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In the previous chapter, we saw a first example of an institution that can synthesize

information held by many people, through the ways in which markets serve to aggregate the

individual beliefs of investors. We now turn to a second fundamental institution: voting.

23.1 Voting for Group Decision-Making

Like markets, voting systems also serve to aggregate information across a group, and as a

result, it’s hard to draw a perfectly clear dividing line between these two kind of institutions.

But there are definite distinctions between the respective settings in which they are typically

applied. A first important distinction is that voting is generally used in situations where a

group of people is expressly trying to reach a single decision that in a sense will speak for

the group. When a population votes on a set of candidates or ballot initiatives, a legislative

body votes on whether to pass a bill, a jury votes on a verdict in a trial, a prize committee

votes on the recipient of an award, or a group of critics votes on the top movies of the past

century, the resulting decision is a single outcome that stands for the group, and has some

kind of binding effect going forward. In contrast, markets synthesize the opinions of a group

more indirectly, as investors’ beliefs are conveyed implicitly through their transactions in

the market — choosing how much to invest or to bet, choosing whether to buy or not to

buy, and so forth. The overt goal of the market is to enable these transactions, rather than

any broader synthesis or group decision that might in fact arise from the transactions in

aggregate.

There are other important distinctions as well. A simple but important one is that the

choices in a market are often numerical in nature (how much money to transact in various

ways), and the synthesis that takes place generally involves arithmetic on these quantities —
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736 CHAPTER 23. VOTING

weighted averages and other measures. Many of the key applications of voting, on the other

hand, take place in situations where there’s no natural way to “average” the preferences of

individuals — since the preferences are over different people, different policy decisions, or

different options under a largely subjective criterion. Indeed, as we will see in this chapter,

much of the richness of the theory of voting comes from precisely this attempt to combine

preferences in the absence of simple metaphors like averaging.

The notion of voting encompasses a broad class of methods for reaching a group decision.

For example, the methods to reach a jury verdict, an outcome in a U.S. Presidential Election,

or a winner of college football’s Heisman Trophy are all distinct, and these distinctions have

effects both on the process and the result. Moreover, voting can be used in settings where

a single “winner” must be chosen, as well as in situations where the goal is to produce a

ranked list. Examples of the latter include the ranking of college sports teams by aggregating

multiple polls, or published rankings of the greatest movies, songs, or albums of all time by

combining the opinions of many critics.

Voting is often used in situations where the voters disagree because of genuine divergence

in their subjective evaluations. For example, film critics who disagree on whether to rank

Citizen Kane or The Godfather as the greatest movie of all time are generally not disagreeing

because they lack relevant information about the two movies — we can expect that they

are closely familiar with both — but because of differing aesthetic evaluations of them. In

other cases, however, voting is used to achieve group decisions where the difficulty is a lack

of information — where the members of the group would likely be unanimous if they had all

the information relevant to the decision. For example, jury verdicts in criminal trials often

hinge on genuine uncertainty as to whether the defendant committed the crime; in such

cases one expects that jurors all have approximately the same goal in mind (determining

the correct verdict), and the differences are in their access to and processing of the available

information. We will consider both of these settings in this chapter.

Ideas from the theory of voting have been adopted in a number of recent on-line appli-

cations [140]. Different Web search engines produce different rankings of results; a line of

work on meta-search has developed tools for combining these rankings into a single aggregate

ranking. Recommendation systems for books, music, and other items — such as Amazon’s

product-recommendation system — have employed related ideas for aggregating preferences.

In this case, a recommendation system determines a set of users whose past history indicates

tastes similar to yours, and then uses voting methods to combine the preferences of these

other users to produce a ranked list of recommendations (or a single best recommendation)

for you. Note that in this case, the goal is not a single aggregate ranking for the whole pop-

ulation, but instead an aggregate ranking for each user, based on the preferences of similar

users.

Across all of these different contexts in which voting arises, one sees a recurring set of
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questions. How should we produce a single ranking from the conflicting opinions provided

by multiple voters? Is some version of majority voting a good mechanism? Is there a better

one? And ultimately, what does it even mean for a voting system to be good? These are

some of the questions we address in this chapter.

23.2 Individual Preferences

The goal of a voting system, for our purposes, can be described as follows. A group of

people is evaluating a finite set of possible alternatives; these alternatives could correspond

to political candidates, possible verdicts in a trial, amounts of money to spend on national

defense, nominees for an award, or any other set of options in a decision. The people involved

wish to produce a single group ranking that orders the alternatives from best to worst, and

that in some sense reflects the collective opinion of the group. Of course, the challenge will

be to define what it means to “reflect” the multiple opinions held by members of the group.

To begin with, let’s consider how to model the opinions of any one member of the group.

We suppose that for each individual, he or she is able to determine a preference between any

two alternatives when presented with these two as a pair. If individual i prefers alternative

X to alternative Y , then we write X !i Y . (Sometimes, for ease of discussion, we will say

that X “defeats” Y according to i’s preferences.) Thus, for example, if a set of film critics

are each given a large list of movies and asked to express preferences, we could write Citizen

Kane !i The Godfather to express the fact that critic i prefers the former movie to the

latter. We will sometimes refer to an individual’s preferences over all pairs of alternatives,

represented by !i, as this individual’s preference relation over the alternatives.

Completeness and Transitivity. We require that individual preferences satisfy two prop-

erties. The first is that each person’s preferences are complete: for each pair of distinct

alternatives X and Y , either she prefers X to Y , or she prefers Y to X, but not both. It

is possible to extend the theory here to consider the possibility that an individuals has ties

in her preferences (i.e. for some pairs of alternatives, she likes them equally), and also the

possibility that for some pairs of alternatives, an individual has no preference (perhaps be-

cause individual i has no knowledge of one of X or Y ). Both of these extensions introduce

interesting complications, but for this chapter we focus on the case in which each individual

has a preference between each pair of alternatives.

The second requirement is that each individual’s preferences be transitive: if an individual

i prefers X to Y and Y to Z, then i should also prefer X to Z. This seems like a very sensible

restriction to impose on preferences, since otherwise we could have situations in which an

individual had no apparent favorite alternative. In other words, suppose we were evaluating

preferences over flavors of ice cream, and we had an individual i for whom Chocolate !i
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X

W

Suppose X defeats the most 

other alternatives, but W 

defeats X.

(a)

X

W

Then by transitivity, W defeats 
everything X defeats, plus X 
itself.  So W defeats more 

than X does.

(b)

Figure 23.1: With complete and transitive preferences, the alternative X that defeats the
most others in fact defeats all of them. If not, some other alternative W would defeat X (as
in (a)), but then by transitivity W would defeat more alternatives than X does (as in (b)).

Vanilla, and Vanilla !i Strawberry — and, in a violation of transitivity, also Strawberry

!i Chocolate. A simple informal argument for why such preferences seem pathological is

the following: if individual i were to walk up to the counter at an ice cream shop and see

all three flavors on display, which would she choose? This would in some sense have to

be her favorite, despite the fact that each of the three flavors is defeated by some other

flavor in her preferences. There has been a long line of work exploring the philosophical

and psychological basis for transitive preferences, as well as identifying natural situations in

which non-transitive preferences can in fact arise [12, 41, 163]. For our purposes here, we

will assume that each individual’s preferences are transitive.

Individual Rankings. Thus far we have been expressing an individual’s opinions about

a set of alternatives in terms of his or her preferences over pairs. An alternate model for

opinions would be to imagine that each individual produces a completely ranked list of all

the alternatives, ranking them from best to worst.

Notice that from such a ranked list, we could define a preference relation !i very simply:

we’d say that X !i Y if alternative X comes before alternative Y in i’s ranked list. In this

case, we’ll say that the preference relation arises from the ranked list. It’s not hard to see

that if a preference relation arises from a ranked list of the alternatives, then it must be

complete and transitive: completeness holds since for each pair of alternatives, one precedes
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the other in the list; and transitivity holds since if X precedes Y and Y precedes Z in the

list, then X must also precede Z.

What is somewhat less obvious is that this fact holds in the opposite direction as well:

If a preference relation is complete and transitive, then it arises from some ranked

list of the alternatives.

The way to see why this is true is to consider the following method for constructing a ranked

list from a complete and transitive preference relation. First, we identify the alternative X

that defeats the most other alternatives in pairwise comparisons — that is, the X so that

X !i Y for the most other choices of Y . We claim that this X in fact defeats all the other

alternatives: X !i Y for all other Y .

We’ll see why this is true in a moment; but first, let’s see why this fact lets us construct

the ranked list we want. To begin with, having established that X defeats all other alter-

natives, we can safely put it at the front of the ranked list. We now remove X from the

set of alternatives, and repeat exactly the same process on the remaining alternatives. The

preferences defined by !i are still complete and transitive on the remaining alternatives,

so we can apply our claim again on this smaller set: for the alternative Y that defeats the

most others in this set, it in fact defeats every remaining alternative. Hence Y defeats every

alternative in the original set except for X, so we can put Y second in the list, remove it

too from the set of alternatives, and continue in this way until we exhaust the finite set

of alternatives. The way we’ve constructed the list, each alternative is preferred to all the

alternatives that come after it, and so !i arises from this ranked list.

All of this depends on showing that for any complete and transitive preferences over a

set of alternatives (including the original preferences, and the ones we get as we remove

alternatives), the alternative X that defeats the most others in fact defeats all of them.

Here is an argument showing why this is true (also illustrated in Figure 23.1). We suppose,

for the sake of a contradiction, that it were not true; then there would be some alternative

W that defeats X. But then, for every Y that is defeated by X, we’d have W !i X and

X !i Y , and so by transitivity W !i Y . The conclusion is that W would defeat everything

X defeats, and also defeat X — so W would defeat more alternatives than X does. This is

a contradiction, since we chose X as the alternative that defeats the most others. Therefore,

our assumption that some W defeats X cannot be correct, and so X in fact defeats all other

alternatives. This argument justifies our construction of the ranked list.

In view of all this, when we have a complete and transitive preference relation, we can

equally well view it as a ranked list. Both of these views will be useful in the discussion to

follow.
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23.3 Voting Systems: Majority Rule

In the previous section we developed a way to talk about the individual preference relations

that we’re seeking to combine. We can now describe a voting system (also called an aggrega-

tion procedure) as follows: it is any method that takes a collection of complete and transitive

individual preference relations — or equivalently, a collection of individual rankings — and

produces a group ranking.

This is a very general definition, and at this level of generality it may be hard to see

what makes for a “reasonable” voting system. So we begin, in this section and the next,

by discussing two of the most common classes of voting systems. By considering these,

we’ll start to identify some of the principles — and pathologies — at work in voting more

generally.

Majority Rule and the Condorcet Paradox. When there are only two alternatives,

the most widely used voting system — and arguably the most natural — is majority rule.

Under majority rule, we take the alternative that is preferred by a majority of the voters

and rank it first, placing the other alternative second. For this discussion we will assume

that the number of voters is odd, so that we won’t have to worry about the possibility of

majority rule producing ties.

Since majority rule is so natural in the case of two alternatives, it is natural to try

designing a voting system based on majority rule when there are more than two alternatives.

This, however, turns out to be remarkably tricky. Probably the most direct approach is to

first create group preferences, by applying majority rule to each pair of alternatives, and

then trying to turn these group preferences into a group ranking. That is, we create a group

preference relation ! out of all the individual preferences !i as follows. For each pair of

alternatives X and Y , we count the number of individuals for whom X !i Y and the number

of individuals for whom Y !i X. If the first number is larger than the second, then we say

that the group preference ! satisfies X ! Y , since a majority of the voters prefer X to Y

when these two alternatives are considered in isolation. Similarly, we say Y ! X in the

group preference if Y !i X for a majority of the individuals i. Since the number of voters

is odd, we can’t have equal numbers favoring X and favoring Y . So for every distinct pair

of alternatives we will have exactly one of X ! Y or Y ! X. That is, the group preference

relation is complete.

There’s no problem getting this far; the surprising difficulty is that the group preferences

may not be transitive, even when each individual’s preferences are transitive. To see how this

can happen, suppose that we have three individuals named 1, 2, and 3, and three alternatives

named X, Y , and Z. Suppose further that individual 1’s ranking is

X !1 Y !1 Z, (23.1)
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College National Ranking Average Class Size Scholarship Money Offered
X 4 40 $3000
Y 8 18 $1000
Z 12 24 $8000

Figure 23.2: When a single individual is making decisions based on multiple criteria, the
Condorcet Paradox can lead to non-transitive preferences. Here, if a college applicants
wants a school with a high ranking, small average class size, and a large scholarship offer, it
is possible for each option to be defeated by one of the others on a majority of the criteria.

individual 2’s ranking is

Y !2 Z !2 X, (23.2)

and individual 3’s ranking is

Z !3 X !3 Y. (23.3)

Then using majority-rule to define group preferences, we’d have X ! Y (since X is preferred

to Y by both 1 and 3), Y ! Z (since Y is preferred to Z by both 1 and 2), and Z ! X

(since Z is preferred to X by both 2 and 3). This violates transitivity, which would require

X ! Z once we have X ! Y and Y ! Z.

The possibility of non-transitive group preferences arising from transitive individual pref-

erences is called the Condorcet Paradox, after the Marquis de Condorcet, a French political

philosopher who discussed it in the 1700s. And there’s something genuinely counter-intuitive

about it. If we recall our earlier discussion of non-transitive preferences as being somehow

“incoherent,” the Condorcet Paradox describes a simple scenario in which a set of people,

each with perfectly plausible preferences, manages to behave incoherently when forced to

express their collective preferences through majority rule. For example, let’s return to our

example of an individual who prefers Chocolate to Vanilla to Strawberry to Chocolate. Even

if we were to assume that no one individually behaves this way, the Condorcet Paradox shows

how this can arise very naturally as the group preferences of a set of ice-cream eating friends,

when they plan to share a pint of ice cream and decide on which flavor to buy using majority

rule.

The Condorcet Paradox has in fact also been used to show how a single person can natu-

rally be led to form non-transitive individual preferences [41, 163]. Consider, for example, a

student deciding which college to attend. She prefers to go to a college that is highly ranked,

that has a small average class size, and that offers her a significant amount in scholarship

money. Suppose she has been admitted to the following three colleges, with characteristics

as described in Figure 23.2.

In comparing colleges, the student was planning to decide between pairs of colleges by

favoring the one that did better on a majority of these three criteria. Unfortunately, this
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leads to the preferences X !i Y (since X is better than Y on ranking and scholarship

money), Y !i Z (since Y is better than Z on ranking and average class size), and Z !i X

(since Z is better than X on average class size and scholarship money). It’s not hard to see

the analogy: each criterion is like a voter, and the student’s “individual preference relation”

is really the group preference relation synthesized from these three criteria. But it does show

some of the complications that arise even when one individual engages in decision-making

in the presence of multiple criteria.

Voting Systems based on Majority Rule. The Condorcet Paradox portends trouble

for the design of voting systems in general, but given that we need some way to produce an

actual group ranking (including an actual top-ranked alternative), it’s still worth exploring

what can be done using majority rule. We’ll focus on methods for selecting a top-ranked

alternative, which we’ll think of as the “group favorite”; to produce a full ranked list, one

could first select a group favorite, remove it from the available alternatives, and then apply

the procedure repeatedly to what’s left.

One natural approach for finding a group favorite is as follows. We arrange all the

alternatives in some order, and then eliminate them one-by-one in this order using majority

rule. Thus, we compare the first two alternatives by majority vote, compare the winner of

this vote to the third alternative, then compare the winner of that to the fourth alternative,

and so on. The winner of the final comparison is deemed to be the group favorite. We can

represent this in a pictorial way as in Figure 23.3(a), showing the sequence of eliminations

in a four-alternative example, with alternatives A and B compared first, then the winner

compared to C, and the winner of that compared to D. We can think of this as an agenda

for a meeting in which pairs of alternatives are proposed to the group, majority votes are

taken, and a group favorite emerges from this.

This is an example of a more general strategy for using majority rule over pairs of

alternatives to find a group favorite: we can arrange them in any kind of “elimination

tournament,” in which alternatives are paired off against each other in some fashion, with

the winner advancing to a subsequent round while the loser is eliminated. The alternative

that eventually emerges as the overall winner of this tournament is declared to be the group

favorite. The system we were just discussing, shown in Figure 23.3(a), is one such way to

structure an elimination tournament; Figure 23.3(b) depicts another.

Pathologies in Voting Systems based on Majority Rule. These systems do produce

a group favorite (and, by repeatedly invoking the system on the remaining alternatives, also

produce a group ranking). The Condorcet Paradox, however, can be used to uncover an

important pathology that such systems exhibit: their outcomes are susceptible to a kind of

strategic agenda-setting. Let’s go back to our original example of the Condorcet Paradox,
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A B

D

C

Winner of 
A vs. B

Outcome of 
A-B winner 

vs. C

Overall group 
favorite

(a) Introducing new alternatives one at a time.

A B DC

Winner of 
A vs. B

Overall group 
favorite

Winner of 
C vs. D

(b) Pairing off alternatives in a different order.

Figure 23.3: One can use majority rule for pairs to build voting systems on three or more alternatives. The
alternatives are considered according to a particular “agenda” (in the form of an elimination tournament),
and they are eliminated by pairwise majority vote according to this agenda. This produces an eventual
winner that serves as the overall group favorite.
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X Y

Z

X wins 

here

Z wins 

overall

(a) An agenda in which Z wins.

Z Y

X

Y wins 

here

X wins 

overall

(b) An agenda in which X wins.

Figure 23.4: With individual rankings as in the Condorcet Paradox, the winner of the
elimination tournament depends entirely on how the agenda is set.

where three voters had the individual rankings over alternatives X, Y , and Z given by lists

(23.1)–(23.3). They decide to choose a group favorite using a version of the system shown

in Figure 23.3(a), scaled down to three alternatives: they will first perform majority vote

between two of the alternatives, and then perform majority vote between the winner of this

first vote and the remaining alternative.

The question then becomes how to set the agenda for this process. That is, which two

of the alternatives X, Y , and Z will be voted on first, and which one will be held until the

final vote? Because of the structure of the individual preferences, the choice of agenda in

this case has a decisive effect on the outcome. If, as in Figure 23.4(a), alternatives X and Y

are paired off first, then X will win this first vote but then be defeated by Z as the group

favorite. On the other hand, if alternatives Y and Z are paired off first (as in Figure 23.4(b)),

then Y will win this first vote but then be defeated by X as the group favorite. (We could

do a similar thing to have Y be the group favorite.)

So with individual preferences as in the Condorcet paradox, the overall winner is deter-

mined entirely by how the votes between pairs are sequenced. To put it a different way, if

the voter who likes Z best gets to set the agenda, then she can sequence the votes so Z wins;

but if the voter who likes X or Y best gets to set the agenda, then he can sequence the

votes so his respective favorite wins. The group favorite is thus determined by the individual

who controls the agenda. Nor can this be remedied by using a system in which voters can

re-introduce alternatives once they’ve been eliminated: with preferences as in the Condorcet

Paradox, there’s always an alternative that can be re-introduced to defeat the current can-

didate for the group favorite, and so a process in which alternatives can be re-introduced for
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consideration would never come to an end.

Earlier in this section — using an example of a student choosing colleges based on mul-

tiple criteria, in Figure 23.2 — we observed that the Condorcet Paradox can also capture

pathologies in the decisions made by a single individual, rather than a group. The problem of

agenda-setting has an analogue in the context of such individual decisions as well. Suppose,

for example, that the student in our earlier college-choice example makes the natural deci-

sion to eliminate choices one at a time as acceptance offers come in. Then if the acceptances

arrive in the order X, Y , Z, she will eliminate Y in favor of X when Y arrives (X has a

higher ranking and a higher scholarship offer) and then eliminate X in favor of Z when the

acceptance from Z arrives (since Z has a smaller average class size and a higher scholarship

offer). Each of these makes sense as a pairwise decision, and it leads to Z as her overall

decision — but it has the property that Y , which she eliminated first, is in fact a choice she

preferred to Z. This is precisely the problem of having a final decision that depends on the

agenda by which alternatives are considered.

23.4 Voting Systems: Positional Voting

A different class of voting systems tries to produce a group ranking directly from the in-

dividual rankings, rather than building up the group ranking from pairwise comparisons

of alternatives. In this type of system, each alternative receives a certain weight based on

its positions in all the individual rankings, and the alternatives are then ordered according

to their total weight. A simple example of such a system is the Borda Count, named for

Jean-Charles de Borda, who proposed it in 1770. The Borda Count is often used to choose

the winners of sports awards, such as the Heisman trophy in college football; a variant of

it is used to select the Most Valuable Player in professional baseball; and it is used by the

Associated Press and United Press International to rank sports teams.

In the Borda Count, if there are k alternatives in total, then individual i’s ranking confers

a weight of k − 1 on her first-ranked alternative, a weight of k − 2 on her second-ranked

alternative, and so on down to a weight of 1 on her second-to-last alternative, and a weight of

0 on her last alternative. In other words, each alternative receives a weight from individual

i equal to the number of other alternatives ranked lower by i. The total weight of each

alternative is simply the sum of the weights it receives from each of the individuals. The

alternatives are then ordered according to their total weights. (We will suppose that if

two alternatives receive the same total weight, then some tie-breaking system arranged in

advance is used to decide which of these two alternatives to place in front of the other.)

For example, suppose there are four alternatives, named A, B, C, and D, and there are

two voters with the individual rankings

A !1 B !1 C !1 D
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and

B !2 C !2 A !2 D.

Then the weight assigned by the Borda Count to alternative A is 3 + 1 = 4, the weight

assigned to B is 5, the weight assigned to C is 3, and the weight assigned to D is 0.

Therefore, sorting the weights in descending order, the group ranking is

B ! A ! C ! D.

It is easy to create variants of the Borda Count that retain its basic flavor: we can assign

any number of “points” to each position in each list, and then rank the alternatives by the

total number of points they receive based on their positions in all lists. The Borda Count

assigns k − 1 points for first, k − 2 points for second, and so forth, but one could imagine

versions that assign points differently: for example, to make only the top three positions in

each individual ranking matter, one could assign 3 points for first, 2 for second, 1 for third,

and 0 points for all other positions, with the group ranking still determined by the total

number of points the alternatives receive. We refer to any system of this type as a positional

voting system, since the alternatives receive numerical weights based on their positions on

the individual rankings.

A key appealing feature of the Borda Count is that — ignoring ties — it always produces

a complete, transitive ranking for a set of alternatives. This is simply by its definition, since

it creates a single numerical criterion along which to sort the alternatives (including, as

noted previously, a rule for tie-breaking). But the Borda Count also has some fundamental

pathologies, as we now discuss.

Pathologies in Positional Voting Systems. Most of the problems with the Borda

Count, and with positional voting systems more generally, arise from the fact that competi-

tion for top spots in the group ranking can depend critically on the rankings of alternatives

that are further down in the list.

Here’s a hypothetical scenario illustrating how this can happen. Suppose that a magazine

writes a column in which it asks five film critics to discuss their choice for the greatest movie

of all time; the two movies discussed in the column are Citizen Kane and The Godfather,

and the column ends with a majority-vote decision on the winner. Critics 1, 2, and 3 favor

Citizen Kane, while critics 4 and 5 favor The Godfather.

At the last minute, however, the editors decide the column needs a more “modern” feel,

so they introduce Pulp Fiction as a third option that needs to be discussed and evaluated.

Since there are now three options, the magazine decides to have each critic produce a ranking,

and then use the Borda Count for the overall decision that will serve as the punchline of the

column. The first three critics (who all prefer older movies) each report the ranking

Citizen Kane !i The Godfather !i Pulp Fiction.



23.4. VOTING SYSTEMS: POSITIONAL VOTING 747

Critics 4 and 5 (who only like movies made in the last 40 years) each report the ranking

The Godfather !i Pulp Fiction !i Citizen Kane.

Applying the Borda Count, we see that Citizen Kane receives a weight of 2 from each of

the first three critics, and a weight of 0 from the last two, for a total of 6. The Godfather

receives a weight of 1 from each of the first three critics, and a weight of 2 from the last two,

for a total of 7. Pulp Fiction receives a weight of 0 from each of the first three critics, and a

weight of 1 from the last two, for a total of 2. As a result, the Borda Count produces The

Godfather as the overall group favorite.

Notice what’s happened here. The outcome of the head-to-head comparison between

Citizen Kane and The Godfather remains the same as before — Citizen Kane is favored by

a vote of three to two. But because a third alternative was introduced, the identity of the

group favorite has changed. Moreover, this is not because the group was particularly fond of

this new, third alternative — the third alternative loses in a head-to-head vote against each

of the two existing alternatives. To put the difficulty in another way: Citizen Kane fails to

rank first in the Borda Count even though it defeats each of the other two alternatives in a

head-to-head comparison under majority rule. So what we find is that the outcome in the

Borda Count can depend on the presence of alternatives that intuitively seem “irrelevant”

— weak alternatives that essentially act as “spoilers” in shifting the outcome from one

higher-ranked alternative to another.

The possibility of such a result suggests further difficulties with the Borda Count —

specifically, the problem of strategic misreporting of preferences. To see how this happens,

let’s consider a slightly different scenario. Suppose in our previous story that critics 4 and 5

actually had the true ranking

The Godfather !i Citizen Kane !i Pulp Fiction.

In other words, in this version of the story, all five critics agree that Pulp Fiction should

be ranked last among these three movies. If we were to run the Borda Count on this set of

five individual rankings, the group ranking would place Citizen Kane first (it would receive

a total weight of 3 · 2 + 2 · 1 = 8 to The Godfather’s 3 · 1 + 2 · 2 = 7). However, suppose that

critics 4 and 5 understand the pathologies that are possible with the Borda Count, and they

decide in advance to misreport their rankings as

The Godfather !i Pulp Fiction !i Citizen Kane.

Then we have the individual rankings from the previous scenario, and The Godfather ends

up being ranked first.

The underlying point is that voters in the Borda Count can sometimes benefit by lying

about their true preferences, particularly so as to downgrade the overall group ranking of an

alternative that many other voters will put at the top of their individual rankings.



748 CHAPTER 23. VOTING

Examples from U.S. Presidential Elections. Versions of these pathologies are familiar

from U.S. Presidential elections as well. The full Presidential Election process in the United

States has a complex specification, but if we think about how states choose their electors in

the general election — i.e. how they choose which candidate will receive the state’s electoral

votes — it is generally done using plurality voting: the candidate who is top-ranked by

the most voters wins. (The U.S. Constitution doesn’t require this, and some states have

considered other methods and used others in the past, but this is the typical system.)

If we think about it, plurality voting is in fact a positional voting system, since an

equivalent way to run it is as follows. We ask each voter to report an individual ranking of

all the candidates. Each individual ranking then confers a weight of 1 to the candidate at

the top of the ranking, and a weight of 0 to all the other candidates. The candidate with

the greatest total weight from these rankings is declared the winner. Note that this is just

a different way of saying that the candidate who is top-ranked by the most voters wins, but

it makes it clear that this system fits the structure of a positional method.

Plurality voting exhibits difficulties analogous to what we observed for the Borda Count.

With only two candidates, plurality voting is the same as majority rule; but with more than

two candidates, one sees recurring “third-party” effects, where an alternative that is the

favorite of very few people can potentially shift the outcome from one of the two leading

contenders to the other. In turn, this causes some voters to make their choices strategically,

misreporting their top-ranked choice so as to favor a candidate with a better chance of

winning. Such issues have been present in recent U.S. Presidential elections, and their

effects in important earlier elections, such as the election of Abraham Lincoln in 1860, have

also been studied [384].

23.5 Arrow’s Impossibility Theorem

We have now looked at a number of different voting systems, and we’ve seen that when there

are more than two alternatives under consideration, they all exhibit pathological behavior.

If we were to consider further voting systems used in practice, we’d find they too suffered

from inherent problems in the way they produce a group ranking. At some point, however,

it makes sense to step back from specific voting systems and ask a more general question: is

there any voting system that produces a group ranking for three or more alternatives, and

avoids all of the pathologies we’ve seen thus far?

Making this question concrete requires that we precisely specify all the relevant defini-

tions. We’ve already discussed the precise definition of a voting system: for a fixed number

of voters k, it is any function that takes a set of k individual rankings and produces a group

ranking. The other thing we need to do is to specify what it means for a voting system to

be free of pathologies. We will do this by specifying two properties that we would like a
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reasonable voting system to satisfy. They are the following.

• First, if there is any pair of alternatives X and Y for which X !i Y in the rankings

of every individual i, then the group ranking should also have X ! Y . This is a very

natural condition, known as the Pareto Principle, or Unanimity; it simply requires

that if everyone prefers X to Y , then the group ranking should reflect this. One can

think of Unanimity as ensuring that the group ranking be responsive to the individual

rankings in at least a minimal way.

• Second, we require that for each pair of alternatives, the ordering of X and Y in the

group ranking should depend only on how each individual ranks X and Y relative to

each other. In other words, suppose we have a set of individual rankings that produces

a group ranking in which X ! Y . If we then take some third alternative Z and shift

its position in some of the individual rankings, while leaving the relative ordering of

X and Y unchanged, then the voting system should still produce X ! Y for this new

set of individual rankings.

This condition is called Independence of Irrelevant Alternatives (IIA), since it requires

that the group ranking of X and Y should depend only on voter preferences between X

and Y , not on how they evaluate other alternatives. IIA is more subtle than Unanimity,

but the failure of IIA is in fact responsible for most of the pathological behavior we

saw in our earlier discussions of specific voting systems. It was clearly at work in

the strategic misreporting of preferences for the Borda Count, since there the shift in

ranking of a third alternative Z was sufficient to change the outcome between two other

alternatives X and Y . It also plays a role in the problem of strategic agenda-setting

for elimination systems based on majority rule: the key idea there was to choose an

agenda that eliminated one alternative X early, before it could be paired against an

alternative Y that it would in fact defeat.

Voting Systems that Satisfy Unanimity and IIA. Since Unanimity and IIA are both

reasonable properties, it’s natural to ask what voting systems satisfy them. When there are

only two alternatives, majority rule clearly satisfies both: it favors X to Y when all voters

do, and — since there are only two alternatives — the group ranking of X and Y clearly

does not depend on any other alternatives.

When there are three or more alternatives, it’s trickier to find a voting system that satis-

fies these two properties: neither the positional systems nor the systems based on majority

rule that we’ve considered will work. There is, however, a voting system that satisfies the

two properties: dictatorship. That is, we pick one of the individuals i, and we simply declare

the group ranking to be equal to the ranking provided by individual i. Notice that there are

really k different possible voting systems based on dictatorship — one in which each of the
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k possible voters is chosen as the dictator.

We can easily check that each of these k dictatorship systems satisfies Unanimity and

IIA. First, if everyone prefers X to Y , then the dictator does, and hence the group ranking

does. Second, the group ranking of X and Y depends only how the dictator ranks X and

Y , and does not depend on how any other alternative Z is ranked.

Arrow’s Theorem. In the 1950s, Kenneth Arrow proved the following remarkable result

[22, 23], which clarifies why it’s so hard to find voting systems that are free of pathological

behavior.

Arrow’s Theorem: If there are at least three alternatives, then any voting system

that satisfies both Unanimity and IIA must correspond to dictatorship by one

individual.

In other words, dictatorship is the only voting system that satisfies both Unanimity and IIA.

Since dictatorship is generally viewed as an undesirable property too, Arrow’s Theorem

is often phrased as an impossibility result. That is, suppose we say a voting system satisfies

non-dictatorship if there is no individual i for which the group ranking always coincides with

i’s ranking. Then we can phrase Arrow’s Theorem as follows.

Arrow’s Theorem (equivalent version): If there are at least three alternatives, then

there is no voting system that satisfies Unanimity, IIA, and non-dictatorship.

Ultimately, what Arrow’s Theorem shows us is not that voting is necessarily “impossible,”

but that it is subject to unavoidable trade-offs — that any system we choose will exhibit

certain forms of undesirable behavior. It therefore helps to focus discussions of voting on

how to manage these trade-offs, and to evaluate different voting systems in light of them.

23.6 Single-Peaked Preferences and the Median Voter
Theorem

Condorcet’s Paradox and Arrow’s Theorem are facts of nature; we cannot make them go

away. However, a common approach when faced with an impossibility result is to consider

reasonable special cases of the problem where the underlying difficulties do not arise. There

has been a long line of research in voting that follows this direction.

The starting point for this line of research is the observation that there’s something a bit

unusual about the individual rankings used in the set-up of the Condorcet Paradox. Recall

that with three alternatives X, Y , and Z, and three voters 1, 2, and 3, we had

X !1 Y !1 Z
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Y !2 Z !2 X

Z !3 X !3 Y

Suppose that X, Y , and Z correspond to amounts of money to spend on education or

national defense, with X corresponding to a small amount, Y to a medium amount, and Z

to a large amount. Then the preferences of voter 1 make sense: she is happiest with the

smallest amount, and second-happiest with a medium amount. The preferences of voter 2

also make sense: he is happiest with a medium amount, but if not medium, then he prefers

a large amount. The preferences of voter 3, on the other hand, are harder to justify in a

simple way: he prefers a large amount, but his second choice is a small amount, with medium

coming last. In other words, the first two voters have preferences that can be explained by

proximity to a fixed number: each of them has an “ideal” amount that they’d like, and they

evaluate the alternatives by how close they come to this ideal. The third voter’s preferences

can’t be explained this way: there’s no “ideal” quantity such that both large and small are

close to it, but medium isn’t. This is not to say that a person couldn’t hold these preferences

(e.g. “if we’re not willing to invest enough in education to do it right, we shouldn’t spend

anything at all”), but they’re more unusual.

Similar reasoning would apply if X, Y , and Z were political candidates arranged in order

on a political spectrum, with X the liberal candidate, Y the moderate candidate, and Z

the conservative candidate. In this case, voter 1 prefers more liberal candidates; voter 2

prefers moderates and leans conservative when forced to choose between extremes; but voter

3 favors the conservative candidate, followed next by the liberal candidate, with the moderate

candidate last. Again, the preferences of voters 1 and 2 can be explained by assuming that

each evaluates candidates by their proximity to a personal “ideal” point on the political

spectrum, but voter 3’s preferences are less natural in that they can’t be explained this way.

We now describe a way to formalize the “unusualness” in voter 3’s ranking, and we then

show that for rankings that do not contain this structure, the Condorcet Paradox cannot

arise.

Single-peaked preferences. For alternatives corresponding to numerical quantities or

linear orderings like a political spectrum, it is reasonable to assume that individual prefer-

ences tend to look like the preferences of voters 1 and 2 in our example: each has a particular

favorite point in the range of alternatives, and they evaluate alternatives by their proximity

to this point. In fact, for our discussion here, it is enough to assume something weaker:

simply that each voter’s preferences “fall away” consistently on both sides of their favorite

alternative.

To make this precise, let’s assume that the k alternatives are named X1, X2, . . . , Xk,

and that voters all perceive them as being arranged in this order. (Again, we’ll think of

the examples of numerical quantities or candidates on a political spectrum.) We say that a
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(c) Voter 3’s ranking.

Figure 23.5: With single-peaked preferences, each voter’s ranking of alternatives decreases
on both sides of a “peak” corresponding to her favorite choice.

voter has single-peaked preferences if there is no alternative Xs for which both neighboring

alternatives Xs−1 and Xs+1 are ranked above Xs. In other words, a voter never prefers

two options that lie on opposite sides of a middle option. (Since we are assuming voters

have complete and transitive preferences, we will also refer to single-peaked preferences as

single-peaked rankings.)

Such preferences are called single-peaked because the condition we impose is equivalent

to the following one: each voter i has a top-ranked option Xt, and her preferences fall off on

both sides of Xt:

Xt !i Xt+1 !i Xt+2 !i · · ·

and

Xt !i Xt−1 !i Xt−2 !i · · ·

Pictorially, this can be represented as in Figure 23.5. The example shown there has three
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voters with preferences

X1 !1 X2 !1 X3 !1 X4 !1 X5

X2 !2 X3 !2 X4 !2 X1 !2 X5

X3 !3 X2 !3 X1 !3 X4 !3 X5

and each of the three plots shows one of these sets of individual preferences: In the plots,

there is an oval for each alternative, and its height corresponds to its position in the list. As

drawn, the single peak in an individual’s ranking emerges visually as a peak in the plot.

Majority Rule with Single-Peaked Preferences. Single-peaked preferences are natu-

ral as a model for many kinds of rankings, but their significance in the theory of voting lies

in the following observation, made by Duncan Black in 1948 [61].

Recall our first, most basic attempt at synthesizing a group ranking from a set of individ-

ual rankings, back in Section 23.3: we would compare each pair of alternatives X and Y to

each other, using majority rule to produce a group preference of the form X ! Y or Y ! X

(depending on which alternative is preferred by more voters). As before, we’ll suppose that

the number of voters is odd, so that we don’t have to worry about the possibility of ties. Our

hope was that the resulting group preference relation ! would be complete and transitive,

so that we could produce a group ranking from it. Unfortunately, the Condorcet Paradox

showed that this hope was in vain: transitive individual preferences can give rise to group

preferences that are non-transitive.

But here’s the point of the framework we’ve developed in this section: with single-peaked

preferences, our original plan works perfectly. This is the content of the following result.

Claim: If all individual rankings are single-peaked, then majority rule applied to

all pairs of alternatives produces a group preference relation ! that is complete

and transitive.

It is not initially clear why this striking fact should be true, but in fact it follows for an

intuitively natural reason, as we now describe.

The Median Individual Favorite. As in other attempts to construct group rankings,

we start by figuring out how to identify a group favorite — an alternative that can be placed

at the top of the ranking — and then proceed to fill in further slots of the ranking. Finding

a group favorite is the crux of the problem, since that requires us to identify an alternative

that defeats every other alternative in a pairwise majority vote.

Let’s consider the top-ranked alternative for each voter, and sort this set of individual

favorites from left to right, along our linear order. Notice that if several voters have the same

alternative as their respective individual favorite, then this alternative will appear multiple
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rank
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All voters with peaks left 

of Xm prefer Xm to Xt

Figure 23.6: The proof that the median individual favorite Xm defeats every other alternative
Xt in a pairwise majority vote: if Xt is to the right of Xm, then Xm is preferred by all voters
whose peak is on Xm or to its left. (The symmetric argument applies when Xt is to the left
of Xm.)

times in the sorted list: it is fine for the list to have repetitions. Now consider the individual

favorite that forms the median of this list — that is, the individual favorite that lies exactly

at the halfway point in the sorted order. For example, in the preferences from Figure 23.5,

the sorted list of individual favorites would be X1, X2, X3, and so the median is X2. With

more voters, if the individual favorites were (for example) X1, X1, X2, X2, X3, X4, X5, then

the median would also be X2, since we are considering the median of the list with all the

repetitions included.

The median individual favorite is a natural idea to consider as a potential group favorite,

since it naturally “compromises” between more extreme individual favorites on either side.

And in fact it works very well for this purpose:

The Median Voter Theorem: With single-peaked rankings, the median individual
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favorite defeats every other alternative in a pairwise majority vote.

To see why this is true, let Xm be the median individual favorite, and let Xt be any other

alternative. Let’s suppose that Xt lies to the right of Xm — that is, t > m. (The case in

which it lies to the left has a completely symmetric argument.) Let’s also order the voters

in the sorted order of their individual favorites.

The argument is now depicted schematically in Figure 23.6. The number of voters k is

odd, and we know that — since it is the median — Xm is in position (k + 1)/2 of the sorted

list of individual favorites. This means that for everyone in the first (k + 1)/2 positions, Xm

is either their favorite, or their favorite lies to the left of Xm. For each voter in this latter

group, Xm and Xt are both on the right-hand “down-slope” of this voter’s preferences, but

Xm is closer to the peak than Xt is, so Xm is preferred to Xt. It follows that everyone in the

first (k + 1)/2 positions prefers Xm to Xt. But this is a strict majority of the voters, and so

Xm defeats Xt in a pairwise majority vote.

To put it succinctly: the median individual favorite Xm can always count on gathering a

majority of support against any other alternative Xt, because for more than half the voters,

Xm lies between Xt and each of their respective favorites.

From this fact about the median individual favorite, it is easy to see why majority rule

among all pairs produces a complete and transitive group ranking: we simply build up the

group ranking by identifying group favorites one at a time. That is, we start by finding the

median individual favorite and placing it at the top of the group ranking. This is safe to do

since the Median Voter Theorem guarantees that it defeats all other alternatives that will

come later in the list. Now we remove this alternative from each individual ranking. Notice

that when we do this, the rankings all remain single-peaked: essentially, we have simply

“decapitated” the peak from each ranking, and the second item in each voter’s ranking

becomes their new peak. We now have a version of the same problem we faced before, with

single-peaked rankings on a set of alternatives that is one smaller. So we find the median

individual favorite on the remaining alternatives, place it second in the group ranking, and

continue in this way until we exhaust the finite set of alternatives.

For example, applying this to the three voters in Figure 23.5, we would identify X2 as

the median individual favorite, and we’d place it first in the group ranking. Once we remove

this alternative, we have three single-peaked rankings on the alternatives X1, X3, X4, and

X5. The individual favorites in this reduced set are X1, X3, and X3, so X3 is the new median

individual favorite, and we place it second in the group ranking. Proceeding in this way, we

end up with the group ranking

X2 ! X3 ! X1 ! X4 ! X5.

Since voter 2 was the original “median voter” in the sense of having the original median

individual favorite, the start of the group ranking necessarily agrees with the start of voter



756 CHAPTER 23. VOTING

2’s individual ranking: they both place X2 first. However, the full group ranking does not

coincide with voter 2’s full individual ranking: for example, voters 1 and 3 both prefer X1

to X4, even through voter 2 doesn’t, and the group ranking reflects this.

23.7 Voting as a Form of Information Aggregation

Thus far, we have focused primarily on situations in which voting is used to aggregate

fundamentally and genuinely different opinions within a group of people. But there are

contexts in which voting is used by a group of people who have a shared goal — where it is

reasonable to suppose that there is a true best ranking of the alternatives, and the purpose

of the voting system is to discover it. This is unlikely to be appropriate for the ranking of

political candidates or works of art, but it can be a good model of jury deliberations in cases

where the decision hinges on genuine uncertainty about the facts. It can also be a good

model for decisions made by a board of advisers to a company, evaluating business plans

that each yield an uncertain future payoff.

In settings like these, where we imagine that there is a true best ranking, it’s reasonable

to suppose that the individual rankings differ only because they are based on different infor-

mation, or based on different evaluations of the available information. If everyone in such a

case had the same information and evaluated it in the same way, they would have the same

ranking.

We will see that these considerations can lead to some potentially complex effects in the

way individuals reason about their votes. As a starting baseline, we begin with a simple

model in which individuals vote simultaneously, and based purely on their own individual

rankings. We then discuss what happens in situations where one or both of these assumptions

do not hold — when voting is done sequentially, or when knowledge of other rankings would

cause an individual to change her own ranking.

Simultaneous, Sincere Voting: The Condorcet Jury Theorem. We begin with a

simple setting in which there are two alternatives X and Y ; one of these two is genuinely

the best choice, and each voter will cast a vote for what she believes to be this best choice.

To model the idea that voters possess different but uncertain information, we use a general

framework that worked well in Chapter 16 on information cascades. We suppose first that

there is a prior probability of X being the best choice, and that this is known to all voters.

For simplicity, we’ll take this prior probability to be 1/2 in our analysis here; this means

that initially, X and Y are equally likely to be the best choice. Then, each voter receives an

independent, private signal about which of X or Y is better. For some value q > 1/2, signals

favoring the best choice occur at a rate of q; writing this in terms of conditional probability
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as in Chapter 16, we have

Pr [X-signal is observed | X is best] = q

and

Pr [Y-signal is observed | Y is best] = q.

(We can imagine each voter’s signal as behaving like the flip of a biased coin: for each voter,

it lands on the side indicating the better alternative with probability q.)

Unlike the case in Chapter 16, all the votes in our current analysis are being made

simultaneously: no voter is able to see the decisions made by any other voter before reaching

her own decision. Also, we assume that everyone is voting sincerely: each voter will choose

the alternative she believes to be better, based on the information she has available (in the

form of her private signal). To model sincere voting by an individual, we can use conditional

probabilities just as in Chapter 16. When a voter observes a signal favoring X, she first

evaluates the conditional probability

Pr [X is best | X-signal is observed] .

She then decides to vote in favor of X if this probability is greater than 1/2, and in favor

of Y if this probability is less than 1/2. The analogous reasoning applies if she observes a

signal favoring Y ; we focus just on the case of an X-signal since the analysis is symmetric

in the two cases.

We can evaluate the conditional probability underlying the voter’s decision using Bayes’

Rule, by strict analogy with the calculations we did in Section 16.3. We have

Pr [X is best | X-signal is observed] =
Pr [X is best] · Pr [X-signal is observed | X is best]

Pr [X-signal is observed]
.

By our assumption about the prior probability, we know that Pr [X is best] = 1/2. By the

definition of the signals, we know that Pr [X-signal is observed | X is best] = q. Finally, there

are two ways for an X-signal to be observed: if X is best, or if Y is best. Therefore,

Pr [X-signal is observed] = Pr [X is best] · Pr [X-signal is observed | X is best] +

Pr [Y is best] · Pr [X-signal is observed | Y is best]

=
1

2
· q +

1

2
(1− q) =

1

2
.

Putting all this together, we get

Pr [X is best | X-signal is observed] =
(1/2)q

1/2
= q.

The conclusion — which is completely natural — is that the voter will favor the alternative

that is reinforced by the signal she receives. In fact, the calculation using Bayes’ Rule gives
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us more than just this conclusion; it also shows how much probability she should assign to

this favored alternative based on the signal.

The Marquis de Condorcet wrote about this type of scenario in 1785. In his version,

he took as a given the assumption that each voter chooses the best alternative with some

probability q > 1/2, rather than deriving it from the assumption of a private signal — but

the model based on either of these starting assumptions is effectively the same. Condorcet’s

interest was in showing that majority rule is effective when there are many voters who favor

the better of two choices at a rate slightly better than half. His probabilistic formulation

of individuals’ decisions was a novel step — probability was still a relatively new idea in

his time — and his main observation, now known as the Condorcet Jury Theorem, is the

following. Suppose that X is the best alternative (the case for Y being symmetric). Then

as the number of voters increases, the fraction of voters choosing X will converge almost

surely to the probability of receiving an X-signal, which is q > 1/2. In particular, this

means that the probability of the majority reaching a correct decision converges to 1 as the

number of voters grows. In this sense, Condorcet’s Jury Theorem is one of the oldest explicit

formulations of the “wisdom of crowds” idea: aggregating the estimates of many people can

lead to a decision of higher quality than that of any individual expert.

23.8 Insincere Voting for Information Aggregation

One of the assumptions behind the Condorcet Jury Theorem in the previous section is that

all individuals are voting sincerely: each is choosing the alternative he or she believes to be

best, given the information available. On the surface, this seems like a mild assumption. If

the voters could share all their signals, they would reach a unanimous evaluation of the best

alternative; but since they aren’t able to communicate with each other and have access only

to their own private signals, why should a voter do anything anything other than follow her

best guess based on her own signal?

In fact, however, there are very natural situations in which an individual should actually

choose to vote insincerely — favoring the alternative she believes to be worse — even though

her goal is to maximize the probability that the group as a whole selects the best alternative.

This is clearly a counter-intuitive claim, and its underlying basis has only been elucidated

relatively recently [30, 159, 160]. To explain how this phenomenon can arise, we begin with a

hypothetical experiment, modeled on a scenario described by Austen-Smith and Banks [30].

An Experiment that Encourages Insincere Voting. Here’s how the experiment works.

An experimenter announces that an urn with 10 marbles will be placed at the front of a room;

there is a 50% chance the urn will contain ten white marbles, and a 50% chance that it will

contain nine green marbles and one white marble. (We describe the first kind of urn as
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“pure” and the second kind as “mixed.”)

The experimenter asks a group of three people to collectively guess which kind of urn

it is. Their group decision will be made according to the following protocol. First, each of

the three people is allowed to draw one marble from the urn, look at it (without showing

it to the other two), and then replace it in the urn. Then, the three people are asked to

cast simultaneous votes, without communicating, each guessing which type of urn they think

it is. If a majority of the votes are for the correct type of urn, then all three people win

a monetary prize; if a majority of the votes are for the wrong type of urn, then all three

people get nothing. (Note that each person gets nothing if the majority is wrong, even if

they personally voted for the correct alternative.)

One can see that the experiment is designed to create a set of independent private signals

for the voters: the color of the marble drawn by each voter is her private signal, and she

cannot communicate this signal to any of the other voters. Rather, the group decision must

be reached by majority vote, with each voter having access to these different and potentially

conflicting probabilistic signals.

We now ask how an individual should reason about the conditional probabilities of the

different urn types based on the marble she draws; after this, we’ll consider how she should

actually vote.

Conditional Probabilities and Decisions about Voting. First, suppose that you (as

one of the three people in the experiment) draw a white marble. While we won’t go through

the precise calculations, it’s not hard to work out, using Bayes’ Rule just as we did in the

previous section, that the urn in this case is significantly more likely to be pure than mixed.

(Intuitively, if you see a white marble, it’s much more likely to have been from the all-white

pure urn than to be the single white marble in the mixed urn.) On the other hand, if you

draw a green marble, then in fact you know for certain that the urn is mixed — since green

marbles are only found in mixed urns.

Therefore, if you were to vote sincerely, you would vote “pure” on drawing a white marble

and “mixed” if you draw a green marble. But suppose you knew that the other two people in

the group were going to vote sincerely, and you wanted to choose your vote to maximize the

chance that the majority among the three of you produced the right answer. Then a useful

question to ask yourself is, “In what situations does my vote actually affect the outcome?” If

you think about it, your vote only affects the outcome when the other two (sincere) votes are

split — when there is one vote for pure and one vote for mixed. In this case, however, one

of your two partners in the experiments actually drew a green marble, and so the urn must

be mixed. Here’s the conclusion from this reasoning: whenever your vote actually matters

to the outcome, the urn is mixed!

So if you know your two partners will be voting sincerely, you can best help the group
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by always voting “mixed,” so as to give a single draw of a green marble the chance to

sway the majority outcome. In other words, you’re manipulating the group choice by voting

strategically. You’re not doing this to take advantage of the other voters; indeed, you’re

doing it to make it more likely the group will make the best choice. But nonetheless, it is

not optimal for you to vote sincerely in this case, if your two partners are voting sincerely.

Interpretations of the Voting Experiment. Once we appreciate what’s going on here,

it becomes natural to think of voting with a shared objective in terms of game theory.

The voters correspond to players, their possible strategies are the possible ways of choosing

votes based on private information, and they receive payoffs based on the votes selected by

everyone. The experiment we’ve just considered constructs a scenario in which sincere voting

is not an equilibrium. Notice that while our analysis has therefore ruled out the most natural

candidate for an equilibrium, it hasn’t actually determined what an equilibrium looks like

for this game. In fact, there are multiple equilibria, some of which are a bit complicated to

compute, and we won’t try to work them out here.

There are a few further points worth reflecting on from this discussion. First, the ex-

periment presents the phenomenon of insincere voting in a very clean and stylized form,

which has the advantage of clearly exposing what’s going on. But versions of this scenario

arise in real-world situations as well, when a highly symmetric decision process like majority

vote clashes with a pair of alternatives that has an asymmetric structure — like the pure

and mixed urns here. Suppose, for example, that a corporate advisory board has to decide

between a risky and a safe course of action for the company, and they decide to use majority

vote. Suppose further that board members have their own private evidence in favor of one

option or the other, and in fact if anyone were to have genuine evidence in favor of the risky

option, then it would be clearly the better choice. If you’re a board member in this case,

and you know that the other board members will be voting sincerely, then your vote will

only matter in the case when half of the rest of the board has evidence in favor of the risky

option — in which case, the risky option is the better idea. So the group would be better

served if you voted insincerely in favor of the risky option, to improve its chances of being

chosen when it should be. Of course, viewing the process of voting as a game, you should

appreciate that the situation is in fact more complicated: rather than assuming that the

other board members will vote sincerely, you may want to assume that they are also going

through this reasoning. Determining how to behave, given this, is a complex problem.

Finally, it’s worth highlighting a key methodological point in this analysis — the underly-

ing principle in which you evaluate the consequences of your actions only in the cases where

they actually affect the outcome. This was the clarifying insight that exposed why insincere

voting was the right decision. Researchers have observed that the use of this principle for

voting forms a parallel with reasoning in other game-theoretic contexts as well, including
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the “winner’s curse” for auctions that we saw in Chapter 9 [159]. There, when many people

bid on an item that has a common value (such as oil-drilling rights for a tract of land), the

value of your bid only matters if you win, in which case your estimate of the true value of

the item is more likely to be an over-estimate than an under-estimate. Hence you should

take this into account when bidding, and bid lower than your estimate of the true value.

This type of insincerity in bidding is analogous to the insincerity in voting that we’ve been

discussing here; in both cases, they arise because you’re evaluating your decision contingent

on its actually affecting the outcome, which provides additional implicit information that

needs to be taken into account.

23.9 Jury Decisions and the Unanimity Rule

Jury decisions in criminal trials were an important initial example to motivate this discussion:

they form a natural class of instances where a group of voters (the jurors) agree in principle

that there is a “best” decision for the group — the defendant should be convicted if guilty and

acquitted if innocent — and they want to aggregate their individual opinions to try arriving

at this best decision. Given what we’ve just seen, it is natural to ask: can insincere voting

arise in this case, and if so, what are its consequences? As Feddersen and Pesendorfer have

argued, insincere voting in fact can arise naturally as a strategy for jurors who want their

vote to contribute to the best overall group decision [160]. We describe the basic structure

of their analysis here.

Verdicts, Unanimity, and Private Signals. If we compare jury decisions in criminal

trials with the set-up for the Condorcet Jury Theorem from Section 23.7, we notice two basic

differences, both of which arise from institutional features of the criminal-justice system

designed to help avoid convicting innocent defendants.

The first difference is that it generally requires a unanimous vote in order to convict a

defendant. So if we have k jurors, and the two options acquittal and conviction, each juror

votes for one of these options, and conviction is chosen by the group only if each juror votes

for it. The second difference is in the criterion that jurors are asked to use for evaluating the

two alternatives. In the model from Section 23.7, if each voter could observe all the available

information, she would choose alternative X if

Pr [X is best | all available information] >
1

2
.

In a criminal trial, however, the instructions to a jury are not, “The defendant should be

convicted if he is more likely to be guilt than innocent,” but instead “The defendant should

be convicted if he is guilty beyond a reasonable doubt.” This means that jurors should not



762 CHAPTER 23. VOTING

be asking whether

Pr [defendant is guilty | all available information] >
1

2
,

but whether

Pr [defendant is guilty | all available information] > z

for some larger number z.

We now consider how to model the information available to each juror. Following the

framework used for the Condorcet Jury Theorem in Section 23.7, we assume that each

juror receives an independent private signal suggesting guilt (a G-signal) or innocence (an

I-signal). The defendant, in reality, is of course either guilty or innocent, and we assume

that signals favoring the truth are more abundant than signals favoring the wrong answer:

for some number q > 1
2 , we have

Pr [G-signal | defendant is guilty] = q

and

Pr [I-signal | defendant is innocent] = q.

A juror who observes a G-signal is interested in the conditional probability of guilt given

the signal, namely Pr [defendant is guilty | G-signal]. Let’s assume a prior probability of 1/2

that the defendant is guilty — i.e., in the absence of any signals. Then the argument using

Bayes’ Rule from Section 23.7 (with conviction and acquittal playing the roles of the two

alternatives X and Y from that section) applies directly here, showing that

Pr [defendant is guilty | G-signal] = q,

and similarly that

Pr [defendant is innocent | I-signal] = q.

The conclusions of the analysis to follow would remain essentially the same, with slightly

different calculations, if we were to assume any prior probability between 0 and 1.

Before proceeding with the analysis, it’s fair to ask whether the modeling assumption

that jurors receive independent, private signals about guilt or innocence is reasonable — after

all, they sit through the trial together, and they all see the same evidence being presented.

Clearly, the assumption of private signals is a simplified approximation, but it is also clear

that jurors in real trials can and do form widely divergent views of the facts in a case.

This is natural: despite seeing the same evidence, jurors form different interpretations and

inferences based on their own personal intuitions and decision-making styles — things that

cannot necessarily be transmitted as facts from one person to another [160]. So in this case

we can think of the private signals as representing private interpretations of the information

presented, rather than some personal source of additional information A rational juror is

thus guided by her own signal, but she would also be influenced by knowledge of the signals

of others — i.e. by knowledge that others had interpreted things the same or differently.
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Modeling a Juror’s Decision. As noted above, the unanimity rule is designed to make

it hard for an innocent defendant to be convicted, since such a result would require every

single juror to “erroneously” favor conviction. On the surface, this informal principle makes

sense — but as we saw in Section 23.8, reasoning about such principles can become subtle

when we assume that individuals are choosing their votes with the overall group decision in

mind.

In particular, things become complicated for the following reason. Suppose that you’re

one of the k jurors, and you received an I-signal. At first, it seems clear that you should

vote to acquit: after all, your I-signal on its own gives you a conditional probability of q > 1
2

that the defendant is innocent. But then you remember two things. First, the criterion for

conviction by the group is

Pr [defendant is guilty | available information] > z,

which means that in principle the unobserved signals of everyone else — if only you knew

what they were — could be enough to push the conditional probability of guilt above z,

despite your I-signal. Second, you ask yourself the key question from Section 23.8: “In what

situations does my vote actually affect the outcome?” Given the unanimity rule, your vote

only affects the outcome when every juror but you is voting to convict. If you believe that

everyone else’s vote will reflect the signal they received, then you can work out exactly what

the full set of signals is in the event that your vote affects the outcome: it consists of k − 1

G-signals and your one I-signal.

What is the probability the defendant is guilty in this case? We can use Bayes’ Rule to

say that

Pr [defendant is guilty | you have the only I-signal]

=
Pr [defendant is guilty] · Pr [you have the only I-signal | defendant is guilty]

Pr [you have the only I-signal]
.

Our assumption is that Pr [defendant is guilty] = 1/2, and since the G-signals are indepen-

dent, we have Pr [you have the only I-signal | defendant is guilty] = qk−1(1 − q). (For this

latter calculation, there is a probability of qk−1 that each of the k − 1 other jurors gets a

G-signal, times a probability of 1− q that you get an I-signal.) Finally, as usual in Bayes’

Rule calculations, we determine the two different ways in which all jurors but you receive

G-signals: if the defendant is guilty, or if he is innocent:

Pr [you have the only I-signal]

= Pr [defendant is guilty] · Pr [you have the only I-signal | defendant is guilty] +

Pr [defendant is innocent] · Pr [you have the only I-signal | defendant is innocent]

=
1

2
· qk−1(1− q) +

1

2
(1− q)k−1q.
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(The second term in the last expression arises from an analogous calculation to what we

used for the first term: if the defendant is innocent, there is a probability of (1− q)k−1 that

each of the k− 1 jurors other than you gets a G-signal, times a probability of q that you get

an I-signal.) Putting these quantities together, we have

Pr [defendant is guilty | you have the only I-signal] =
1
2q

k−1(1− q)
1
2q

k−1(1− q) + 1
2(1− q)k−1q

=
qk−2

qk−2 + (1− q)k−2
,

where the second quality follows just by canceling q(1− q)/2 from both the numerator and

denominator.

Now, since q > 1/2, the term (1 − q)k−2 represents an arbitrarily small portion of the

total denominator as the jury size k goes to infinity — and so in particular

Pr [defendant is guilty | you have the only I-signal]

converges to 1 as k goes to infinity. Hence if the jury size k is large enough, it follows that

Pr [defendant is guilty | you have the only I-signal] > z.

We conclude from this that if you believe everyone else is voting their signals, and if there

are enough other jurors, then in the only case where your vote to acquit affects the outcome,

the defendant is in fact guilty beyond a reasonable doubt. So if you were to vote with the

actual instructions to the jury in mind, you should ignore your signal and vote to convict.

Of course, you should do this with even more confidence in the event that you receive a

G-signal, and so we can summarize the conclusion even more starkly: if you believe everyone

else is voting their signals, and the jury size is large enough, you should always ignore your

signal and vote to convict.

Intuitively, what’s going on is that you only affect the outcome of a unanimous vote

when everyone else holds the opposite opinion; on the assumption that everyone else is

as well-informed as you are, and voting their true opinion, the conclusion is that they’re

probably (collectively) right, and you’re wrong. As with our earlier example in Section 23.8,

this serves as an interesting reminder that when you design a procedure or protocol for a

group of people to follow, you should expect that they’ll adapt their behavior in light of the

rules you define. Here, the voting system based on unanimity was designed to help prevent

erroneous convictions, but in fact it creates an incentive for people to disregard signals that

the defendant is innocent.

Equilibria for Voting under Unanimity and Other Systems. As in Section 23.8,

we’ve shown that (for large enough juries) voting your signal is not an equilibrium — if

everyone else is doing it, then you should always vote to convict. In their analysis of this



23.9. JURY DECISIONS AND THE UNANIMITY RULE 765

problem, Feddersen and Pesendorfer went further and worked out what the equilibria for

jury voting in this model actually look like.

First, there’s an equilibrium that’s easy to find but a bit pathological: if everyone decides

to ignore their signals and vote to acquit, this is an equilibrium. To see why, notice that no

juror can affect the outcome by changing her behavior, and hence there is no incentive for

any juror to change what she is doing.

More interestingly, there is a unique equilibrium with the properties that (i) all jurors

use the same strategy, and (ii) each juror’s behavior actually depends on the signal she

receives. This is a mixed-strategy equilibrium, in which each juror always votes to convict

on a G-signal, and votes to convict with some probability between 0 and 1 on an I-signal.

The idea is that each juror with an I-signal may randomly choose to disregard it, effectively

correcting for the possibility that she is wrong. One can show that when jurors follow this

equilibrium, the probability that their group decision convicts an innocent defendant is a

positive number that does not converge to zero as the size of the jury goes to infinity. This

forms a sharp contrast to the Condorcet Jury Theorem, where the probability of a correct

decision is converging to 1 as the number of voters grows. The problem here is that the

unanimity rule encourages voters to “over-correct” so strongly for the chance that they

might be wrong, it leads to a noticeable probability that the group as a whole reaches the

wrong decision.

Moreover, the unanimity rule is particularly bad in this regard. Specifically, with further

analysis, we can study voting systems in which convicting a defendant requires only that an

f fraction of the jurors vote for conviction, for different values of f with 0 < f < 1. For a

given choice of f , we’ll call such a system the f -majority rule. There is still an equilibrium

here in which jurors employ randomization, sometimes disregarding their signals to correct

for the possibility that they are wrong. But with the f -majority rule, a juror’s vote affects

the outcome when the remaining jurors are divided between convicting and acquitting in a

ratio of f to (1 − f) — a much less extreme split than under the unanimity rule, where a

juror’s vote affects the outcome only in the event that she is singular in her opposition to

convicting. As a result of this, the randomized correction used by jurors is correspondingly

less extreme, and one can show that as the jury size goes to infinity, the probability of the

group decision being wrong goes to 0 [160].

This result offers a further reason to question the appropriateness of the unanimity rule

— the result suggests that a decision rule for juries requiring conviction by a wide majority,

rather than a unanimous vote, might actually induce behavior in which there is a lower

probability of erroneous convictions. It is again an indication of the subtle issues that arise

when one evaluates the trade-offs between different social institutions in light of the behaviors

they induce in the people who take part in them.
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23.10 Sequential Voting and the Relation to Informa-
tion Cascades

Let’s return to the original formulation of the Condorcet Jury Theorem, with individuals

who vote simultaneously and sincerely over two alternatives X and Y . In the last two

sections, we’ve examined what happens when we remove the assumption of sincerity. It’s

also interesting to instead remove the assumption of simultaneity and see what happens.

We’ll keep sincerity in this discussion, since this simplifies the analysis by only changing one

aspect of the model at a time. So each voter will cast a vote for the alternative she believes

to be the best choice.

When we assume that voters act sincerely but sequentially, we have a model that closely

aligns with the formulation of information cascades from Chapter 16. In our model for

information cascades, we assumed that voters make choices sequentially: they are able to

observe the choices (but not the private signals) of earlier voters; and they can choose to

disregard their own signals if it increases the chance that they personally choose the better

alternative. Note that in this model of cascades, voters are still behaving sincerely in the

sense that they are trying to choose the alternative that is more likely to be correct, based

on everything they are able to observe.

Aside from this distinction between simultaneous and sequential voting, the set-up for

the Condorcet Jury Theorem from Section 23.7 is otherwise quite similar to the model for

information cascades from Chapter 16. In both models, there is a given prior probability for

X to be correct, and there are private signals favoring the correct alternative with probability

greater than 1/2. Therefore, we can invoke our analysis from Section 16.5 to argue that if

voters act sequentially, two initial votes in favor of X will cause a cascade in which all

subsequent votes are for X as well — regardless of whether X is the correct decision. More

generally, once the number of votes for one alternative first exceeds the number of votes for

the other alternative by at least two, a cascade will form in which all subsequent voters will

strategically choose to disregard their own signals.

The fact that cascades begin when one alternative leads the other by exactly two votes

depends on the specific structure of our simplified model from Chapter 16. The broader

principle, however, is quite general. In sequential voting of the type we’re describing, a

cascade will eventually develop. And cascades can be wrong: even if Y is the best alternative,

a cascade for X can develop. Moreover, increasing the number of voters does essentially

nothing to stop this cascade. So the principle behind the Condorcet Jury Theorem does not

apply in this setting: There is no reason to expect that a large crowd of sequential voters

will get the answer right.
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Profile 1:

Individual Ranking Ranking restricted to X and Y
1 W ! X ! Y ! Z X ! Y
2 W ! Z ! Y ! X Y ! X
3 X ! W ! Z ! Y X ! Y

Profile 2:

Individual Ranking Ranking restricted to X and Y
1 X ! Y ! W ! Z X ! Y
2 Z ! Y ! X ! W Y ! X
3 W ! X ! Y ! Z X ! Y

Figure 23.7: The two profiles above involve quite different rankings, but for each individual,
her ranking restricted to X and Y in the first profile is the same as her ranking restricted
to X and Y in the second profile. If the voting system satisfies IIA, then it must produce
the same ordering of X and Y in the group ranking for both profiles.

23.11 Advanced Material: A Proof of Arrow’s Impos-
sibility Theorem

In this section we give a proof of Arrow’s Theorem [22, 23], which was stated in Section 23.5.

The proof we present is not Arrow’s original one; instead, we follow a shorter proof found

more recently by John Geanakoplos [179].

Let’s begin by stating the theorem in a language that will help in discussing the ideas

in the proof. We start with a finite set of alternatives. We have a set of k individuals,

whom we can assume to be numbered 1, 2, 3, . . . , k; each individual has a ranking of the

possible alternatives. We’ll call the collection of all k rankings a profile. In this terminology,

a voting system is simply a function that takes a profile and produces a group ranking: a

single ranking of the alternatives.1 The voting system satisfies Unanimity if it puts X ! Y

in the group ranking whenever X !i Y according to the ranking of each individual i. The

voting system satisfies the Independence of Irrelevant Alternatives (abbreviated IIA) if the

ordering of alternatives X and Y in the group ranking depends only on the ordering of X

and Y in each individual ranking, and not on their position relative to any other alternatives.

Here’s a slightly different but equivalent way to describe IIA, which will be useful in our

discussion. Consider a profile of rankings, and any two alternatives X and Y . We say that

an individual’s ranking restricted to X and Y consists of a copy of his or her ranking in

which we erase all the alternatives other than X and Y . A profile restricted to X and Y is

1As in earlier sections of this chapter, we will consider the case in which individual rankings have no ties,
and the voting system is required to produce a group ranking that has no ties either.
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the profile consisting of all individual rankings restricted to X and Y . Then, as illustrated

in Figure 23.7, if a voting system satisfies IIA, it must produce the same ordering of X and

Y for any two profiles that are the same when restricted to X and Y . (In other words, the

profile restricted to X and Y is the only “data” the voting system can look at in ordering

X and Y in the group ranking.)

Recall from Section 23.5 that a voting system can satisfy both Unanimity and IIA via

dictatorship: it selects some individual j in advance, and for any profile of individual rankings,

it simply declares the group ranking to be j’s ranking. There are k different dictatorship

procedures, depending on which of the k individuals is chosen in advance to be the dictator.

Arrow’s Theorem is that the k dictatorship procedures are the only voting systems that

satisfy Unanimity and IIA. This is the statement we prove here.

The challenge in proving Arrow’s Theorem is that the Unanimity and IIA conditions are

both quite simple, and hence give us relatively little to work with. Despite this, we need

to take an arbitrary voting system satisfying these two properties, and show that it in fact

coincides with dictatorship by a single individual.

Our proof will consist of three main steps. First we show the following interesting fact;

its utility in the proof is not immediately apparent, but it plays a crucial role. Let’s call

X a polarizing alternative if it is ranked either first or last by every individual. Profiles P

and P ′ in Figure23.8 are examples of profiles in which X is a polarizing alternative. We’ll

show that if a voting system satisfies Unanimity and IIA, then it must place any polarizing

alternative in either first or last place in the group ranking. In other words, such a voting

system can’t find a way to “average” and place a polarizing alternative somewhere in the

middle of the group ranking. Note that many profiles don’t contain a polarizing alternative;

this fact only applies to those that do. In the second step of the proof, we then use this fact

to identify a natural candidate for the role of dictator, and in the third step, we prove that

this individual is in fact a dictator.

First Step: Polarizing Alternatives. For the remainder of the proof, let F be a voting

system satisfying Unanimity and IIA. We will use P to denote a profile of individual rankings,

and use F (P ) to denote the group ranking that F produces, as a function of this profile.

We will work toward identifying an individual j with the property that F simply consists of

dictatorship by j.

First, let P be a profile in which X is a polarizing alternative, and suppose by way of

contradiction that F does not place X in either first or last place in the group ranking F (P ).

This means that there are other alternatives Y and Z so that Y ! X ! Z in the group

ranking F (P ).

Now, for any individual ranking that puts Y ahead of Z, let’s change it by sliding Z to the

position just ahead of Y . This produces a new profile P ′, as sketched in Figure 23.8. Since
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Profile P :

Individual Ranking
1 X ! · · · ! Y ! · · · ! Z ! · · ·
2 X ! · · · ! Z ! · · · ! Y ! · · ·
3 · · · ! Y ! · · · ! Z ! · · · ! X

Profile P ′:

Individual Ranking
1 X ! · · · ! Z ! Y ! · · ·
2 X ! · · · ! Z ! · · · ! Y ! · · ·
3 · · · ! Z ! Y ! · · · ! X

Figure 23.8: A polarizing alternative is one that appears at the beginning or end of every
individual ranking. A voting system that satisfies IIA must put such an alternative at the
beginning or end of the group ranking as well. The figure shows the key step in the proof of
this fact, based on rearranging individual rankings while keeping the polarizing alternative
in its original position.

X is a polarizing alternative, the relative order of X and Z does not change in any individual

ranking when we do this, nor does the relative order of X and Y . Therefore, by IIA, we

still have Y ! X ! Z in the group ranking F (P ′). But in P ′, alternative Z is ahead of

alternative Y in every individual ranking, and so by Unanimity we have Z ! Y in the group

ranking F (P ′). Putting these together, the group ranking F (P ′) has Y ! X ! Z ! Y , which

contradicts the fact that the voting system F always produces a transitive group ranking.

This contradiction shows that our original assumption of alternatives Y and Z with

Y ! X ! Z in F (P ) cannot be correct, and so X must appear in either the first or last

position in the group ranking F (P ).

Second Step: Identifying a Potential Dictator. In the next step, we create a sequence

of profiles with the property that each differs from the next by very little, and we watch how

the group ranking (according to F ) changes as we move through this sequence. As we track

these changes, a natural candidate for the dictator will emerge.

Here is how the sequence of profiles is constructed. We pick one of the alternatives, X,

and we start with any profile P0 that has X at the end of each individual ranking. Now,

one individual ranking at a time, we move X from last place to first place while leaving all

other parts of the rankings the same, as shown in Figure 23.9. This produces a sequence of

rankings P0, P1, P2, . . . , Pk, where Pi

(i) has X at the front of the individual rankings of 1, 2, . . . , i;
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Profile P0:

Individual Ranking
1 · · · ! Y ! · · · ! Z ! · · · ! X
2 · · · ! Z ! · · · ! Y ! · · · ! X
3 · · · ! Y ! · · · ! Z ! · · · ! X

Profile P1:

Individual Ranking
1 X ! · · · ! Y ! · · · ! Z ! · · ·
2 · · · ! Z ! · · · ! Y ! · · · ! X
3 · · · ! Y ! · · · ! Z ! · · · ! X

Profile P2:

Individual Ranking
1 X ! · · · ! Y ! · · · ! Z ! · · ·
2 X ! · · · ! Z ! · · · ! Y ! · · ·
3 · · · ! Y ! · · · ! Z ! · · · ! X

Profile P3:

Individual Ranking
1 X ! · · · ! Y ! · · · ! Z ! · · ·
2 X ! · · · ! Z ! · · · ! Y ! · · ·
3 X ! · · · ! Y ! · · · ! Z ! · · ·

Figure 23.9: To find a potential dictator, one can study how a voting system behaves when
we start with an alternative at the end of each individual ranking, and then gradually (one
person at a time) move it to the front of people’s rankings.

(ii) has X at the end of the individual rankings of i + 1, i + 2, . . . , k; and

(iii) has the same order as P0 on all other alternatives.

So in other words, Pi−1 and Pi differ only in that individual i ranks X last in Pi−1, and he

ranks it first in Pi.

Now, by Unanimity, X must be last in the group ranking F (P0), and it must be first in

the group ranking F (Pk). So somewhere along this sequence there is a first profile in which

X is not in last place in the group ranking; suppose this first profile is Pj. Since X is a

polarizing alternative in Pj, and it is not in last place in F (Pj), it must be in first place.

So individual j has a huge amount of power over the outcome for alternative X, at least

in this sequence of rankings: by switching her own ranking of X from last to first, she causes
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X to move from last to first in the group ranking. In the final step of the proof, we will show

that j is in fact a dictator.

Third Step: Establishing that j is a Dictator. The key argument in showing that j is

a dictator is to show that for any profile Q, and any alternatives Y and Z that are different

from X, the ordering of Y and Z in the group ranking F (Q) is the same as the ordering of Y

and Z in j’s individual ranking in Q. After that we’ll show that the same also holds for pairs

of alternatives in which one of the alternatives is X. In this way, we’ll have established that

the ordering of each pair is determined entirely by j’s ordering, and hence j is a dictator.

So let Q be any profile, and let Y and Z be alternatives not equal to X such that j ranks

Y ahead of Z. We will show that F (Q) puts Y ahead of Z as well.

We create an additional profile Q′ that is a variant of Q; this new profile will help us

understand how j controls the ordering of Y and Z. First, we take Q, move X to the front

of the individual rankings of 1, 2, . . . , j, and move X to the end of the individual rankings

of j + 1, j + 2, . . . , k. Then, we move Y to the front of j’s individual ranking (just ahead of

X). We call the resulting profile Q′.

Now, we make the following observations.

• We know that X comes first in the group ranking F (Pj). Since Q′ and Pj are the same

when restricted to X and Z, it follows from Independence of Irrelevant Alternatives

that X ! Z in F (Q′).

• We know that X comes last in the group ranking F (Pj−1). Since Q′ and Pj−1 are the

same when restricted to X and Y , it follows from IIA that Y ! X in F (Q′).

• By transitivity, we conclude that Y ! Z in F (Q′).

• Q and Q′ are the same when restricted to Y and Z, since we produced Q′ from Q

without ever swapping the order of Y and Z in any individual ranking. By IIA, it

follows that Y ! Z in F (Q).

• Since Q was any profile, and Y and Z were any alternatives (other than X) subject

only to the condition that j ranks Y ahead of Z, it follows that the ordering of Y and

Z in the group ranking is always the same as j’s.

Thus we’ve shown that j is a dictator over all pairs that do not involve X. We’re almost

done; we just have to show that j is also a dictator over all pairs involving X as well.

To show this, first observe that we can run the argument thus far with respect to any

other alternative W different from X, and thereby establish that there is also an individual

! who is a dictator over all pairs not involving W . Suppose that ! is not equal to j. Now,

for X and some third alternative Y different from X and W , we know that the profiles Pj−1
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and Pj differ only in j’s individual ranking, yet the ordering of X and Y is different between

the group rankings F (Pj−1) and F (Pj). In one of these two group rankings, the ordering

of X and Y must therefore differ from the ordering of X and Y in !’s individual ranking,

contradicting the fact that ! is a dictator for the pair X and Y . Hence our assumption that

! is different from j must be false, and thus j is in fact a dictator over all pairs.

23.12 Exercises

1. In this chapter, we discussed how voting systems based on majority rule are suscep-

tible to strategic agenda-setting. Let’s explore how one might do this on some basic

examples.

(a) Suppose there are four alternatives, named A, B, C, and D. There are three

voters who have the following individual rankings:

B !1 C !1 D !1 A

C !2 D !2 A !2 B

D !3 A !3 B !3 C

You’re in charge of designing an agenda for considering the alternatives in pairs

and eliminating them using majority vote, via an elimination tournament in the

style of the examples shown in Figure 23.3.

You would like alternative A to win. Can you design an agenda (i.e. an elimination

tournament) in which A wins? If so, describe how you would structure it; if not,

explain why it is not possible.

(b) Now, consider the same question, but for a slightly different set of individual

rankings in which the last two positions in voter 3’s ranking have been swapped.

That is, we have:

B !1 C !1 D !1 A

C !2 D !2 A !2 B

D !3 A !3 C !3 B

We now ask the same question: Can you design an agenda in which A wins? If

so, describe how you would structure it; if not, explain why it is not possible.

2. The Borda Count is susceptible to strategic misreporting of preferences. Here are some

examples to practice how this works.
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(a) Suppose you are one of three people voting on a set of four alternatives named

A, B, C, and D. The Borda Count will be used as the voting system. The other

two voters have the rankings

D !1 C !1 A !1 B

D !2 B !2 A !2 C

You are voter 3 and would like alternative A to appear first in the group ranking,

as determined by the Borda Count. Can you construct an individual ranking for

yourself so that this will be the result? If so, explain how you would choose your

individual ranking; if not, explain why it is not possible.

(b) Let’s consider the same question, but with different rankings for the other two

voters, as follows:

D !1 A !1 C !1 B

B !2 D !2 A !2 C

Again, as voter 3, you would like alternative A to appear first in the group ranking

determined by the Borda Count. Can you construct an individual ranking for

yourself so that this will be the result? If so, explain how you would choose your

individual ranking; if not, explain why it is not possible.

3. In Section 23.6, we considered a setting in which alternatives are arranged on a line.

Each voter has an “ideal” point on the line, and she ranks alternatives by the distance of

these alternatives to her ideal point. An interesting property of this setting is that the

Condorcet Paradox cannot arise; more strongly, majority vote over pairs of alternatives

always produces group preferences that are complete and transitive.

Suppose we try to generalize this by allowing alternatives and voters to be positioned

in two dimensions rather than one. That is, suppose that each alternative corresponds

to a point in two-dimensional space. (For example, perhaps the alternatives are dif-

ferent versions of a piece of legislation, and they differ in two distinct characteristics,

corresponding to the two dimensions.) As before, each voter has an “ideal” point in the

two-dimensional plane where the alternatives reside, and she evaluates the alternatives

by their respective distances (in the plane) to this ideal point.

Unfortunately, the desirable properties that applied to one-dimensional preferences no

longer hold here. Show how to construct a set of three alternatives in two dimensions,

and a set of three voters, each with an ideal point, so that the resulting set of individual

preferences produces the preferences that we saw in the Condorcet Paradox.


