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In Chapter 6, we developed the basic ideas of game theory, in which individual players

make decisions, and the payoff to each player depends on the decisions made by all. As we

saw there, a key question in game theory is to reason about the behavior we should expect

to see when players take part in a given game.

The discussion in Chapter 6 was based on considering how players simultaneously reason

about what the other players may do. In this chapter, on the other hand, we explore the

notion of evolutionary game theory, which shows that the basic ideas of game theory can be

applied even to situations in which no individual is overtly reasoning, or even making explicit

decisions. Rather, game-theoretic analysis will be applied to settings in which individuals can

exhibit different forms of behavior (including those that may not be the result of conscious

choices), and we will consider which forms of behavior have the ability to persist in the

population, and which forms of behavior have a tendency to be driven out by others.

As its name suggests, this approach has been applied most widely in the area of evolu-

tionary biology, the domain in which the idea was first articulated by John Maynard Smith

and G. R. Price [375, 376]. Evolutionary biology is based on the idea that an organism’s

genes largely determine its observable characteristics, and hence its fitness in a given envi-

ronment. Organisms that are more fit will tend to produce more offspring, causing genes

that provide greater fitness to increase their representation in the population. In this way,

fitter genes tend to win over time, because they provide higher rates of reproduction.

The key insight of evolutionary game theory is that many behaviors involve the interaction

of multiple organisms in a population, and the success of any one of these organisms depends

on how its behavior interacts with that of others. So the fitness of an individual organism

can’t be measured in isolation; rather it has to be evaluated in the context of the full

population in which it lives. This opens the door to a natural game-theoretic analogy:
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210 CHAPTER 7. EVOLUTIONARY GAME THEORY

an organism’s genetically-determined characteristics and behaviors are like its strategy in a

game, its fitness is like its payoff, and this payoff depends on the strategies (characteristics) of

the organisms with which it interacts. Written this way, it is hard to tell in advance whether

this will turn out to be a superficial analogy or a deep one, but in fact the connections turn

out to run very deeply: game-theoretic ideas like equilibrium will prove to be a useful way

to make predictions about the results of evolution on a population.

7.1 Fitness as a Result of Interaction

To make this concrete, we now describe a first simple example of how game-theoretic ideas

can be applied in evolutionary settings. This example will be designed for ease of explanation

rather than perfect fidelity to the underlying biology; but after this we will discuss examples

where the phenomenon at the heart of the example has been empirically observed in a variety

of natural settings.

For the example, let’s consider a particular species of beetle, and suppose that each

beetle’s fitness in a given environment is determined largely by the extent to which it can

find food and use the nutrients from the food effectively. Now, suppose a particular mutation

is introduced into the population, causing beetles with the mutation to grow a significantly

larger body size. Thus, we now have two distinct kinds of beetles in the population — small

ones and large ones. It is actually difficult for the large beetles to maintain the metabolic

requirements of their larger body size — it requires diverting more nutrients from the food

they eat — and so this has a negative effect on fitness.

If this were the full story, we’d conclude that the large-body-size mutation is fitness-

decreasing, and so it will likely be driven out of the population over time, through multiple

generations. But in fact, there’s more to the story, as we’ll now see.

Interaction Among Organisms. The beetles in this population compete with each other

for food – when they come upon a food source, there’s crowding among the beetles as they

each try to get as much of the food as they can. And, not surprisingly, the beetles with large

body sizes are more effective at claiming an above-average share of the food.

Let’s assume for simplicity that food competition in this population involves two beetles

interacting with each other at any given point in time. (This will make the ideas easier

to describe, but the principles we develop can also be applied to interactions among many

individuals simultaneously.) When two beetles compete for some food, we have the following

possible outcomes.

• When beetles of the same size compete, they get equal shares of the food.

• When a large beetle competes with a small beetle, the large beetle gets the majority

of the food.
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• In all cases, large beetles experience less of a fitness benefit from a given quantity of

food, since some of it is diverted into maintaining their expensive metabolism.

Thus, the fitness that each beetle gets from a given food-related interaction can be

thought of as a numerical payoff in a two-player game between a first beetle and a second

beetle, as follows. The first beetle plays one of the two strategies Small or Large, depending

on its body size, and the second beetle plays one of these two strategies as well. Based on

the two strategies used, the payoffs to the beetles are described by Figure 7.1.

Beetle 1

Beetle 2
Small Large

Small 5, 5 1, 8
Large 8, 1 3, 3

Figure 7.1: The Body-Size Game

Notice how the numerical payoffs satisfy the principles just outlined: when two small

beetles meet, they share the fitness from the food source equally; large beetles do well at

the expense of small beetles; but large beetles cannot extract the full amount of fitness from

the food source. (In this payoff matrix, the reduced fitness when two large beetles meet is

particularly pronounced, since a large beetle has to expend extra energy in competing with

another large beetle.)

This payoff matrix is a nice way to summarize what happens when two beetles meet,

but compared with the game in Chapter 6, there’s something fundamentally different in

what’s being described here. The beetles in this game aren’t asking themselves, “What do

I want my body size to be in this interaction?” Rather, each is genetically hard-wired to

play one of these two strategies through its whole lifetime. Given this important difference,

the idea of choosing strategies — which was central to our formulation of game theory —

is missing from the biological side of the analogy. As a result, in place of the idea of Nash

equilibrium — which was based fundamentally on the relative benefit of changing one’s own

personal strategy — we will need to think about strategy changes that operate over longer

time scales, taking place as shifts in a population under evolutionary forces. We develop the

fundamental definitions for this in the next section.

7.2 Evolutionarily Stable Strategies

In Chapter 6, the notion of Nash equilibrium was central in reasoning about the outcome

of a game. In a Nash equilibrium for a two-player game, neither player has an incentive to

deviate from the strategy they are currently using — the equilibrium is a choice of strategies

that tends to persist once the players are using it. The analogous notion for evolutionary
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settings will be that of an evolutionarily stable strategy — a genetically-determined strategy

that tends to persist once it is prevalent in a population.

We formulate this as follows. Suppose, in our example, that each beetles is repeatedly

paired off with other beetles in food competitions over the course of its lifetime. We will

assume the population is large enough that no two particular beetles have a significant

probability of interacting with each other repeatedly. A beetle’s overall fitness will be equal

to the average fitness it experiences from each of its many pairwise interactions with others,

and this overall fitness determines its reproductive success — the number of offspring that

carry its genes (and hence its strategy) into the next generation.

In this setting, we say that a given strategy is evolutionarily stable if, when the whole

population is using this strategy, any small group of invaders using a different strategy

will eventually die off over multiple generations. (We can think of these invaders either

as migrants who move to join the population, or as mutants who were born with the new

behavior directly into the population.) We capture this idea in terms of numerical payoffs

by saying that when the whole population is using a strategy S, then a small group of

invaders using any alternate strategy T should have strictly lower fitness than the users

of the majority strategy S. Since fitness translates into reproductive success, evolutionary

principles posit that strictly lower fitness is the condition that causes a sub-population (like

the users of strategy T ) to shrink over time, through multiple generations, and eventually

die off with high probability.

More formally, we will phrase the basic definitions as follows.

• We say the fitness of an organism in a population is the expected payoff it receives

from an interaction with a random member of the population.

• We say that a strategy T invades a strategy S at level x, for some small positive

number x, if an x fraction of the underlying population uses T and a 1− x fraction of

the underlying population uses S.

• Finally, we say that a strategy S is evolutionarily stable if there is a (small) positive

number y such that when any other strategy T invades S at any level x < y, the fitness

of an organism playing S is strictly greater than the fitness of an organism playing T .

Evolutionarily Stable Strategies in our First Example. Let’s see what happens when

we apply this definition to our example involving beetles competing for food. We will first

check whether the strategy Small is evolutionarily stable, and then we will do the same for

the strategy Large.

Following the definition, let’s suppose that for some small positive number x, a 1 − x

fraction of the population uses Small and an x fraction of the population uses Large. (This
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is what the picture would look like just after a small invader population of large beetles

arrives.)

• What is the expected payoff to a small beetle in a random interaction in this popula-

tion? With probability 1 − x, it meets another small beetle, receiving a payoff of 5,

while with probability x, it meets a large beetle, receiving a payoff of 1. Therefore its

expected payoff is

5(1− x) + 1 · x = 5− 4x.

• What is the expected payoff to a large beetle in a random interaction in this population?

With probability 1 − x, it meets a small beetle, receiving a payoff of 8, while with

probability x, it meets another large beetle, receiving a payoff of 3. Therefore its

expected payoff is

8(1− x) + 3 · x = 8− 5x.

It’s easy to check that for small enough values of x (and even for reasonably large ones

in this case), the expected fitness of large beetles in this population exceeds the expected

fitness of small beetles. Therefore Small is not evolutionarily stable.

Now let’s check whether Large is evolutionarily stable. For this, we suppose that for some

very small positive number x, a 1−x fraction of the population uses Large and an x fraction

of the population uses Small.

• What is the expected payoff to a large beetle in a random interaction in this population?

With probability 1−x, it meets another large beetle, receiving a payoff of 3, while with

probability x, it meets a small beetle, receiving a payoff of 8. Therefore its expected

payoff is

3(1− x) + 8 · x = 3 + 5x.

• What is the expected payoff to a small beetle in a random interaction in this popu-

lation? With probability 1 − x, it meets a large beetle, receiving a payoff of 1, while

with probability x, it meets another small beetle, receiving a payoff of 5. Therefore its

expected payoff is

(1− x) + 5 · x = 1 + 4x.

In this case, the expected fitness of large beetles in this population exceeds the expected

fitness of small beetles, and so Large is evolutionarily stable.
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Interpreting the Evolutionarily Stable Strategy in our Example. Intuitively, this

analysis can be summarized by saying that if a few large beetles are introduced into a

population consisting of small beetles, then the large beetles do extremely well — since

they rarely meet each other, they get most of the food in almost every competition they

experience. As a result, the population of small beetles cannot drive out the large ones, and

so Small is not evolutionarily stable.

On the other hand, in a population of large beetles, a few small beetles will do very badly,

losing almost every competition for food. As a result, the population of large beetles resists

the invasion of small beetles, and so Large is evolutionarily stable.

Therefore, if we know that the large-body-size mutation is possible, we should expect to

see populations of large beetles in the wild, rather than populations of small ones. In this

way, our notion of evolutionary stability has predicted a strategy for the population — as we

predicted outcomes for games among rational players in Chapter 6, but by different means.

What’s striking about this particular predicted outcome, though, is the fact that the

fitness of each organism in a population of small beetles is 5, which is larger than the fitness

of each organism in a population of large beetles. In fact, the game between small and large

beetles has precisely the structure of a Prisoner’s Dilemma game; the motivating scenario

based on competition for food makes it clear that the beetles are engaged in an arms race,

like the game from Chapter 6 in which two competing athletes need to decide whether to use

performance-enhancing drugs. There it was a dominant strategy to use drugs, even though

both athletes understand that they are better off in an outcome where neither of them uses

drugs — it’s simply that this mutually better joint outcome is not sustainable. In the present

case, the beetles individually don’t understand anything, nor could they change their body

sizes even if they wanted to. Nevertheless, evolutionary forces over multiple generations are

achieving a completely analogous effect, as the large beetles benefit at the expense of the

small ones. Later in this chapter, we will see that this similarity in the conclusions of two

different styles of analysis is in fact part of a broader principle.

Here is a different way to summarize the striking feature of our example: Starting from

a population of small beetles, evolution by natural selection is causing the fitness of the

organisms to decrease over time. This might seem troubling initially, since we think of

natural selection as being fitness-increasing. But in fact, it’s not hard to reconcile what’s

happening with this general principle of natural selection. Natural selection increases the

fitness of individual organisms in a fixed environment — if the environment changes to

become more hostile to the organisms, then clearly this could cause their fitness to go down.

This is what is happening to the population of beetles. Each beetle’s environment includes

all the other beetles, since these other beetles determine its success in food competitions;

therefore the increasing fraction of large beetles can be viewed, in a sense, as a shift to an

environment that is more hostile for everyone.
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Empirical Evidence for Evolutionary Arms Races. Biologists have offered recent evi-

dence for the presence of evolutionary games in nature with the Prisoner’s-Dilemma structure

we’ve just seen. It is very difficult to truly determine payoffs in any real-world setting, and so

all of these studies are the subject of ongoing investigation and debate. For our purposes in

this discussion, they are perhaps most usefully phrased as deliberately streamlined examples,

illustrating how game-theoretic reasoning can help provide qualitative insight into different

forms of biological interaction.

It has been argued that the heights of trees can obey Prisoner’s-Dilemma payoffs [156,

226]. If two neighboring trees both grow short, then they share the sunlight equally. They

also share the sunlight equally if they both grow tall, but in this case their payoffs are each

lower because they have to invest a lot of resources in achieving the additional height. The

trouble is that if one tree is short while its neighbor is tall, then the tall tree gets most of

the sunlight. As a result, we can easily end up with payoffs just like the Body-Size Game

among beetles, with the trees’ evolutionary strategies Short and Tall serving as analogues to

the beetles’ strategies Small and Large. Of course, the real situation is more complex than

this, since genetic variation among trees can lead to a wide range of different heights and

hence a range of different strategies (rather than just two strategies labeled Short and Tall).

Within this continuum, Prisoner’s-Dilemma payoffs can only apply to a certain range of tree

heights: there is some height beyond which further height-increasing mutations no longer

provide the same payoff structure, because the additional sunlight is more than offset by the

fitness downside of sustaining an enormous height.

Similar kinds of competition take place in the root systems of plants [181]. Suppose you

grow two soybean plants at opposite ends of a large pot of soil; then their root systems

will each fill out the available soil and intermingle with each other as they try to claim as

many resources as they can. In doing so, they divide the resources in the soil equally. Now,

suppose that instead you partition the same quantity of soil using a wall down the middle, so

that the two plants are on opposite sides of the wall. Then each still gets half the resources

present in the soil, but each invests less of its energy in producing roots and consequently

has greater reproductive success through seed production.

This observation has implications for the following simplified evolutionary game involving

root systems. Imagine that instead of a wall, we had two kinds of root-development strategies

available to soybean plants: Conserve, where a plant’s roots only grow into its own share of

the soil, and Explore, where the roots grow everywhere they can reach. Then we again have

the scenario and payoffs from the Body-Size Game, with the same conclusion: all plants are

better off in a population where everyone plays Conserve, but only Explore is evolutionarily

stable.

As a third example, there was recent excitement over the discovery that virus populations

can also play an evolutionary version of the Prisoner’s Dilemma [326, 392]. Turner and Chao
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studied a virus called Phage Φ6, which infects bacteria and manufactures products needed

for its own replication. A mutational variant of this virus called Phage ΦH2 is also able to

replicate in bacterial hosts, though less effectively on its own. However, ΦH2 is able to take

advantage of chemical products produced by Φ6, which gives ΦH2 a fitness advantage when

it is in the presence of Φ6. This turns out to yield the structure of the Prisoner’s Dilemma:

viruses have the two evolutionary strategies Φ6 and ΦH2; viruses in a pure Φ6 population all

do better than viruses in a pure ΦH2 population; and regardless of what the other viruses are

doing, you (as a virus) are better off playing ΦH2. Thus only ΦH2 is evolutionarily stable.

The virus system under study was so simple that Turner and Chao were able to infer an

actual payoff matrix based on measuring the relative rates at which the two viral variants

were able to replicate under different conditions. Using an estimation procedure derived

from these measurements, they obtained the payoffs in Figure 7.2. The payoffs are re-scaled

so that the upper-left box has the value 1.00, 1.00.1

Virus 1

Virus 2
Φ6 ΦH2

Φ6 1.00, 1.00 0.65, 1.99
ΦH2 1.99, 0.65 0.83, 0.83

Figure 7.2: The Virus Game

Whereas our earlier examples had an underlying story very much like the use of performance-

enhancing drugs, this game among phages is actually reminiscent of a different story that

also motivates the Prisoner’s Dilemma payoff structure: the scenario behind the Exam-or-

Presentation game with which we began Chapter 6. There, two college students would both

be better off if they jointly prepared for a presentation, but the payoffs led them to each think

selfishly and study for an exam instead. What the Virus Game here shows is that shirking

a shared responsibility isn’t just something that rational decision-makers do; evolutionary

forces can induce viruses to play this strategy as well.

7.3 A General Description of Evolutionarily Stable Strate-
gies

The connections between evolutionary games and games played by rational participants are

suggestive enough that it makes sense to understand how the relationship works in general.

We will focus here, as we have thus far, on two-player two-strategy games. We will also

1It should be noted that even in a system this simple, there are many other biological factors at work,
and hence this payoff matrix is still just an approximation to the performance of Φ6 and ΦH2 populations
under real experimental and natural conditions. Other factors appear to affect these populations, including
the density of the population and the potential presence of additional mutant forms of the virus [393].
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restrict our attention to symmetric games, as in the previous sections of this chapter, where

the roles of the two players are interchangeable.

The payoff matrix for a completely general two-player, two-strategy game that is sym-

metric can be written as in Figure 7.3.

Organism 1

Organism 2
S T

S a, a b, c
T c, b d, d

Figure 7.3: General Symmetric Game

Let’s check how to write the condition that S is evolutionarily stable in terms of the four

variables a, b, c, and d. As before, we start by supposing that for some very small positive

number x, a 1−x fraction of the population uses S and an x fraction of the population uses

T .

• What is the expected payoff to an organism playing S in a random interaction in this

population? With probability 1− x, it meets another player of S, receiving a payoff of

a, while with probability x, it meets a player of T , receiving a payoff of b. Therefore

its expected payoff is

a(1− x) + bx.

• What is the expected payoff to an organism playing T in a random interaction in this

population? With probability 1−x, it meets a player of S, receiving a payoff of c, while

with probability x, it meets another player of T , receiving a payoff of d. Therefore its

expected payoff is

c(1− x) + dx.

Therefore, S is evolutionarily stable if for all sufficiently small values of x > 0, the

inequality

a(1− x) + bx > c(1− x) + dx

holds. As x goes to 0, the left-hand side becomes a and the right-hand side becomes c.

Hence, if a > c, then the left-hand side is larger once x is sufficiently small, while if a < c

then the left-hand side is smaller once x is sufficiently small. Finally, if a = c, then the

left-hand side is larger precisely when b > d. Therefore, we have a simple way to express the

condition that S is evolutionarily stable:

In a two-player, two-strategy, symmetric game, S is evolutionarily stable precisely

when either (i) a > c, or (ii) a = c and b > d.
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It is easy to see the intuition behind our calculations that translates into this condition,

as follows.

• First, in order for S to be evolutionarily stable, the payoff to using strategy S against

S must be at least as large as the payoff to using strategy T against S. Otherwise, an

invader who uses T would have a higher fitness than the rest of population, and the

fraction of the population who are invaders would have a good probability of growing

over time.

• Second, if S and T are equally good responses to S, then in order for S to be evolu-

tionarily stable, players of S must do better in their interactions with T than players

of T do with each other. Otherwise, players of T would do as well as against the S

part of the population as players of S, and at least as well against the T part of the

population, so their overall fitness would be at least as good as the fitness of players

of S.

7.4 Relationship Between Evolutionary and Nash Equi-
libria

Using our general way of characterizing evolutionarily stable strategies, we can now under-

stand how they relate to Nash equilibria. If we go back to the General Symmetric Game

from the previous section, we can write down the condition for (S, S) (i.e. the choice of S

by both players) to be a Nash equilibrium. (S, S) is a Nash equilibrium when S is a best

response to the choice of S by the other player: this translates into the simple condition

a ≥ c.

If we compare this to the condition for S to be evolutionarily stable,

(i) a > c, or (ii) a = c and b > d,

we immediately get the conclusion that

If strategy S is evolutionarily stable, then (S, S) is a Nash equilibrium.

We can also see that the other direction does not hold: it is possible to have a game

where (S, S) is a Nash equilibrium, but S is not evolutionarily stable. The difference in the

two conditions above tells us how to construct such a game: we should have a = c and b < d.

To get a sense for where such a game might come from, let’s recall the Stag Hunt Game

from Chapter 6. Here, each player can hunt stag or hunt hare; hunting hare successfully just

requires your own effort, while hunting the more valuable stag requires that you both do so.

This produces payoffs as shown in Figure 7.4.
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Hunter 1

Hunter 2
Hunt Stag Hunt Hare

Hunt Stag 4, 4 0, 3
Hunt Hare 3, 0 3, 3

Figure 7.4: Stag Hunt

In this game, as written, Hunt Stag and Hunt Hare are both evolutionarily stable, as we

can check from the conditions on a, b, c, and d. (To check the condition for Hunt Hare, we

simply need to interchange the rows and columns of the payoff matrix, to put Hunt Hare in

the first row and first column.)

However, suppose we make up a modification of the Stag Hunt Game, by shifting the

payoffs as follows. In this new version, when the players mis-coordinate, so that one hunts

stag while the other hunts hare, then the hare-hunter gets an extra benefit due to the lack

of competition for hare. In this way, we get a payoff matrix as in Figure 7.5.

Hunter 1

Hunter 2
Hunt Stag Hunt Hare

Hunt Stag 4, 4 0, 4
Hunt Hare 4, 0 3, 3

Figure 7.5: Stag Hunt: A version with added benefit from hunting hare alone

In this case, the choice of strategies (Hunt Stag, Hunt Stag) is still a Nash equilibrium:

if each player expects the other to hunt stag, then hunting stag is a best response. But

Hunt Stag is not an evolutionarily stable strategy for this version of the game, because (in

the notation from our General Symmetric Game) we have a = c and b < d. Informally,

the problem is that a hare-hunter and a stag-hunter do equally well when each is paired

with a stag-hunter; but hare-hunters do better than stag-hunters when each is paired with

a hare-hunter.

There is also a relationship between evolutionarily stable strategies and the concept of a

strict Nash equilibrium. We say that a choice of strategies is a strict Nash equilibrium if each

player is using the unique best response to what the other player is doing. We can check

that for symmetric two-player, two-strategy games, the condition for (S, S) to be a strict

Nash equilibrium is that a > c. So we see that in fact these different notions of equilibrium

naturally refine each other. The concept of an evolutionarily stable strategy can be viewed as

a refinement of the concept of a Nash equilibrium: the set of evolutionarily stable strategies

S is a subset of the set of strategies S for which (S, S) is a Nash equilibrium. Similarly, the

concept of a strict Nash equilibrium (when the players use the same strategy) is a refinement

of evolutionary stability: if (S, S) is a strict Nash equilibrium, then S is evolutionarily stable.
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It is intriguing that, despite the extremely close similarities between the conclusions

of evolutionary stability and Nash equilibrium, they are built on very different underlying

stories. In a Nash equilibrium, we consider players choosing mutual best responses to each

other’s strategy. This equilibrium concept places great demands on the ability of the players

to choose optimally and to coordinate on strategies that are best responses to each other.

Evolutionary stability, on the other hand, supposes no intelligence or coordination on the part

of the players. Instead, strategies are viewed as being hard-wired into the players, perhaps

because their behavior is encoded in their genes. According to this concept, strategies which

are more successful in producing offspring are selected for.

Although this evolutionary approach to analyzing games originated in biology, it can be

applied in many other contexts. For example, suppose a large group of people are being

matched repeatedly over time to play the General Symmetric Game from Figure 7.3. Now

the payoffs should be interpreted as reflecting the welfare of the players, and not their

number of offspring. If any player can look back at how others have played and can observe

their payoffs, then imitation of the strategies that have been most successful may induce

an evolutionary dynamic. Alternatively, if a player can observe his own past successes and

failures then his learning may induce an evolutionary dynamic. In either case, strategies that

have done relatively well in the past will tend to be used by more people in the future. This

can lead to the same behavior that underlies the concept of evolutionarily stable strategies,

and hence can promote the play of such strategies.

7.5 Evolutionarily Stable Mixed Strategies

As a further step in developing an evolutionary theory of games, we now consider how to

handle cases in which no strategy is evolutionarily stable.

In fact, it is not hard to see how this can happen, even in two-player games that have

pure-strategy Nash equilibria.2 Perhaps the most natural example is the Hawk-Dove Game

from Chapter 6, and we use this to introduce the basic ideas of this section. Recall that in

the Hawk-Dove Game, two animals compete for a piece of food; an animal that plays the

strategy Hawk (H) behaves aggressively, while an animal that plays the strategy Dove (D)

behaves passively. If one animal is aggressive while the other is passive, then the aggressive

animal benefits by getting most of the food; but if both animals are aggressive, then they

risk destroying the food and injuring each other. This leads to a payoff matrix as shown in

Figure 7.6.

In Chapter 6, we considered this game in contexts where the two players were making

choices about how to behave. Now let’s consider the same game in a setting where each

2Recall that a player is using a pure strategy if she always plays a particular one of the strategies in the
game, as opposed to a mixed strategy in which she chooses at random from among several possible strategies.



7.5. EVOLUTIONARILY STABLE MIXED STRATEGIES 221

Animal 1

Animal 2
D H

D 3, 3 1, 5
H 5, 1 0, 0

Figure 7.6: Hawk-Dove Game

animal is genetically hard-wired to play a particular strategy. How does it look from this

perspective, when we consider evolutionary stability?

Neither D nor H is a best response to itself, and so using the general principles from

the last two sections, we see that neither is evolutionarily stable. Intuitively, a hawk will do

very well in a population consisting of doves — but in a population of all hawks, a dove will

actually do better by staying out of the way while the hawks fight with each other.

As a two-player game in which players are actually choosing strategies, the Hawk-Dove

Game has two pure Nash equilibria: (D, H) and (H,D). But this doesn’t directly help us

identify an evolutionarily stable strategy, since thus far our definition of evolutionary stability

has been restricted to populations in which (almost) all members play the same pure strategy.

To reason about what will happen in the Hawk-Dove Game under evolutionary forces, we

need to generalize the notion of evolutionary stability by allowing some notion of “mixing”

between strategies.

Defining Mixed Strategies in Evolutionary Game Theory. There are at least two

natural ways to introduce the idea of mixing into the evolutionary framework. First, it

could be that each individual is hard-wired to play a pure strategy, but some portion of

the population plays one strategy while the rest of the population plays another. If the

fitness of individuals in each part of the population is the same, and if invaders eventually

die off, then this could be considered to exhibit a kind of evolutionary stability. Second,

it could be that each individual is hard-wired to play a particular mixed strategy — that

is, they are genetically configured to choose randomly from among certain options with

certain probabilities. If invaders using any other mixed strategy eventually die off, then this

too could be considered a kind of evolutionary stability. We will see that for our purposes

here, these two concepts are actually equivalent to each other, and we will focus initially

on the second idea, in which individuals use mixed strategies. Essentially, we will find that

in situations like the Hawk-Dove game, the individuals or the population as a whole must

display a mixture of the two behaviors in order to have any chance of being stable against

invasion by other forms of behavior.

The definition of an evolutionarily stable mixed strategy is in fact completely parallel

to the definition of evolutionary stability we have seen thus far — it is simply that we now

greatly enlarge the set of possible strategies, so that each strategy corresponds to a particular
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randomized choice over pure strategies.

Specifically, let’s consider the General Symmetric Game from Figure 7.3. A mixed strat-

egy here corresponds to a probability p between 0 and 1, indicating that the organism plays S

with probability p and plays T with probability 1−p. As in our discussion of mixed strategies

from Chapter 6, this includes the possibility of playing the pure strategies S or T by simply

setting p = 1 or p = 0. When Organism 1 uses the mixed strategy p and Organism 2 uses

the mixed strategy q, the expected payoff to Organism 1 can be computed as follows. There

is a probability pq of an (X, X) pairing, yielding a for the first player; there is a probability

p(1− q) of an (X, Y ) pairing, yielding b for the first player; there is a probability (1− p)q of

a (Y, X) pairing, yielding c for the first player; and there is a probability (1− p)(1− q) of a

(Y, Y ) pairing, yielding d for the first player. So the expected payoff for this first player is

V (p, q) = pqa + p(1− q)b + (1− p)qc + (1− p)(1− q)d.

As before, the fitness of an organism is its expected payoff in an interaction with a random

member of the population. We can now give the precise definition of an evolutionarily stable

mixed strategy.

In the General Symmetric Game, p is an evolutionarily stable mixed strategy if

there is a (small) positive number y such that when any other mixed strategy q

invades p at any level x < y, the fitness of an organism playing p is strictly

greater than the fitness of an organism playing q.

This is just like our previous definition of evolutionarily stable (pure) strategies, except

that we allow the strategy to be mixed, and we allow the invaders to use a mixed strategy.

An evolutionarily stable mixed strategy with p = 1 or p = 0 is evolutionarily stable under

our original definition for pure strategies as well. However, note the subtle point that even

if S were an evolutionarily stable strategy under our previous definition, it is not necessarily

an evolutionarily stable mixed strategy under this new definition with p = 1. The problem

is that it is possible to construct games in which no pure strategy can successfully invade a

population playing S, but a mixed strategy can. As a result, it will be important to be clear

in any discussion of evolutionary stability on what kinds of behavior an invader can employ.

Directly from the definition, we can write the condition for p to be an evolutionarily

stable mixed strategy as follows: for some y and any x < y, the following inequality holds

for all mixed strategies q #= p:

(1− x)V (p, p) + xV (p, q) > (1− x)V (q, p) + xV (q, q). (7.1)

This inequality also makes it clear that there is a relationship between mixed Nash

equilibria and evolutionarily stable mixed strategies, and this relationship parallels the one

we saw earlier for pure strategies. In particular, if p is an evolutionarily stable mixed strategy,
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then we must have V (p, p) ≥ V (q, p), and so p is a best response to p. As a result, the pair

of strategies (p, p) is a mixed Nash equilibrium. However, because of the strict inequality

in Equation (7.1), it is possible for (p, p) to be a mixed Nash equilibrium without p being

evolutionarily stable. So again, evolutionary stability serves as a refinement of the concept

of mixed Nash equilibrium.

Evolutionarily Stable Mixed Strategies in the Hawk-Dove Game. Now let’s see

how to apply these ideas to the Hawk-Dove Game. First, since any evolutionarily stable

mixed strategy must correspond to a mixed Nash equilibrium of the game, this gives us a

way to search for possible evolutionarily stable strategies: we first work out the mixed Nash

equilibria for the Hawk-Dove, and then we check if they are evolutionarily stable.

As we saw in Chapter 6, in order for (p, p) to be a mixed Nash equilibrium, it must make

the two players indifferent between their two pure strategies. When the other player is using

the strategy p, the expected payoff from playing D is 3p+(1−p) = 1+2p, while the expected

payoff from playing H is 5p. Setting these two quantities equal (to capture the indifference

between the two strategies), we get p = 1/3. So (1/3, 1/3) is a mixed Nash equilibrium. In

this case, both pure strategies, as well as any mixture between them, produce an expected

payoff of 5/3 when played against the strategy p = 1/3.

Now, to see whether p = 1/3 is evolutionarily stable, we must check Inequality (7.1)

when some other mixed strategy q invades at a small level x. Here is a first observation

that makes evaluating this inequality a bit easier. Since (p, p) is a mixed Nash equilibrium

that uses both pure strategies, we have just argued that all mixed strategies q have the same

payoff when played against p. As a result, we have V (p, p) = V (q, p) for all q. Subtracting

these terms from the left and right of Inequality (7.1), and then dividing by x, we get the

following inequality to check:

V (p, q) > V (q, q). (7.2)

The point is that since (p, p) is a mixed equilibrium, the strategy p can’t be a strict best

response to itself — all other mixed strategies are just as good against it. Therefore, in order

for p to be evolutionarily stable, it must be a strictly better response to every other mixed

strategy q than q is to itself. That is what will cause it to have higher fitness when q invades.

In fact, it is true that V (p, q) > V (q, q) for all mixed strategies q #= p, and we can check

this as follows. Using the fact that p = 1/3, we have

V (p, q) = 1/3 · q · 3 + 1/3(1− q) · 1 + 2/3 · q · 5 = 4q + 1/3

while

V (q, q) = q2 · 3 + q(1− q) · 1 + (1− q) · q · 5 = 6q − 3q2.

Now we have

V (p, q)− V (q, q) = 3q2 − 2q + 1/3 =
1

3
(9q2 − 6q + 1) =

1

3
(3q − 1)2.
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This last way of writing V (p, q)−V (q, q) shows that it is a perfect square, and so it is positive

whenever q #= 1/3. This is just what we want for showing that V (p, q) > V (q, q) whenever

q #= p, and so it follows that p is indeed an evolutionarily stable mixed strategy.

Interpretations of Evolutionarily Stable Mixed Strategies. The kind of mixed equi-

librium that we see here in the Hawk-Dove Game is typical of biological situations in which

organisms must break the symmetry between two distinct behaviors, when consistently

adopting just one of these behaviors is evolutionarily unsustainable.

We can interpret the result of this example in two possible ways. First, all participants

in the population may actually be mixing over the two possible pure strategies with the

given probability. In this case, all members of the population are genetically the same, but

whenever two of them are matched up to play, any combination of D and H could potentially

be played. We know the empirical frequency with which any pair of strategies will be played,

but not what any two animals will actually do. A second interpretation is that the mixture

is taking place at the population level: it could be that 1/3 of the animals are hard-wired

to always play D, and 2/3 are hard-wired to always play H. In this case, no individual is

actually mixing, but as long as it is not possible to tell in advance which animal will play D

and which will play H, the interaction of two randomly selected animals results in the same

frequency of outcomes that we see when each animal is actually mixing. Notice also that

in this case, the fitnesses of both kinds of animals are the same, since both D and H are

best responses to the mixed strategy p = 1/3. Thus, these two different interpretation of the

evolutionarily stable mixed strategy lead to the same calculations, and the same observed

behavior in the population.

There are a number of other settings in which this type of mixing between pure strategies

has been discussed in biology. A common scenario is that there is an undesirable, fitness-

lowering role in a population of organisms — but if some organisms don’t choose to play this

role, then everyone suffers considerably. For example, let’s think back to the Virus Game in

Figure 7.2 and suppose (purely hypothetically, for the sake of this example) that the payoff

when both viruses use the strategy ΦH2 were (0.50, 0.50), as shown in Figure 7.7.

Virus 1

Virus 2
Φ6 ΦH2

Φ6 1.00, 1.00 0.65, 1.99
ΦH2 1.99, 0.65 0.50, 0.50

Figure 7.7: The Virus Game: Hypothetical payoffs with stronger fitness penalties to ΦH2.

In this event, rather than having a Prisoner’s Dilemma type of payoff structure, we’d have

a Hawk-Dove payoff structure: having both viruses play ΦH2 is sufficiently bad that one of

them needs to play the role of Φ6. The two pure equilibria of the resulting two-player game
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— viewed as a game among rational players, rather than a biological interaction — would be

(Φ6,ΦH2) and (ΦH2,Φ6). In a virus population we’d expect to find an evolutionarily stable

mixed strategy in which both kinds of virus behavior were observed.

This example, like the examples from our earlier discussion of the Hawk-Dove Game

in Section 6.6, suggests the delicate boundary that exists between Prisoner’s Dilemma and

Hawk-Dove. In both cases, a player can choose to be “helpful” to the other player or “selfish”.

In Prisoner’s Dilemma, however, the payoff penalties from selfishness are mild enough that

selfishness by both players is the unique equilibrium — while in Hawk-Dove, selfishness is

sufficiently harmful that at least one player should try to avoid it.

There has been research into how this boundary between the two games manifests itself

in other biological settings as well. One example is the implicit game played by female

lions in defending their territory [218, 327]. When two female lions encounter an attacker

on the edge of their territory, each can choose to play the strategy Confront, in which she

confronts the attacker, or Lag, in which she lags behind and tries to let the other lion confront

the attacker first. If you’re one of the lions, and your fellow defender chooses the strategy

Confront, then you get a higher payoff by choosing Lag, since you’re less likely to get injured.

What’s harder to determine in empirical studies is what a lion’s best response should be to a

play of Lag by her partner. Choosing Confront risks injury, but joining your partner in Lag

risks a successful assault on the territory by the attacker. Understanding which is the best

response is important for understanding whether this game is more like Prisoner’s Dilemma

or Hawk-Dove, and what the evolutionary consequences might be for the observed behavior

within a lion population.

In this, as in many examples from evolutionary game theory, it is beyond the power of

current empirical studies to work out detailed fitness values for particular strategies. How-

ever, even in situations where exact payoffs are not known, the evolutionary framework can

provide an illuminating perspective on the interactions between different forms of behav-

ior in an underlying population, and how these interactions shape the composition of the

population.

7.6 Exercises

1. In the payoff matrix below the rows correspond to player A’s strategies and the columns

correspond to player B’s strategies. The first entry in each box is player A’s payoff and

the second entry is player B’s payoff.

Player A

Player B
x y

x 2, 2 0, 0
y 0, 0 1, 1
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(a) Find all pure strategy Nash equilibria.

(b) Find all Evolutionarily Stable strategies. Give a brief explanation for your answer.

(c) Briefly explain how the sets of predicted outcomes relate to each other.

2. In the payoff matrix below the rows correspond to player A’s strategies and the columns

correspond to player B’s strategies. The first entry in each box is player A’s payoff and

the second entry is player B’s payoff.

Player A

Player B
x y

x 4, 4 3, 5
y 5, 3 5, 5

(a) Find all pure strategy Nash equilibria.

(b) Find all Evolutionarily Stable strategies. Give a brief explanation for your answer.

(c) Briefly explain how the answers in parts (2a) and (2b) relate to each other.

3. In this problem we will consider the relationship between Nash equilibria and evolu-

tionarily stable strategies for games with a strictly dominant strategy. First, let’s define

what we mean by strictly dominant. In a two-player game, strategy, X is said to be a

strictly dominant strategy for a player i if, no matter what strategy the other player j

uses, player i’s payoff from using strategy X is strictly greater than his payoff from any

other strategy. Consider the following game in which a, b, c, and d are non-negative

numbers.

Player A

Player B
X Y

X a, a b, c
Y c, b d, d

Suppose that strategy X is a strictly dominant strategy for each player, i.e. a > c and

b > d.

(a) Find all of the pure strategy Nash equilibria of this game.

(b) Find all of the evolutionarily stable strategies of this game.

(c) How would your answers to parts (a) and (b) change if we change the assumption

on payoffs to: a > c and b = d?
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Player A

Player B
X Y

X 1, 1 2, x
Y x, 2 3, 3

4. Consider following the two-player, symmetric game where x can be 0, 1, or 2.

(a) For each of the possible values of x find all (pure strategy) Nash equilibria and all

evolutionarily stable strategies.

(b) Your answers to part (a) should suggest that the difference between the predictions

of evolutionary stability and Nash equilibrium arises when a Nash equilibrium uses a

weakly dominated strategy. We say that a strategy s∗
i is weakly dominated if player i

has another strategy s′
i with the property that:

(a) No matter what the other player does, player i’s payoff from s′
i is at least as large

as the payoff from s∗
i , and

(b) There is some strategy for the other player so that player i’s payoff from s′
i is

strictly greater than the payoff from s∗
i .

Now, consider the following claim that makes a connection between evolutionarily

stable strategies and weakly dominated strategies.

Claim: Suppose that in the game below, (X, X) is a Nash equilibrium and

that strategy X is weakly dominated. Then X is not an evolutionarily stable

strategy.

Player A

Player B
X Y

X a, a b, c
Y c, b d, d

Explain why this claim is true. (You do not need to write a formal proof; a careful

explanation is fine.)


