including a method called Hilltop [58], developed by Krishna Bharat and George
Mihaila as an extension of the two-sided form of endorsement behind hubs and authorities.
Around a similar time period, the search engine Ask rebuilt its ranking function around hubs
and authorities, though its recent extensions have increasingly blended this in with many
other features as well.

Combining links, text, and usage data. While our emphasis on link analysis in this
chapter was meant to motivate the ideas in a clean setting, in practice one clearly needs to
closely integrate information from both network structure and textual content in order to
produce the highest-quality search results. One particularly e!ective way to combine text
and links for ranking is through the analysis ofanchor text, the highlighted bits of clickable
text that activate a hyperlink leading to another page [102]. Anchor text can be a highly
succinct and e!ective description of the page residing at the other end of a link; for example,
if you read ÒI am a student at Cornell UniversityÓ on someoneÕs Web page, itÕs a good guess
that clicking on the highlighted link associated with the text ÒCornell UniversityÓ will take
you to a page that is in some way about Cornell.3

In fact, the link analysis methods we have been describing can be easily extended to
incorporate textual features such as anchor text. In particular, the basic forms of both hubs
and authorities and PageRank perform updates by simply adding up values across links.
But if certain links have highly relevant anchor text while others donÕt, we can weight the
contributions of the relevant links more heavily than the others; for example, as we pass hub
or authority scores, or PageRank values, across a link, we can multiply them by a factor that
indicates the quality of the anchor text on the link [57, 102].

In addition to text and links, search engines use many other features as well. For example,
the way in which users choose to click or not click on a search result conveys a lot of
information: if among a search engineÕs ranked results for the query ÒCornell,Ó most users
skip the Þrst result and click on the second, it suggests that the Þrst two results should
potentially be reordered. There is ongoing research on methods for tuning search results
based on this type of feedback [228].

A moving target. A Þnal important aspect of Web search serves to illustrate a basic
game-theoretic principle that we have encountered many times already Ñ that you should
always expect the world to react to what you do. As search grew into the dominant means of
accessing information on the Web, it mattered to a lot of people whether they ranked highly

3Of course, not all anchor text is useful; consider the ubiquitous bit of Web page text, ÒFor more informa-
tion, click here.Ó Such examples make you realize that creating useful anchor text is an aspect of hypertext
authoring style worth paying attention to.
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in search engine results. For example, many small companies had business models that
increasingly depended on showing up among the Þrst screen of GoogleÕs results for common
queries ranging from ÒCaribbean vacationsÓ to Òvintage records.Ó An update to GoogleÕs
ranking function that pushed them o! the Þrst screen could spell Þnancial ruin. Indeed,
search-industry publications began naming some of GoogleÕs more signiÞcant updates to
its core ranking function in the alphabetic style usually reserved for hurricanes Ñ and the
analogy was an apt one, since each of these updates was an unpredictable act of nature (in
this case, Google) that inßicted millions of dollars of economic damage.

With this in mind, people who depended on the success of their Web sites increasingly
began modifying their Web-page authoring styles to score highly in search engine rankings.
For people who had conceived of Web search as a kind of classical information retrieval
application, this was something novel. Back in the 1970s and 1980s, when people designed
information retrieval tools for scientiÞc papers or newspaper articles, authors were not overtly
writing their papers or abstracts with these search tools in mind.4 From the relatively early
days of the Web, however, people have written Web pages with search engines quite explicitly
in mind. At Þrst, this was often done using over-the-top tricks that aroused the ire of the
search industry; as the digital librarian Cli! Lynch noted at the time, ÒWeb search is a new
kind of information retrieval application in that the documents are actively behaving badly.Ó

Over time though, the use of focused techniques to improve a pageÕs performance in
search engine rankings became regularized and accepted, and guidelines for designing these
techniques emerged; a fairly large industry known assearch engine optimization(SEO) came
into being, consisting of search experts who advise companies on how to create pages and
sites that rank highly. And so to return to the game-theoretic view: the growth of SEO
followed naturally once search became such a widespread application on the Web; it simply
mattered too much to too many people that they be easily Þndable through search.

These developments have had several consequences. First, they mean that for search
engines, the ÒperfectÓ ranking function will always be a moving target: if a search engine
maintains the same method of ranking for too long, Web-page authors and their consultants
become too e!ective at reverse-engineering the important features, and the search engine
is in e!ect no longer in control of what ranks highly. Second, it means that search engines
are incredibly secretive about the internals of their ranking functions Ñ not just to prevent
competing search engines from Þnding out what theyÕre doing, but also to prevent designers
of Web sites from Þnding out.

And Þnally, with so much money at stake, the search industry turned these developments
into a very successful business model based on advertising. Rather than simply showing
results computed by a ranking function, the search engine o!ered additional slots on the

4One can argue, of course, that at a less overt level, the development of standard authoring styles in these
domains has been motivated by the goal of making these kinds of documents easier to classify and organize.
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main results page through a market in which sites could pay for placement. Thus, when you
look at a search results page today, you see the results computed by the ranking function
alongside the paid results. We have just seen some of the ideas behind ranking functions;
the paid results, as we will see in the next chapter, are allocated using the kinds of matching
markets discussed in Chapter 10.

14.5 Applications beyond the Web

Link analysis techniques of the kind weÕve been discussing have been applied to a wide range
of other settings, both before and after their use on the Web. In essentially any domain
where information is connected by a network structure, it becomes natural to infer measures
of authority from the patterns of links.

Citation Analysis. As we discussed in Chapters 2 and 13, the study of citations among
scientiÞc papers and journals has a long history that signiÞcantly predates the Web [145]. A
standard measure in this Þeld is GarÞeldÕsimpact factor for a scientiÞc journal [177], deÞned
to be the average number of citations received by a paper in the given journal over the
past two years. This type of voting by in-links can thus serve as a proxy for the collective
attention that the scientiÞc community pays to papers published in the journal.

In the 1970s, Pinski and Narin extended the impact factor by taking into account the
idea that not all citations should be counted equally Ñ rather, citations from journals that
are themselves high-impact should be viewed as more important [341]. This can be viewed
as a use of the principle of repeated improvement, in the context of the scientiÞc literature,
just as weÕve seen it used for Web-page ranking. Pinski and Narin used this to formulate a
notion of inßuence weightsfor journals [180, 341] that is deÞned very similarly to the notion
of PageRank for Web pages.

Link Analysis of U.S. Supreme Court Citations. Recently, researchers have adapted
link analysis techniques from the Web to study the network of citations among legal decisions
by U.S. courts [166, 377]. Citations are crucial in legal writing, to ground a decision in
precedent and to explain the relation of a new decision to what has come before. Using link
analysis in this context can help in identifying cases that play especially important roles in
the overall citation structure.

In one example of this style of research, Fowler and Jeon applied hub and authority
measures to the set of all U.S. Supreme Court decisions, a collection of documents that spans
more than two centuries [166]. They found that the set of Supreme Court decisions with
high authority scores in the citation network align well with the more qualitative judgments
of legal experts about the CourtÕs most important decisions. This includes some cases that
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Figure 14.9: The rising and falling authority of key Fifth Amendment cases from the 20th

century illustrates some of the relationships among them. (Image from [166].)

acquired signiÞcant authority according to numerical measures shortly after they appeared,
but which took much longer to gain recognition from the legal community.

Supreme Court decisions also provide a rich setting for looking at how authority can
change over long time periods. For example, Fowler and Jeon analyzed the rising and falling
authority of some of the key Fifth Amendment cases from the 20th century, as illustrated
in Figure 14.9. In particular, Brown v. Mississippi Ñ a 1936 case concerning confessions
obtained under torture Ñ began rising rapidly in authority in the early 1960s as the Warren
Court forcefully took on a range of issues surrounding due process and self-incrimination.
This development ultimately led to the landmark caseMiranda v. Arizona in 1966 Ñ and
with this clear precedent established, the need for citations toBrown v. Mississippiquickly
declined as the authority ofMiranda shot upward.

The analysis of Supreme Court citations also shows that signiÞcant decisions can vary
widely in the rate at which they acquire authority. For example, Figure 14.10 (also from
[166]) shows thatRoe v. WadeÑ like Miranda Ñ grew in authority very rapidly from the
time it was Þrst issued. On the other hand, the equally consequentialBrown v. Board of
Educationonly began acquiring signiÞcant authority in the citation network roughly a decade
after it was issued. Fowler and Jeon argue that this trajectory aligns with legal scholarsÕ
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Figure 14.10: Roe v. Wadeand Brown v. Board of Educationacquired authority at very
di!erent speeds. (Image from [166].)

views of the case, writing, ÒJudicial specialists often point towards the ruling issued inBrown
as an example of a precedent that was legally weak when Þrst issued, and was strengthened
through the Civil Rights Act of 1964 and its application in subsequent civil rights casesÓ
[166].

This style of analysis thus shows how a strictly network-based analysis of a topic as
intricate as legal precedent can reveal subtleties that align well with the views of the scholarly
community. It also indicates some of the interesting e!ects that emerge when one tries to
track the rising and falling pattern of authority in a complex domain Ñ an activity that
stands to provide important insights in many other settings as well.

14.6 Advanced Material: Spectral Analysis, Random
Walks, and Web Search

We now discuss how to analyze the methods for computing hub, authority, and PageRank
values. This will require some basic familiarity with matrices and vectors. Building on this,
we will show that the limiting values of these link-analysis measures can be interpreted as
coordinates in eigenvectors of certain matrices derived from the underlying networks. The
use of eigenvalues and eigenvectors to study the structure of networks is often referred to as



418 CHAPTER 14. LINK ANALYSIS AND WEB SEARCH

node 1 0 1 0 1
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Figure 14.11: The directed hyperlinks among Web pages can be represented using anadja-
cency matrix M : the entry M ij is equal to 1 if there is a link from nodei to node j , and
M ij = 0 otherwise.

the spectral analysisof graphs, and we will see that this theory forms a natural language for
discussing the outcome of methods based on repeated improvement.

A. Spectral Analysis of Hubs and Authorities

Our Þrst main goal will be to show why the hub-authority computation converges to limiting
values for the hub and authority scores, as claimed in Section 14.2. As a Þrst important step
in this, we show how to write the Authority Update and Hub Update Rules from that section
as matrix-vector multiplications.

Adjacency Matrices and Hub/Authority Vectors. We will view a set ofn pages as
a set of nodes in a directed graph. Given this set of nodes, labeled 1, 2, 3, . . . , n, letÕs encode
the links among them in ann × n matrix M as follows: the entry in thei th row and j th

column of M , denotedM ij, will be equal to 1 if there is a link from nodei to node j , and
it will be equal to 0 otherwise. We will call this the adjancency matrix of the network.
Figure 14.11 shows an example of a directed graph and its adjacency matrix. Given a large
set of pages, we expect that most of them will have very few outlinks relative to the total
number of pages, and so this adjacency matrix will have most entries equal to 0. As a result,
the adjacency matrix is not necessarily a very e"cient way to represent the network, but as
we will see, it is conceptually very useful.

Now, since the hub and authority scores are lists of numbers Ñ one associated with each
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Figure 14.12: By representing the link structure using an adjacency matrix, the Hub and
Authority Update Rules become matrix-vector multiplication. In this example, we show how
multiplication by a vector of authority scores produces a new vector of hub scores.

of the n nodes of the network Ñ we can represent them simply as vectors inn dimensions,
where thei th coordinate gives the hub or authority score of nodei . SpeciÞcally, we writeh
for the vector of hub scores, withhi equal to the hub score of nodei , and we similarly write
a for the vector of authority scores.

Hub and Authority Update Rules as Matrix-Vector Multiplication. LetÕs consider
the Hub Update Rule in terms of the notation weÕve just deÞned. For a nodei , its hub score
hi is updated to be the sum ofaj over all nodesj to which i has an edge. Note that these
nodesj are precisely the ones for whichM ij = 1. Thus we can write the update rule as

hi ← M i1a1 + M i2a2 + · · · + M inan, (14.1)

where we use the notation Ò←Ó to mean that the quantity on the left-hand-side is updated
to become the quantity on the right-hand-side. This is a correct way to write the update
rule, since the valuesM ij as multipliers select out precisely the authority values that we wish
to sum.

But Equation (14.1) corresponds exactly to the deÞnition of matrix-vector multiplication,
so we can write it in the following equivalent way:

h ← Ma.

Figure 14.12 shows this for the example from Figure 14.11, with the authority scores (2, 6, 4, 3)
producing the hub scores (9, 7, 2, 4) via the Hub Update Rule. Indeed, this is an example
of a general principle: if youÕre updating a collection of variables according to a rule that
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selects out certain ones to add up, you can often write this update rule as a matrix-vector
multiplication for a suitably chosen matrix and vector.

Specifying the Authority Update Rule in this style is strictly analogous, except that the
scores ßow in the other direction across the edges. That is,ai is updated to be the sum of
hj over all nodesj that have an edge toi , so

ai ← M 1ih1 + M 2ih2 + · · · + Mnihn. (14.2)

This too corresponds to a matrix-vector multiplication, but using a matrix where the entries
have all been ÒreßectedÓ so that the roles of rows and columns are interchanged. This can
be speciÞed using thetransposeof the matrix M , denotedM T , and deÞned by the property
that the ( i, j ) entry of M T is the (j, i ) entry of M : that is, M T

ij = M ji. Then Equation (14.2)
corresponds to the update rule

a← M T h.

Unwinding the k-step hub-authority computation. So far we have discussed a single
application of each of the update rules. What happens when we perform thek-step hub-
authority computation for some large value ofk?

We start with initial vectors of authority and hub scores that we denotea!0" and h!0" ,
each of them equal to the vector all of whose coordinates are 1. Now, leta!k" and h!k" denote
the vectors of authority and hub scores afterk applications of the Authority and then Hub
Update Rules in order, as in Section 14.2. If we simply follow the formulas above, we Þrst
Þnd that

a!1" = M T h!0"

and

h!1" = Ma!1" = MM T h!0" .

ThatÕs the result of the 1-step hub-authority computation. In the second step, we therefore
get

a!2" = M T h!1" = M T MM T h!0"

and

h!2" = Ma!2" = MM T MM T h!0" = ( MM T )2h!0" .

One more step makes the pattern clear:

a!3" = M T h!2" = M T MM T MM T h!0" = ( M T M )2M T h!0"

and

h!3" = Ma!3" = MM T MM T MM T h!0" = ( MM T )3h!0" .
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Proceeding for larger numbers of steps, then, we Þnd thata!k" and h!k" are products of the
terms M and M T in alternating order, where the expression fora!k" begins with M T and
the expression forh!k" begins with M . We can write this much more compactly as

a!k" = ( M T M )k# 1M T h!0"

and
h!k" = ( MM T )kh!0" .

So thatÕs a direct picture of whatÕs happening in thek-step hub-authority computation:
the authority and hub vectors are the results of multiplying an initial vector by larger and
larger powers ofM T M and MM T respectively. We now consider why this process converges
to stable values.

Thinking about multiplication in terms of eigenvectors. LetÕs keep in mind that,
since the actual magnitude of the hub and authority values tend to grow with each update,
they will only converge when we take normalization into account. To put it another way, it
is the directions of the hub and authority vectors that are converging. Concretely, what we

will show is that there are constantsc and d so that the sequences of vectors
h!k"

ck
and

a!k"

dk

converge to limits ask goes to inÞnity.
WeÕll talk Þrst about the sequence of hub vectors, and then weÕll consider the authority

vectors largely by pursuing a direct analogy to the analysis of hub vectors. If

h!k"

ck
=

(MM T )kh!0"

ck

is going to converge to a limith!$" , what properties do we expecth!$" should have? Since the
direction is converging, we expect that at the limit, the direction ofh!$" shouldnÕt change
when it is multiplied by (MM T ), although its length might grow by a factor ofc. That is,
we expect thath!$" will satisfy the equation

(MM T )h!$" = ch!$" .

Any vector satisfying this property Ñ that it doesnÕt change direction when multiplied by a
given matrix Ñ is called an eigenvectorof the matrix, and the scaling constantc is called the
eigenvaluecorresponding to the eigenvector. So we expect thath!$" should be an eigenvector
of the matrix MM T , with c a corresponding eigenvalue. We now prove that the sequence of

vectors
h!k"

ck
indeed converges to an eigenvector ofMM T .

To prove this, we use the following basic fact about matrices. We say that a square
matrix A is symmetric if it remains the same after transposing it:Aij = Aji for each choice
of i and j , or in other wordsA = AT . The fact we will use is the following [268]:
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Any symmetric matrix A with n rows andn columns has a set ofn eigenvectors
that are all unit vectors and all mutually orthogonal Ñ that is, they form abasis
for the spaceRn.

Since MM T is symmetric, we can apply this fact to it. LetÕs write the resulting mu-
tually orthogonal eigenvectors asz1, z2, . . . , zn, with corresponding eigenvaluesc1, c2, . . . , cn

respectively; and letÕs order the eigenvalues so that|c1| ≥ |c2| ≥ · · · ≥ |cn|. Furthermore,
to make things simpler in this explanation, letÕs suppose that|c1| > |c2|. (This essentially
always happens in link analysis applications; and below we explain the small changes that
need to be made in the discussion if this assumption does not hold.) Now, given any vector
x, a good way to think about the matrix-vector product (MM T )x is to Þrst write x as a
linear combination of the vectorsz1, . . . , zn. That is, with x = p1z1 + p2z2 + · · · + pnzn for
coe"cients p1, . . . , pn, we have

(MM T )x = ( MM T )(p1z1 + p2z2 + · · · + pnzn)

= p1MM T z1 + p2MM T z2 + · · · + pnMM T zn

= p1c1z1 + p2c2z2 + · · · + pncnzn,

where the third equality follows from the fact that eachzi is an eigenvector.
What this says is that z1, z2, . . . , zn is a very useful set of coordinate axes for representing

x: multiplication by MM T consists simply of replacing each termpizi in the representation
of x by cipizi. We now see how this makes it easy to analyze multiplication by larger powers
of MM T , which will be the last step we need for showing convergence.

Convergence of the hub-authority computation. WeÕve seen that when we take any
vector x and write it in the form p1z1 + · · · + pnzn, multiplication by MM T produces
c1p1z1 + · · · + cnpnzn. When we multiply repeatedly by MM T , each successive multipli-
cation introduces an additional factor ofci in front of the i th term. Therefore we have

(MM T )kx = ck
1p1z1 + ck

2p2z2 + · · · + ck
npnzn.

Now letÕs think of this in the context of the vectors of hub scores, whereh!k" = ( MM )T h!0" .
Recall that h!0" is just the Þxed starting vector in which each coordinate is equal to 1;
it can be represented in terms of the basis vectorsz1, . . . , zn as some linear combination
h!0" = q1z1 + q2z2 · · · + qnzn. So

h!k" = ( MM T )kh!0" = ck
1q1z1 + ck

2q2z2 + · · · + ck
nqnzn, (14.3)

and if we divide both sides byck
1, then we get

h!k"

ck
1

= q1z1 +
!

c2

c1

" k

q2z2 + · · · +
!

cn

c1

" k

qnzn. (14.4)
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Recalling our assumption that|c1| > |c2| (which weÕll relax shortly), we see that ask goes
to inÞnity, every term on the right-hand side but the Þrst is going to 0. As a result, the

sequence of vectors
h!k"

ck
1

is converging to the limit q1z1 as k goes to inÞnity.

Wrapping up. WeÕre essentially done at this point; but to round out the picture of con-
vergence, we will show two important things. First, we need to make sure that the coe"cient
q1 in the argument above is not zero, so as to be able to ensure so that the limitq1z1 is in
fact a non-zero vector in the direction ofz1. Second, we will Þnd that in fact a limit in the
direction of z1 is reached essentiallyregardlessof our choice of starting hub scoresh!0" : it is
in this sense that the limiting hub weights are really a function of the network structure, not
the starting estimates. We will show these two facts in reverse order, considering the second
point Þrst.

To begin with, then, letÕs suppose we began the computation of the hub vector from a
di!erent starting point: rather than having h!0" be the vector with all coordinates equal to
1, we picked some other starting vectorx. LetÕs suppose only thatx has a positive number
in each coordinate Ñ weÕll call such a vector apositive vector. As we noted before, any
vector x can be written asx = p1z1 + · · · pnzn, for some choice of multipliersp1, . . . , pn, and
so (MM T )kx = ck

1p1z1 + · · · ck
npnzn. Then h!k" /c k

1 is converging top1z1 Ñ in other words,
still converging to a vector in the direction ofz1 even with this new choice for the starting
vector h!0" = x.

Now, letÕs show whyq1 and p1 above are not zero (hence showing that the limits are
non-zero vectors). Given any vectorx, there is an easy way to think about the value ofp1

in its representation asx = p1z1 + · · · + pnzn: we just compute the inner product ofz1 and
x. Indeed, since the vectorsz1, . . . , zn are all mutually orthogonal, we have

z1 · x = z1 · (p1z1 + · · · pnzn) = p1(z1 · z1) + p2(z1 · z2) + · · · + pn(z1 · zn) = p1,

since all terms in the last sum are 0 except forp1(z1 · z1) = p1. Sincep1 is just the inner
product of x and z1, we see that our sequence of hub vectors converges to a non-zero vector
in the direction of z1 provided only that our starting hub vector h!0" = x is not orthogonal
to z1.

We now argue that no positive vector can be orthogonal toz1, which will conclude the
picture of convergence that weÕve been seeking to establish. The argument works via the
following steps.

1. It is not possible for every positive vector to be orthogonal toz1, and so there is some
positive vector x for which (MM T )kx/c k

1 converges to a non-zero vectorp1z1.

2. Since the expressions for (MM T )kx/c k
1 only involve non-negative numbers, and their

values converge top1z1, it must be that p1z1 has only non-negative coordinates; and
p1z1 must have at least one positive coordinate, since it is not equal to zero.
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3. So if we consider the inner product of any positive vector withp1z1, the result must
be positive. Hence we conclude thatno positive vector can be orthogonal toz1. This
establishes that in fact the sequence of hub vectors converges to a vector in the direction
of z1 when we start fromany positive vector (including the all-ones vector), which is
what we wanted to show.

This is pretty much the complete story, with the only loose end being our assumption
that |c1| > |c2|. LetÕs now relax this assumption. In general, there may be! > 1 eigenvalues
that are tied for the largest absolute value: that is, we can have|c1| = · · · = |c!|, and then
eigenvaluesc!+1, . . . , cn are all smaller in absolute value. While we wonÕt go through all the
details here, it is not hard to show that all the eigenvalues ofMM T are non-negative, so in
fact we havec1 = · · · = c! > c !+1 ≥ · · · ≥ cn ≥ 0. In this case, going back to Equations
(14.3) and (14.4), we have

h!k"

ck
1

=
ck
1q1z1 + · · · + ck

nqnzn

ck
1

= q1z1 + · · · + q!z! +
!

c!+1

c1

" k

q!+1z!+1 + · · · +
!

cn

c1

" k

qnzn.

Terms ! + 1 through n of this sum go to zero, and so the sequence converges toq1z1 + · · · +
q!z!. Thus, when c1 = c2, we still have convergence, but the limit to which the sequence
converges might now depend on the choice of the initial vectorh!0" (and particularly its inner
product with each of z1, . . . , z!). We should emphasize, though, that in practice, with real
and su"ciently large hyperlink structures, one essentially always gets a matrixM with the
property that MM T has |c1| > |c2|.

Finally, we observe that while this whole discussion has been in terms of the sequence
of hub vectors, it can be adapted directly to analyze the sequence of authority vectors as
well. For the authority vectors, we are looking at powers of (M T M ), and so the basic result
is that the vector of authority scores will converge to an eigenvector of the matrixM T M
associated with its largest eigenvalue.

B. Spectral Analysis of PageRank

The analysis weÕve just seen emphasizes how eigenvectors arise naturally as the limits of
repeated improvement. We now discuss how PageRank can be similarly analyzed using
matrix-vector multiplication and eigenvectors.

Recall that like hub and authority scores, the PageRank of a node is a numerical quantity
that is repeatedly reÞned using an update rule. LetÕs start by thinking about the Basic
PageRank Update Rule from Section 14.3, and then move on to the scaled version. Under
the basic rule, each node takes its current PageRank and divides it equally over all the nodes
it points to. This suggests that the ÒßowÓ of PageRank speciÞed by the update rule can be
naturally represented using a matrixN as depicted in Figure 14.13: we deÞneNij to be the
share ofiÕs PageRank thatj should get in one update step. This means thatNij = 0 if i
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node 1 0 1/2 0 1/2

0 0 1/2 1/2

1 0 0 0

0 0 1 0
node 4node 3

node 2

Figure 14.13: The ßow of PageRank under the Basic PageRank Update Rule can be repre-
sented using a matrixN derived from the adjacency matrixM : the entry Nij speciÞes the
portion of iÕs PageRank that should be passed toj in one update step.

doesnÕt link toj , and otherwiseNij is the reciprocal of the number of nodes thati points
to. In other words, wheni links to j , then Nij = 1/! i, where! i is the number of links out of
i . (If i has no outgoing links, then we deÞneNii = 1, in keeping with the rule that a node
with no outgoing links passes all its PageRank to itself.) In this way,N is similar in spirit
to the adjacency matrix M , but with a di!erent deÞnition when i links to j .

Now, letÕs represent the PageRanks of all nodes using a vectorr , where the coordinate
r i is the PageRank of nodei . Using this notation, we can write the Basic PageRank Update
Rule as

r i ← N1ir 1 + N2ir 2 + · · · + Nnirn. (14.5)

This corresponds to multiplication by the transpose of the matrix, just as we saw for the
Authority Update Rule; thus, Equation (14.5) can be written as

r ← N T r. (14.6)

The Scaled PageRank Update Rule can be represented in essentially the same way, but
with a di!erent matrix ÷N to represent the di!erent ßow of PageRank, as indicated in Fig-
ure 14.14. Recall that in the scaled version of the update rule, the updated PageRank is
scaled down by a factor ofs, and the residual 1− s units are divided equally over all nodes.
Thus, we can simply deÞne÷Nij to be sNij + (1 − s)/n , and then the scaled update rule can
be written as

r i ← ÷N1ir 1 + ÷N2ir 2 + · · · + ÷Nnirn. (14.7)
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node 1 .05 .45 .05 .45

.05 .05 .45 .45

.85 .05 .05 .05

.05 .05 .85 .05
node 4node 3

node 2

Figure 14.14: The ßow of PageRank under the Scaled PageRank Update Rule can also be
represented using a matrix derived from the adjacency matrixM (shown here with scaling
factor s = 0.8). We denote this matrix by ÷N ; the entry ÷Nij speciÞes the portion ofiÕs
PageRank that should be passed toj in one update step.

or equivalently
r ← ÷N T r. (14.8)

Repeated Improvement Using the Scaled PageRank Update Rule. As we apply
the scaled update rule repeatedly, starting from an initial PageRank vectorr !0" , we produce
a sequence of vectorsr !1" , r !2" , . . . where each is obtained from the previous via multiplication
by ÷N T . Thus, unwinding this process, we see that

r !k" = ( ÷N T )kr !0" .

Moreover, since PageRank is conserved as it is updated Ñ that is, the sum of the PageRanks
at all nodes remains constant through the application of the scaled update rule Ñ we donÕt
have to worry about normalizing these vectors as we proceed.

So by analogy with the limiting values of the hub-authority computation (but with the
added fact that normalization isnÕt needed), one expects that if the Scaled PageRank Update
Rule converges to a limiting vectorr !$" , this limit should satisfy ÷N T r !$" = r !$" Ñ that is, we
should expectr !$" to be an eigenvector of÷N T with corresponding eigenvalue 1. Such anr !$"

has the property that it will not change under further reÞnements by the Scaled PageRank
Update Rule.

In fact, all this turns out to be true: repeated application of the Scaled PageRank Update
Rule converges to precisely such anr !$" . To prove this, however, we canÕt use the same
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approach that we applied in the case of the hub-authority computation: there, the matrices
involved (MM T and M T M ) were symmetric, and so they had eigenvalues that were real
numbers and orthogonal eigenvectors that formed a basis. In general, for matrices such as
÷N that are not symmetric, the eigenvalues can be complex numbers, and the eigenvectors

may have less clean relationships to one another.

Convergence of the Scaled PageRank Update Rule. Fortunately, for matrices such
as ÷N in which all entries are positive (i.e. ÷Nij > 0 for all entries ÷Nij), we can use a powerful
result known asPerronÕs Theorem[268]. For our purposes, PerronÕs Theorem says that any
matrix P in which all entries are positive has the following properties.

(i) P has a real eigenvaluec > 0 such that c > |c%| for all other eigenvaluesc%.

(ii) There is an eigenvectory with positive real coordinates corresponding to the largest
eigenvaluec, and y is unique up to multiplication by a constant.

(iii) If the largest eigenvaluec is equal to 1, then for any starting vectorx %= 0 with non-
negative coordinates, the sequence of vectorsPkx converges to a vector in the direction
of y as k goes to inÞnity.

Interpreted in terms of the (scaled) version of PageRank, PerronÕs Theorem tells us that
there is a unique vectory that remains Þxed under the application of the scaled update rule,
and that repeated application of the update rule from any starting point will converge toy.
This vector y thus corresponds to the limiting PageRank values we have been seeking.

C. Formulation of PageRank Using Random Walks

To close this chapter, we consider how to formulate PageRank in terms of a random walk
on the nodes of the network, following the discussion at the end of Section 14.3.

First letÕs make the description of the random walk precise. A walker chooses a starting
node at random, picking each node with equal probability. (When a random choice is made
with equal probability over the options, we will say it is madeuniformly at random.) Then, in
each step, the walker follows an outgoing link selected uniformly at random from its current
node, and it moves to the node that this link points to. In this way, a random path through
the graph is constructed one node at a time.

LetÕs ask the following question: ifb1, b2, . . . , bn denote the probabilities of the walk being
at nodes 1, 2, . . . , n respectively in a given step, what is the probability it will be at nodei
in the next step? We can answer this by reasoning as follows.

1. For each nodej that links to i , if we are given that the walk is currently at nodej ,
then there is a 1/! j chance that it moves fromj to i in the next step, where! j is the
number of links out of j .
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2. The walk has to actually be at nodej for this to happen, so nodej contributes
bj(1/! j) = bj/! j to the probability of being at i in the next step.

3. Therefore, summingbj/! j over all nodesj that link to i gives the probability the walk
is at bi in the next step.

So the overall probability that the walk is at i in the next step is the sum ofbj/! j over
all nodes that link to i . We can use the matrixN deÞned in the analysis of PageRank to
write this update to the probability bi as follows:

bi ← N1ib1 + N2ib2 + · · · + Nnibn. (14.9)

If we represent the probabilities of being at di!erent nodes using a vectorb, where the
coordinatebi is the probability of being at nodei , then this update rule can be written using
matrix-vector multiplication by analogy with what we did in our earlier analyses:

b← N T b. (14.10)

What we discover is that this is exactly the same as the Basic PageRank Update rule from
Equation (14.6). Since both PageRank values and random-walk probabilities start out the
same (they are initially 1/n for all nodes), and they then evolve according to exactly the same
rule, they remain the same forever. This justiÞes the claim that we made in Section 14.3:

Claim: The probability of being at a pageX after k steps of this random walk is
precisely the PageRank ofX after k applications of the Basic PageRank Update
Rule.

And this makes intuitive sense. Like PageRank, the probability of being at a given node in
a random walk is something that gets divided up evenly over all the outgoing links from a
given node, and then passed on to the nodes at the other ends of these links. In other words,
probability and PageRank both ßow through the graph according to the same process.

A Scaled Version of the Random Walk. We can also formulate an interpretation of
the Scaled PageRank Update Rule in terms of random walks. As suggested at the end of
Section 14.3, this modiÞed walk works as follows, for a numbers > 0: With probability s,
the walk follows a random edge as before; and with probability 1− s it jumps to a node
chosen uniformly at random.

Again, letÕs ask the following question: ifb1, b2, . . . , bn denote the probabilities of the
walk being at nodes 1, 2, . . . , n respectively in a given step, what is the probability it will be
at node i in the next step? The probability of being at nodei will now be the sum ofsbj/! j,
over all nodesj that link to i , plus (1− s)/n . If we use the matrix ÷N from our analysis of
the Scaled PageRank Update Rule, then we can write the probability update as

bi ← ÷N1ib1 + ÷N2ib2 + · · · + ÷Nnibn. (14.11)
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or equivalently
b← ÷N T b. (14.12)

This is the same as the update rule from Equation (14.8) for the scaled PageRank values.
The random-walk probabilities and the scaled PageRank values start at the same initial
values, and then evolve according to the same update, so they remain the same forever. This
argument shows the following

Claim: The probability of being at a pageX after k steps of the scaled random
walk is precisely the PageRank ofX after k applications of the Scaled PageRank
Update Rule.

It also establishes that as we let the number of these scaled random-walk steps go to inÞnity,
the limiting probability of being at a node X is equal to the limiting scaled PageRank value
of X .

14.7 Exercises

1. Show the values that you get if you run two rounds of computing hub and authority
values on the network of Web pages in Figure 14.15. (That is, the values computed by
the k-step hub-authority computation when we choose the number of stepsk to be 2.)

Show the values both before and after the Þnalnormalization step, in which we divide
each authority score by the sum of all authority scores, and divide each hub score by
the sum of all hub scores. ItÕs Þne to write the normalized scores as fractions rather
than decimals.)

A

B

C

D

E

Figure 14.15:

2. (a) Show the values that you get if you run two rounds of computing hub and authority
values on the network of Web pages in Figure 14.16. (That is, the values computed by
the k-step hub-authority computation when we choose the number of stepsk to be 2.)
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F
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C

AD

BE

Figure 14.16: A network of Web pages.

Show the values both before and after the Þnalnormalization step, in which we divide
each authority score by the sum of all authority scores, and divide each hub score by
the sum of all hub scores. (We will call the scores obtained after this dividing-down
step the normalized scores. ItÕs Þne to write the normalized scores as fractions rather
than decimals.)

F

G

H

C

AD

BE

Figure 14.17: A network of Web pages.

(b) Due to the symmetry of nodesA and B in part (a), you should have seen that
they get the same authority scores. Now letÕs look at what happens to the scores when
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nodeE, which links to B , decides to link toC as well. This produces the new network
of Web pages shown in Figure 14.17.

Similarly to part (a), show the normalized hub and authority values that each node
gets when you run the 2-step hub-authority computation on the new network in Fig-
ure 14.17.

(c) In (b), which of nodesA or B now has the higher authority score? Give a brief
explanation in which you provide some intuition for why the di!erence in authority
scores betweenA and B in (b) turned out the way it did.

3. In Chapter 14, we discussed the fact that designers of Web content often reason ex-
plicitly about how to create pages that will score highly on search engine rankings. In
a scaled-down setting, this question explores some reasoning in that style.

(a) Show the values that you get if you run two rounds of computing hub and authority
values on the network of Web pages in Figure 14.18. (That is, the values computed by
the k-step hub-authority computation when we choose the number of stepsk to be 2.)

Show the values both before and after the Þnalnormalization step, in which we divide
each authority score by the sum of all authority scores, and divide each hub score by
the sum of all hub scores. (We will call the scores obtained after this dividing-down
step the normalized scores. ItÕs Þne to write the normalized scores as fractions rather
than decimals.)

C

D

E

A

B

F

Figure 14.18:

(b) Now we come to the issue of creating pages so as to achieve large authority scores,
given an existing hyperlink structure.
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In particular, suppose you wanted to create a new Web pageX , and add it to the
network in Figure 14.18, so that it could achieve a (normalized) authority score that
is as large as possible. One thing you might try is to create a second pageY as well,
so that Y links to X and thus confers authority on it. In doing this, itÕs natural to
wonder whether it helps or hurtsX Õs authority to haveY link to other nodes as well.

SpeciÞcally, suppose you addX and Y to the network in Figure 14.18. In order to add
X and Y to this network, one needs to specify what links they will have. Here are two
options; in the Þrst option, Y links only to X , while in the second option,Y links to
other strong authorities in addition to X .

• Option 1: Add new nodesX and Y to Figure 14.18; create a single link fromY
to X ; create no links out ofX .

• Option 2: Add new nodesX and Y to Figure 14.18; create links fromY to each
of A, B , and X ; create no links out ofX .

For each of these two options, weÕd like to know howX fares in terms of its authority
score. So, for each option, show the normalized authority values that each ofA, B , and
X get when you run the 2-step hub-authority computation on the resulting network
(as in part (a)). (That is, you should perform the normalization step where you divide
each authority value down by the total.)

For which of Options 1 or 2 does pageX get a higher authority score (taking normal-
ization into account)? Give a brief explanation in which you provide some intuition
for why this option givesX a higher score.

(c) Suppose instead of creating two pages, you create three pagesX , Y, and Z , and
again try to strategically create links out of them so thatX gets ranked as well as
possible.

Describe a strategy for adding three nodesX , Y, and Z to the network in Figure 14.18,
with choices of links out of each, so that when you run the 2-step hub-authority com-
putation (as in parts (a) and (b)), and then rank all pages by their authority score,
nodeX shows up in second place.

(Note that thereÕs no way to do this so thatX shows up in Þrst place, so second place
is the best one can hope for using only three nodesX , Y, and Z .)

4. LetÕs consider the limiting values that result from the Basic PageRank Update Rule (i.e.
the version where we donÕt introduce a scaling factors). In Chapter 14, these limiting
values are described as capturing Òa kind of equilibrium based on direct endorsement:
they are values that remain unchanged when everyone divides up their PageRank and
passes it forward across their out-going links.Ó
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This description gives a way to check whether an assignment of numbers to a set of
Web pages forms an equilibrium set of PageRank values: the numbers should add up
to 1, and they should remain unchanged when we apply the Basic PageRank Update
Rule. For example, this is illustrated in Chapter 14 via Figure 14.6: you can check
that if we assign a PageRank of 4/ 13 to pageA, 2/ 13 to each ofB and C, and 1/ 13
to the Þve other pages, then these numbers add up to 1 and they remain unchanged
when we apply the Basic PageRank Update Rule. Hence they form an equilibrium set
of PageRank values.

For each of the following two networks, use this approach to check whether the numbers
indicated in the Þgure form an equilibrium set of PageRank values. (In cases where
the numbers do not form an equilibrium set of PageRank values, you do not need to
give numbers that do; you simply need to explain why the given numbers do not.)

B

A

D

E

C

3/10

1/10 1/102/10

3/10

Figure 14.19: A network of Web pages.

(a) Does the assignment of numbers to the nodes in Figure 14.19 form an equilibrium
set of PageRank values for this network of Web pages? Give an explanation for your
answer.

(b) Does the assignment of numbers to the nodes in Figure 14.20 form an equilibrium
set of PageRank values for this network of Web pages? Give an explanation for your
answer.

5. Figure 14.21 depicts the links among 6 Web pages, and also a proposed PageRank
value for each one, expressed as a decimal next to the node.

Are these correct equilibrium values for the Basic PageRank Update Rule? Give a
brief (1-3 sentence) explanation for your answer.
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Figure 14.20: A network of Web pages.
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.30

Figure 14.21: A collection of 6 Web pages, with possible PageRank values.

6. One of the basic ideas behind the computation of hubs and authorities is to distinguish
between pages that have multiple reinforcing endorsements and those that simply have
high in-degree. (Recall that the in-degree of a node is the number of links coming into
it.)

Consider for example the graph shown in Figure 14.22. (Despite the fact that it has
two separate pieces, keep in mind that it is a single graph.) The contrast described
above can be seen by comparing nodeD to nodesB1, B2, and B3: whereasD has
many in-links from nodes that only point to D, nodesB1, B2, and B3 have fewer
in-links each, but from a mutually reinforcing set of nodes.

LetÕs explore how this contrast plays out in the context of this stylized example.
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Figure 14.22:

(a) Show the values you get from running the 2-step hub-authority computation from
the chapter on link analysis. (If you want, you can omit the Þnal step in which the
values are normalized; i.e., you can just leave the values as large numbers.)

(b) Give formulas, in terms ofk, for the values at each node that you get from running
the k-step hub-authority computation. (Again, if you want, you can omit the Þnal
step in which the values are normalized, and give the formulas in terms ofk without
normalization.)

(c) As k goes to inÞnity, what do the normalized values at each node converge to?
Give an explanation for your answer; this explanation does not have to constitute a
formal proof, but it should argue at least informally why the process is converging
to the values you claim. In addition to your explanation of whatÕs happening in
the computation, brießy discuss (in 1-2 sentences) how this relates to the intuition
suggested in the opening paragraph of this problem, about the di!erence between
pages that have multiple reinforcing endorsements and those that simply have high
in-degree.


