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ABSTRACT
Social networks are of interest to researchers in part because they
are thought to mediate the flow of information in communities and
organizations. Here we study the temporal dynamics of communi-
cation using on-line data, including e-mail communication among
the faculty and staff of a large university over a two-year period.
We formulate a temporal notion of “distance” in the underlying
social network by measuring the minimum time required for in-
formation to spread from one node to another — a concept that
draws on the notion of vector-clocks from the study of distributed
computing systems. We find that such temporal measures provide
structural insights that are not apparent from analyses of the pure
social network topology. In particular, we define the network back-
bone to be the subgraph consisting of edges on which information
has the potential to flow the quickest. We find that the backbone is
a sparse graph with a concentration of both highly embedded edges
and long-range bridges — a finding that sheds new light on the rela-
tionship between tie strength and connectivity in social networks.
Categories and Subject Descriptors: H.2.8 Database Manage-
ment: Database Applications – Data Mining
General Terms: Measurement, Theory
Keywords: social networks, communication latency, strength of
weak ties
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1. INTRODUCTION
Large social networks serve as conduits for communication and

the flow of information [2, 11]; but information only spreads on
these networks as a result of discrete communication events—such
as e-mail or text messages, conversations, meetings, or phone calls—
that are distributed non-uniformly over time [10, 32]. Just because
two individuals are acquainted does not imply that they have com-
municated within some particular time interval, in which case no
information could have passed directly between them. Correspond-
ingly, the indirect flow of information between individuals requires
a sequence of communication events along a path of intermediaries
linking them. Although straightforward to state, these observations
pose additional complications for the analysis of social networks,
and can have important consequences for the relation between net-
work structure and information flow [14, 27].

It has been a challenge to build reasonable models for the pat-
terns of communication within a social network: it is difficult to
obtain data on social network structure at a large scale, and more
difficult still to obtain complete data on the dynamics of a net-
work’s communication events over time. Recent research work-
ing with such datasets has primarily studied communication of an
event-driven nature, looking at communication within a social net-
work triggered by a particular event or activity; such investigations
have typically focused on communication events that ripple through
many nodes over short time-scales following the triggering event.
Examples of this include cascades of e-mail recommendations for
products [21], cascades of references among bloggers [3, 13, 23],
the spread of e-mail chain letters [24], and the search for distant
targets in a social network [8, 29].

These types of event-driven communication, however, take place
against the backdrop of a much broader set of natural communi-
cation rhythms, a kind of systemic communication that circulates
information continuously through the network. Pairs of individu-
als communicate over time at very different rates, for an enormous
range of different reasons. Viewed cumulatively, this background
pattern enables information to piggy-back on everyday communi-
cation and thus spread generally through the network. This type
of systemic communication has remained essentially invisible in
analyses of social networks over time, but its properties arguably
determine much about the rate at which people in the network re-
main up-to-date on information about each other.

The present work: Systemic communication and information
pathways. We propose a framework for analyzing this kind of sys-
temic communication, based on inferring structural measures from
the potential for information to flow between different nodes. To
motivate this by an example, suppose we have the complete com-
munication history for a group of five people over three days, as
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Figure 1: Node B’s most recent potential information about
node A comes via node C, not directly from A.

illustrated in Figure 1. (Edges are annotated with the one or more
times at which directed communication took place.) For the sake of
this example, let us assume that there are no communication events
outside the group that are relevant to the analysis. We can now ask
questions such as the following: At 5pm on Friday, what is the most
recent information that node B could possibly have about node A?
Clearly B could have learned about A’s state as of Wednesday at
11am, when their last direct communication took place. However,
further inspection of the figure reveals that the most recent oppor-
tunity for information to flow from A to B was in fact the Friday
9am communication from A to C, which was then followed by the
Friday 3pm communication from C to B.

Without knowing anything about the content of the messages, we
will not necessarily know what, if anything, flowed between nodes,
but this sequence of timestamps gives us a global picture of the in-
formation pathways, providing the full set of potential conduits for
information to flow through the group of people. From this struc-
ture, we can draw several conclusions. First, still without knowing
the message content, we can conclude that anything that has hap-
pened to A in the past eight hours will be unknown to B: at Friday
5pm, B is in a strong sense (at least) eight hours “out-of-date” with
respect to A. Second, assuming this interval of three days is typical
of the communication dynamics within this group of five people,
we can infer that direct communication does not generally provide
B with the strongest opportunities to learn information about A;
rather, the indirect A-C-B path has the potential to transmit infor-
mation from A to B much faster than the direct link.

We argue here that these latter two issues — out-of-date infor-
mation and indirect paths — are central to an understanding of the
patterns of systemic communication within a social network. The
notion of individuals being out-of-date with respect to each other’s
information is an intuitively natural one, and one finds implicit re-
flections of it in settings ranging from the study of physical systems
to social processes and fictional narratives. The physical world, for
example, is governed by principle that we are at least k years out-
of-date with respect to any point in space k light-years away; the
notion of the light cone more generally characterizes the regions of
space-time between which information can possibly have flowed

[28]. In sociology, the premise that occasional encounters with dis-
tant acquaintances can provide important information about new
opportunities helps form the basis for Granovetter’s celebrated the-
ory of the strength of weak ties [11]. And in yet a different direc-
tion, the idea that two individuals sometimes cannot know what has
happened to one another, over short time spans, arises as a literary
device; for example, in his novel The Gift, Vladimir Nabokov pro-
vides the following grim but memorable image to convey the idea
that it took the character Yasha’s family several hours to learn of
his suicide:

... no sooner had he reached her than both of them
heard the dull pop of the shot, while in Yasha’s room
life went on for a few more hours as if nothing had
happened ... [26]

The role of indirect paths in social communication is also a cru-
cial issue that has received relatively little formal attention. If
we look at a social network represented simply as an unweighted
graph, then any time two nodes are joined by an edge, this edge
provides the most direct path between them. If we have data, how-
ever, on the times or rates at which communication actually takes
place across edges, then we can discover — as in Figure 1 — that
often information has the potential to flow much more rapidly via
multi-step paths. In a sense, then, the A-C-B path in Figure 1 can
be viewed as a “triangle-inequality violation”, in that a two-step
path can be faster than a one-step path. One finds intuitively nat-
ural reflections of this principle in everyday life: a manager who
talks to each of two employees much more frequently than they
talk to each other, or a parent who talks to each of two adult chil-
dren much more frequently than they talk to each other. We will see
later that the structure of communication in real social networks is
in fact dominated by such violations of the triangle inequality.

The present work: Vector clocks and backbone structures. We
now proceed to study these notions of out-of-date information and
indirect paths using data for which we have complete histories of
communication events over long periods of time. Our main dataset
is a complete set of anonymized e-mail logs among all faculty and
staff at a large university over two years [18]. We will use this
university e-mail dataset as the primary focus of discussion in the
present work; but at the end, we also discuss the results of our anal-
yses on two other sources of data: the Enron e-mail corpus [16],
a widely-used dataset containing of e-mail communication among
executives from the (now-defunct) Enron corporation; and also, in
a quite different domain, the complete set of user-talk communica-
tions among admins and high-volume editors on Wikipedia. Taken
together, these datasets thus represent a range of different settings
in which the patterns of systemic communication within a large
group are integral to the workflow of the group. We find broadly
similar patterns of results across all of them.

We analyze the issue of out-of-date information by adapting ideas
from the field of distributed computing, which has also had to deal
with the problem of potential information flow among different
computing hosts — determining, for example, which machines might
be affected if a given host is compromised at a given point in time.
In particular, we use the notion of vector clocks introduced by Lam-
port and refined by Mattern to study how information spreads in
distributed systems [19, 25]. (Mattern’s development, among other
things, draws interesting analogies with notions of simultaneity and
light-cones from special relativity [25].)

Next, we formalize the notion of indirect paths by defining the
network backbone — the subset of edges in the social network that
are not bypassed by a faster alternate path. We propose several re-



lated definitions of the backbone, and for all formulations we find
that the backbone is a very sparse subgraph consisting of a mix-
ture of highly embedded edges and longer-range bridges. Finally,
we consider how potential information flow would be affected if
communication were sped up or slowed down on certain backbone
edges, and use this to draw conclusions about the effect of local
communication rates on the global circulation of information.

In the end, it is important to reiterate, we are using these notions
of potential information flow to draw structural conclusions about
social communication networks in their everyday operation. We do
not attempt to map the actual contents of messages as they are be-
ing sent, nor are we focusing on the effects of one-time, “special”
events that can generate novel communication flows. Rather, our
goal is to approach a dual, and largely unstudied, issue — how ev-
eryday patterns of communication suggest certain temporal notions
of distance that are distinct from the picture that an unweighted
graph provides, and how these patterns cause certain sparse sets of
pathways to emerge as the lines along which information has the
ability to flow the quickest.

Further related work. The complete traces of communication
within a network of people has been studied at moderate scales
in recent years [1, 9], and very recently there have been analyses
of very large-scale networks based on phone calls [27] and instant
messaging [22]. These studies, however, have focused on struc-
tural properties of the networks different from the definitions we
propose here. As noted above, a number of other recent lines of
research have focused on cascading communication triggered by
specific events [3, 8, 13, 21, 23, 24], but this work too addresses
issues that are quite different from our focus here.

The notion of a graph annotated with the times at which the
nodes communicated has been studied at a theoretical level [5, 6,
14, 15]. Holme has explored some of the theoretical definitions on
network datasets [14], though in different directions from what we
do here.

Finally, the sub-field of distributed computing concerned with
epidemic or gossip-based algorithms has focused on designing com-
munication patterns that spread information quickly [7]. In con-
trast, we focus here on systems that are not designed, but where
analyses of the communication patterns over time can nonetheless
provide us with insights into underlying structures in the network.

2. VECTOR CLOCKS AND LATENCY
The basic structure of the data we consider is as follows. We are

given a set V of people (nodes) communicating over a time interval
[0, T ], and we have a complete trace of the communication events
among them. Each recorded communication event consists of a
triple (v, w, t), indicating that node v sent a message to node w at
time t. We also define an unweighted directed graph that simply
represents the pairs who ever communicated; thus, we define the
communication skeleton G to be the graph on V with an edge (v, w)
if v sent at least one message to w during the observation period
[0, T ].

We begin by briefly reviewing the approach of Lamport, Mattern,
and others in the line of distributed computing research aimed at
formalizing temporal lags between nodes in a network [19, 25]. To
start, we consider a node v at time t and try to determine how “up-
to-date” its information about another node u could be. We can
quantify this by asking the following question: what is the largest
t′ < t for which a piece of information originating at time t′ at
u could be transmitted through a sequence of communications and
still arrive at v by time t? We call this largest t′ the view that v has
of u at time t, and denote it by φv,t(u). The amount by which v’s

view of u is “out-of-date” at time t is given by t−φv,t(u); we will
call this the information latency of u with respect to v at time t. For
example, in Figure 1, the views that B has of A, C, D, and E at
Friday 5pm are, respectively, Fri 9am, Fri 3pm, Thu 3pm, and Fri
11am; and hence the latencies are 8 hours, 2 hours, 26 hours, and
6 hours. (We will define φv,t(v) = t for all v and t: v is always
completely up-to-date with respect to itself.) Finally, we can take
all the views of other nodes that v has at time t and write it as a
single vector φv,t = (φv,t(u) : u ∈ V ). We refer to φv,t as the
vector clock of v at time t [19, 25].

There is a simple and efficient algorithm to compute the vector
clocks for all nodes at all times in [0, T ] by a single pass through the
history of communication events (v, w, t), ordered by increasing t
[19, 25]. The algorithm proceeds by maintaining each vector clock
φv as a variable that is updated when v receives a communication.
We initialize each vector φv to have a special null symbol⊥ in each
coordinate (except that φv,0(v) = 0), indicating that no node has
yet heard, even indirectly, from any other. Then, in general, when
we process event (v, w, t), we update the vector clock φw to be
the coordinatewise maximum of the current values of φv and φw

(treating ⊥ as smaller than any number); this reflects the fact that
when v sends a message to w, node w gets a view of each node that
is the more recent of v’s view and w’s view. (When we process this
event, we set φv,t(w) = t, since v has just heard from w.) We run
this procedure for all events, thus obtaining a value for the vector
clock of each node at each point in time.

Latencies in Social Network Data. We now examine these la-
tency measures in the context of real social communication data.
Again, we focus on our university e-mail dataset, but in the final
section we also discuss our other datasets — the Enron corpus and
the communications among Wikipedia editors.

For the university e-mail study we start from the complete set of
communication events among the 8160 faculty and staff at a large
university over two years, and then we preprocess this set in two
ways. First, it is an interesting open question to consider the ap-
propriate role for messages with large recipient lists in this type
of analysis; however, for the present study, we eliminate them by
considering only messages with at most c recipients other than the
sender, for small values of c (ranging between 1 and 5).1 Messages
with a single recipient account for 82% of all messages, while mes-
sages with at most c = 5 recipients account for 97%; the results
here are stable across all these values of c, and in this discussion
we focus on the case of single-recipient messages.

Our second type of preprocessing is the follows. Because not all
members of the full population used their e-mail addresses actively
during this time, we focus on the q-fraction of highest-volume e-
mail users in this set, for various values of q. In this discussion we
use q = .20, defining a set in which each user sent or received a
message at least approximately once an hour during working hours
for the full two-year time period. However, the results discussed
here are robust as q varies over a wide range.

We begin our analysis by considering the distribution of infor-
mation latencies — in other words, measuring how far out-of-date
the rest of the world is with respect to different nodes. For a time
difference τ , we define the ball of radius τ around node v at time
t, denoted Bτ (v, t), to be the set of all nodes whose latency with
respect to v at time t is ≤ τ days. Now, for fixed t, the distribu-
tion of ball-sizes over nodes can be studied using a function ft(τ),
defined as the median value of |Bτ (v, t)| over all v; this is simply
1We use a heuristic based on timestamps and file sizes to detect
multi-recipient messages that a mail client or server has serialized
into many single-recipient messages for purposes of transmission.
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Figure 2: The distribution of latencies among the 20% of
highest-volume e-mail users.

the number of people who are within τ days out-of-date of a typi-
cal node. In Figure 2 the lower curve plots (on a log-linear scale)
the average value of ft over 21 fixed values of t, equally spaced
around one week to account for weekly variation. We see that af-
ter an initial 12-hour ramp-up, the the number of people at τ days
latency from a typical node grows in an approximately piecewise
exponential fashion. The effect is that for a typical person v in this
community, there are only about 12 other people who are within a
day and a half out-of-date with respect to v, while there are over
200 people within four days.

Extending this curve until the ball-size is half the community,
we find that the median latency between node pairs is 7.5 days.
Now, to put the quantity 7.5 days in context, we can compare it to
other possible measures of “distance” in the network. If we look at
unweighted distances (i.e. simple “hop-counts”) in the communi-
cation skeleton G, we find that the median distance between nodes
is 3, a very small number characteristic of the small-world proper-
ties of such networks [29, 31]. But the simple fact that people in
this community are “three degrees of separation” apart cannot be
directly translated into statements about the potential for informa-
tion flow, since that requires the temporal data that forms the basis
for our definition of information latency.

With temporal data in hand, we see that latency depends both
on the variation in who people communicate with and also the on
the variation in how frequently they communicate. We can thus
put the observed quantities in perspective by holding the frequency
of communication fixed, and studying how the latencies change
as we vary the choice of communication partners. In particular,
we compare the observed information latencies with the results of
a randomized baseline, as follows. Suppose that we simulate the
sequence of e-mail exchanges, except that for each communication
event, we have the sender contact a uniformly random person rather
than their true recipient in the data. In this way, the potential for
information flow occurs at the speed of a random epidemic, rather
than according to the actual trace of e-mail communication. The
randomized latencies are generally shorter than the real latencies,
and the upper curve in Figure 2 plots the median ball-sizes for this
baseline.

These ball-sizes also grow in a roughly piecewise exponential
fashion, and the median latency among node pairs under random-
ized communication is 4.6 days. Interestingly, the local exponential
growth rates of the real latencies and the randomized baseline are
roughly the same after about 36 hours; it is the faster exponential
“head start” within this first 36 hours that allows the randomized
baseline to spread so much more quickly. Essentially, under the
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Figure 3: The median latency for different q-fractions of the
community, both in isolation and embedded in the full commu-
nity.

real communication pattern, the typical person resides in a kind of
temporal “bubble” at the 36-hour radius, in which they can only be
aware of information from about 12 other people. With randomized
communication, on the other hand, information breaks out quickly
to many people; the median ball-size at 36 hours is already 50 peo-
ple. This initial difference plays a significant role in the different
ball-sizes multiple days later.

Open worlds vs. closed worlds. Any dataset of communicating
people V will be typically embedded in some much larger, unob-
served set V ′. If we could watch the communication in this larger
set V ′, the latencies even just among nodes in V would decrease,
due to quick paths between members of V that snake in and out of
V ′ − V . We wish to understand this effect, so that we know how
to interpret latencies as we measure them in the “closed world” V
rather than the “open world” where V is embedded in a larger V ′.
In sociology, this is known as the boundary specification problem
[17, 20], and it is inherent in essentially any study of a social net-
work embedded in some larger world.

We can address the effects of this issue in our context as fol-
lows. Since we are studying the q-fraction of most active users in
our university e-mail set, we can ask how median latencies differ
depending on whether we study this q-fraction in isolation, or em-
bedded in the full set of faculty and staff (the q = 1.0 fraction).
We show this in Figure 3: the upper curve plots median latency as
a function of q when the most active q-fraction is observed on its
own, and the lower curve plots the median latency in the same set
when it is observed embedded in the full community. For extremely
small values of q, the effect is considerable, but once q exceeds 0.1,
the effect becomes surprisingly negligible.

In addition to providing validation for the analysis of different q-
fractions in isolation, we believe this implicitly supports a broader
type of approximation — specifically, when an active e-mail net-
work implicitly defines a natural community on its members (as in
the university community in this case), it suggests ways to reason
about it as a free-standing object despite the fact that it is embedded
in the unobservable global e-mail network.

Quantifying the strength of weak ties. In a paper that has been
very influential in sociology, Granovetter proposed that weak ties
— connections to people who form weaker acquaintance relation-
ships, rather than close friendships — play an important role in con-
veying information to each of us from parts of the social network
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that are inaccessible to our circles of close friends [11]. As a con-
crete example, Granovetter found that people very often reported
receiving information leading to new jobs not from close friends,
but from more distant acquaintances; the close friends were per-
haps more motivated to help in tracking down job leads, but the
more useful information came through the distant acquaintances.

Granovetter formalized this by introducing a parameter that we
call the range of an edge e = (v, w), defined to be the unweighted
shortest-path distance in the social network between v and w if e
were deleted; the range is thus the (unweighted) length of the short-
est “alternate path” between the endpoints [11, 30]. Most edges
in a typical social network will have range two, indicating that v
and w have at least one friend in common. Granovetter’s argument
was that edges of range greater than two are generally weak ties
— i.e., edges connecting us to acquaintances with whom we have
less frequent communication — and that these long-range edges
are the sources of important information to their endpoints. How-
ever, he noted [12] that despite interview-based methods to explore
this principle, it has been an open question to provide quantitative
evidence for it on social-network datasets.

We argue here that our vector-clock analysis can provide evi-
dence for this phenomenon. If we recall the algorithm that com-
putes the vector clocks, the basic step is to update the clock of a
node w when it receives a message from some other node v. Let
us define the advance in w’s clock to be the sum of coordinatewise
differences between φw before the update from v and φw after the
update from v. Intuitively, the advance is then the potential for new
information about the rest of the world that w has gained as a re-
sult of this single communication with v — a way of formalizing
the type of information-flow that Granovetter’s work addresses. To
get at his observation, we can thus ask: if (v, w) is an edge in the
communication skeleton G of range greater than two, does each
communication from v result in an unusually large advance to w’s
clock?

While this is a subtle effect to capture, we see evidence for pre-
cisely this in Figure 4. As a function of edge range r, we plot the
median clock-advance per message over all edges in G at the given
range r (the open circles in the plot), as well as the 25th and 75th

percentiles (the vertical line segments). Due to the active commu-
nication within this group over two years, there are no edges of
finite range larger than four; the infinite-range edges are bridges
whose removal would disconnect the network. (Since one side of
each of these bridges is typically an extremely small set of nodes,
it is not necessarily surprising to see a typical clock advance that
is smaller than the case of range 4.) In summary, we see that the

Figure 5: A drawing of a small part of a backboneHt computed
from the university e-mail data, showing only the portions in-
duced on a particular node v and all nodes within 48 hours
latency of v. Concentric circles denote ball radii increasing by
12 hours each, and the distance of each node from the common
center is its latency from v.

clock-advance per message increases with edge range, particularly
for edges of range 4, thus suggesting that long-range bridges can
indeed be effective in transferring information from otherwise dis-
tant parts of the network.

3. BACKBONE STRUCTURES
Having considered methods for analyzing the notion of out-of-

date information, we now use this to study the second issue men-
tioned at the outset — the structure of fast indirect paths — by
introducing a concept that we call the backbone.

Defining the backbone. To develop this idea, we start by recalling
the observation from the example in Figure 1, where the direct A-
B edge was a slower conduit for potential information from A to
B than the indirect path A-C-B. Let us say that an edge (v, w)
in the communication skeleton G is essential at time t if the value
φw,t(v) is the result of a vector-clock update directly from v, via
some communication event (v, w, t′) where t′ ≤ t. In other words,
the edge is essential if w’s most up-to-date view of v is the result
of direct communication from v, rather than a sequence of updates
along an indirect path from v to w. Thus for example, in Figure 1,
consider all edges linking to B in the communication skeleton: the
edges (C, B) and (E, B) are essential at Friday 5pm, but the edges
(A, B) and (D, B) are not.

We define the backbone Ht at time t to be the graph on V whose
edge set is the collection of edges from G that are essential at time
t. (Although Ht is a directed graph, we will also sometimes study
properties of it as an undirected graph, simply by suppressing the
directions of the edges.) Thus the backbone reflects those commu-
nications responsible for all nodes’ up-to-date views at a given time
t — i.e., those that are not “bypassed” by some indirect path.

As a visual illustration, Figure 5 depicts a small part of a back-
bone Ht computed from the university e-mail data, drawing only
the portions induced on a particular node v and all nodes within 48
hours latency of v.

An aggregate backbone. The backbone is defined at each point
in time via vector-clocks; but it is also useful to have a single
graph that summarizes in an analogous but simpler way the “ag-



gregate” communication over the full two-year period, and to be
able to compare this simplified structure to the backbones defined
thus far. We can define such an aggregate structure by approximat-
ing communication between pairs of nodes as perfectly periodic.
For each edge (v, w) in the communication skeleton G such that v
has sent ρv,w > 0 messages to w over the full time interval [0, T ],
we define the delay δv,w of the edge (v, w) to be T/ρv,w. This
can be viewed as the gap in time between messages from v to w, if
communication from v to w were evenly-spaced.

Now consider the weighted graph Gδ obtained from the com-
munication skeleton G by assigning a weight of δv,w to each edge
(v, w). The path of minimum total delay between two nodes x
and y — i.e., the path with minimum sum of delays on its edges
— represents the fastest that information could flow from x to y
in this “aggregate” setting where communication is evenly spaced.
We can now ask which edges are essential in an aggregate sense:
if, over the full time period studied, they are not bypassed by faster
indirect paths. Thus, we say that an edge e = (v, w) in Gδ is essen-
tial if it forms the minimum-delay path between its two endpoints,
and we define the aggregate backbone H∗ to be the subgraph of
Gδ consisting only of essential edges. (For the sake of easier ter-
minology, we will sometimes refer to the backbones Ht at fixed
times t as instantaneous backbones, by contrast with the aggregate
backbone which is based on an aggregate construction that takes all
times into account.)

We note that the construction of the aggregate backbone H∗ can
be done more efficiently than by simply considering each edge of
Gδ separately. Rather, we can compute a weighted shortest-paths
tree rooted at each node of Gδ , using the delays as weights; the
union of the edges in all these trees will be H∗, by the following
proposition.

PROPOSITION 3.1. An edge e = (v, w) belongs to H∗ if and
only if it lies on the minimum-delay path between some pair of
nodes x and y.

PROOF. The “only if” direction is immediate, so we focus on
proving that if e lies on the minimum-delay path between some
pair of nodes x and y, then it is essential. We do this by contra-
diction: suppose e lies on the minimum-delay path Px,y between
some nodes x and y, but it is not the minimum-delay path between
its endpoints v and w. This means that there is a path Pv,w of
strictly smaller delay than the edge (v, w). Now let Px,v be the
subpath of Px,y from x to v, and let Pw,y be the subpath of Px,y

from w to y. Concatenating Px,v , Pv,w, and Pw,y would give an
x-y path of strictly smaller delay than that of Px,y , which is the
contradiction we seek.

Density and node degrees of the backbones. While the commu-
nication skeleton is a fairly dense graph, we find that the back-
bones and the aggregate backbone are surprisingly sparse — in
other words, from the point of view of potential information flow, a
significant majority of all edges in the social network are bypassed
by faster indirected paths.

In particular, Figure 6 shows the average degree in the instanta-
neous backbones Ht as a function of time. Note that there are clear
boundary effects as the vector clocks get “up to speed,” but after
this initial phase the average degree stabilizes to approximately 13
even as the backbone itself changes over time. The aggregate back-
bone H∗ is sparser still: its average degree is approximately five
(the horizontal line in Figure 6). For comparison, the average node
degree in the communication skeleton is approximately 50. In sum-
mary, even in this community of active users of e-mail, the typical
person has only five contacts that are not bypassed by shorter paths
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Figure 6: The average degree over time in the backbone, with
the horizontal line depicting the average degree of ≈ 5 in the
aggregate backbone H∗.
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Figure 7: In-degree (circles) and out-degree (crosses) in the ag-
gregate backbone as a function of degree in the full commu-
nication skeleton G. The sublinear growth indicates that the
backbone eliminates edges from high-degree nodes at a greater
rate.

in steady-state over a long time period.
The fact that the instantaneous backbones Ht are roughly 2.5

times as dense as the aggregate backbone indicates the local bursti-
ness of communication in the network: at any particular point in
time, people have essential communication with certain contacts
that are not sustained in steady-state over the full two-year interval.
It thus becomes natural to ask how much overlap there is between
the instantaneous backbones Ht and the sparser aggregate back-
bone. We find in fact that the overlap is substantial: each backbone
Ht, on average, contains roughly 3/4 of the edges from H∗. Of
course, which particular edges of H∗ appear in any one Ht varies
considerably with t. Thus, it is reasonable to think of the instan-
taneous backbones Ht as roughly consisting of a large but vary-
ing piece of the aggregate backbone, supplemented with transient
edges whose membership in the backbone changes more rapidly
over time.

Considering the backbone also sheds further light on the role
of high-degree nodes in the social network. It has been argued
that high-degree nodes play a crucial function in the structure of
short paths in unweighted graphs [4]. It has also been argued, how-
ever, that the importance of these “hubs” diminishes considerably
once temporal effects are taken into account [10]. We find support
for both arguments: high-degree nodes in the full communication
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Figure 8: Proportion of edges in the backbone for each edge
range. The lower curve is for the aggregate backbone and the
upper curve is for the instantaneous backbones. The horizontal
lines represent the overall fraction of edges in the respective
backbones.
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Figure 9: Proportion of range-2 edges in the backbone as a
function of embeddedness. Symbols are as in Figure 8.

skeleton G indeed have many incident edges in the aggregate back-
bone; however the fraction of a node’s edges that are declared es-
sential strictly decreases with degree. As Figure 7 illustrates, nodes
of degree k in G have an average degree of approximately k0.6 in
the aggregate backbone H∗; thus, the fraction of a node’s edges
that are essential is decreasing in its degree as k−0.4. A corre-
sponding effect holds for the instantaneous backbones Ht, where
nodes of degree k in G have average degree approximately k0.65,
an exponent that remains stable over time after an initial start-up
period. Thus the backbones have a kind of “leveling” effect on the
degrees, in which the spread between low and high degrees is con-
tracted faster than just proportionally when we move from G to its
backbones.

Structure of the backbone. Intuitively, the backbone is trying to
balance two competing objectives: representing edges that span
different parts of the network, which transmit information at long
ranges; and representing very rapidly communicating edges, which
will typically be embedded in denser clusters and transmit informa-
tion at short ranges over quick time scales. In fact, we will see in
Figures 8 and 9 that the mixture of edges in the backbone achieves
precisely a version of this trade-off. For this discussion, we view
the backbones as undirected graphs simply by suppressing the di-
rections of the edges.

In Figure 8, we show the proportion of edges from G that belong
to the backbones, as a function of their range. (Recall that the range
of an edge e is defined as the distance between the endpoints of e,
when e itself is deleted.) The lower curve depicts the aggregate
backbone, while the upper curve depicts the average over instan-
taneous backbones. In each case, we see that there is an under-
representation of edges of the intermediate range 3, with a greater
density at the two extremes of range 2 and range 4. The large pro-
portion of range-4 edges in the backbone is another reflection of
the strength-of-weak-ties principle discussed earlier — long-range
edges serve as important conduits for information. To understand
the picture at the other extreme, with edges of range 2, it is useful
to further refine this set of edges using the notion of embeddedness.

We define the embeddedness of an edge to be, roughly, the frac-
tion of its endpoints’ neighbors that are common to both. Formally,
for an edge e = (v, w), let Nv and Nw denote the sets of neighbors
of the endpoints v and w respectively. We define the embeddedness
of e to be |Nv ∩ Nw|/|Nv ∪ Nw|. Thus, highly embedded edges
intuitively occupy dense clusters, in that their endpoints have many
neighbors in common. We see in Figure 9 that highly-embedded
edges are also overrepresented in both the aggregate and instanta-
neous backbones. This may be initially surprising, since edges of
large embeddedness have many possible two-step paths that could
short-cut around them; their presence in the backbone is thus a re-
flection of the generally elevated rate of communication that takes
places on such edges.

Taken together, then, these results on range and embeddedness
indicate a striking sense in which the backbone balances between
two qualitatively different kinds of information flow: flows that
arrive at long range over weaker ties, and flows that travel quickly
through densely clustered regions in the network.

4. VARYING SPEED OF COMMUNICATION
We note that although the social communication patterns we are

studying arise organically (rather than being centrally designed),
one can nevertheless study how the resulting latencies depend on
local variations in communication styles. One could ask this ques-
tion in the context of communication within a large organization,
for example: how do individuals’ decisions about communication
strategies affect the overall rate of potential information flow in the
organization? Of course, analysis of such questions can also po-
tentially provide insight into the design of information-spreading
mechanisms in engineered networks as well [7].

In particular, we study what happens to information latencies
when each node keeps its set of contacts the same, but varies the
relative rates of its communication with these contacts. Suppose we
assume the communication skeleton G represents the complete set
of potential communication partners for each person, and we allow
people to change the individual rates at which they send messages
to these partners, while keeping their total daily volume fixed. Are
there simple ways to change individual rates that will reduce the
shortest-path delays among pairs in the aggregate backbone?

As a baseline for comparison, we can consider the optimal re-
duction in delay, given a central planner with complete knowledge
of the network. Here is a concrete way to formalize this optimiza-
tion question in general. We are given a directed graph G, with a
total rate ρv for each node v. We are also given a set S of pairs
of nodes in G whose shortest-path delays we want to reduce. Each
node v can choose a rate ρv,w at which to communicate to each
of its neighbors w, subject to the constraint that

P
w ρv,w = ρv .

These rates define delays δv,w = T/ρv,w as in our construction of
the aggregate backbone. (Rates ρv,w can be set to zero, in which
case the resulting edge (v, w) is taken to have infinite delay.) Now,
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Figure 10: Median shortest-path delay in the aggregate back-
bone (solid line) as a function of the load-reweighting parame-
ter γ. Dashed lines represent the 25th and 75th percentiles of
the shortest-path delay.

the question is: for a given bound δ, can we choose rates for each
node so that the median shortest-path delay between pairs in S in
the aggregate backbone is at most δ?

As formulated, this optimization problem is intractable.

THEOREM 4.1. The delay minimization problem defined above
is NP-complete.

Proof Sketch. We reduce from the 3-SAT problem. Given a set of
variables x1, ..., xn and clauses to satisfy, we construct a graph G,
pairs S, and node rates ρv as follows. For each variable xi, we
construct three nodes ui, vi, wi with edges (ui, vi) and (ui, wi).
For each clause Cj , we construct nodes sj and tj ; then, for each
variable xi in clause Cj , we add edges (sj , ui) and (vj , tj) if xi

occurs positively in Cj , and we add edges (sj , ui) and (wj , tj)
if xi occurs negatively in Cj . Each node is given a rate of 1.
Finally, we evaluate the median shortest-path delay for the pairs
S = {(sj , tj)}.

Now, if there is a satisfying truth assignment, then we can put
a rate of 1 on edge (ui, vi) if xi is set to True, and a rate of 1 on
edge (ui, wi) if xi is set to False. We can also put a rate of 1 on
edges (sj , ui) where xi is a variable that satisfies Cj . This makes
all shortest-path delays between pairs in S equal to 3; conversely,
if the median shortest-path delay between pairs in S can be made
equal to 3, then each pair in S must have delay 3, in which case
a satisfying assignment can be determined from the paths that are
used.

Load-leveling vs. load-concentrating. While this intractability
shows the difficulty in optimally accelerating communication, a
more realistic goal is to consider simple local rules by which indi-
viduals in a network might vary their rates of communication so as
to influence the potential for information flow. A basic qualitative
version of this question is the following: for accelerating potential
information flow, is it better to talk even more actively to one’s most
frequent contacts, or to balance things out by increasing communi-
cation with the less frequent contacts? We could refer to the former
strategy as load-concentrating, since it pushes more traffic onto the
already-high-volume edges, and we could refer to the latter strategy
as load-leveling, since it tries to level out the traffic across edges.

We can study this in the university e-mail data by choosing a re-
scaling exponent γ and modifying the rates of communication on
the edges emanating from each node v, changing ρv,w to ργ

v,w and
then normalizing all rates from v to keep its total outgoing message
volume the same. Varying γ thus smoothly parametrizes a family

of different strategies, with values γ > 1 corresponding to load-
concentrating strategies — since already-large rates are amplified
— while values γ < 1 correspond to load-leveling strategies.

In Figure 10, we show the effect of these strategies on the me-
dian shortest-path delay in the aggregate backbone. We note, first
of all, the interesting fact that γ = 1 is close to the best possible
for shortest-path delays; in other words, the existing rates of com-
munication are close to optimal, in terms of potential information
flow, over this class of strategies. However, there is still room for
improvement in the shortest-path delay: the optimal median, over
all γ, occurs at γ∗ ≈ 1.2. The fact that γ∗ > 1 indicates an in-
teresting and perhaps unexpected result: that increasing the rate of
communication to the most frequent contacts actually has the effect
of reducing shortest-path delays — a result at odds with the intu-
ition that making stronger use of infrequent contacts and weak ties
is the way to reduce latency.

Node-dependent delays. There is an extension of the model that
sheds further light on this finding. Suppose we extend the notion
of delay to have not just delays δv,w on each edge, but also a fixed
delay of ε at each node, so that the total delay on a path becomes the
sum of the edge and node delays. In other words, as information
flows it incurs additional delays from each node that handles it.

Naturally, as ε increases, there is a larger penalty for paths that
take more hops, and minimum-delay paths increasingly come to
resemble those of minimum hop-count. This leads to a denser
backbone, as fewer edges are rendered inessential. The value of
γ at which network latency is optimized decreases with ε, cross-
ing γ∗ = 1 at ε ≈ 4 days. Thus, as the speed of diffusion path-
ways is determined increasingly by node-specific (rather than edge-
specific) delays, the backbone becomes denser, and the importance
of quick indirect paths diminishes. Moreover, as node delays in-
crease, the optimal re-scaling of communication for reducing net-
work latency transitions from load-concentrating to load-leveling.

5. CONCLUSIONS
The basic definitions of social network analysis have been pri-

marily built on graph-theoretic foundations rooted in unweighted
graphs. Here we have explored how this perspective changes when
one makes integral use of information about how nodes communi-
cate over time. Rather than explicitly tracking the content of this
communication, we develop structural measures based on the po-
tential for information to flow; in this way, we can get at elusive
notions around the network’s everyday rhythms of communication.

With this view, some of the direct connections in the network
become much longer, due to low rates of communication, while
other multi-step paths become much shorter, due to the rapidity
with which information can flow along them. We find that adapting
the notion of vector-clocks from the analysis of distributed systems
provides a principled way to measure how “out-of-date” one person
is with respect to another, and we find that the sparse subgraph of
edges most essential to keeping people up-to-date — the backbone
of the network — provides important structural insights that relate
to embeddedness, the role of hubs, and the strength of weak ties.
Finally, this style of analysis allows us to study the effects on infor-
mation flow as nodes vary the rate at which they communicate with
others in the network, ranging from strategies in which communi-
cation is concentrated on heavily-used edges to those in which it is
leveled out across many edges.

This style of analysis is applicable to any setting in which a group
of individuals is engaged in active communication with the goal of
exchanging information, and when there is data available on the
temporal sequence of communication events. As discussed earlier,



we have also explored the measures defined here in other e-mail
datasets (the Enron corpus), as well as in settings that are quite
different from e-mail networks — in particular, we have applied
vector-clock and backbone analysis to the communications among
admins and other high-activity editors on Wikipedia, using edits
to user-talk pages as communication events. Wikipedia is a set-
ting where it is particularly easy to get public data with complete
communication histories, but it is also representative of communi-
ties that maintain themselves through on-line communication and
coordination (large open-source projects and large media-sharing
sites are other examples).

Although the dynamics and patterns of communication in all
three of our datasets are quite different, we find that a large number
of the qualitative findings discussed for the university e-mail do-
main carry over to the other settings studied, including the sparsity
of the aggregate and instantaneous backbones and the variation in
node degrees. In particular, the typical aggregate backbone degrees
around 5 and the recurring sub-linear “compression” of degrees —
where nodes of degree k in the full skeleton have typical backbone
degree ∼ kc for c ≈ 0.5–0.6 in all three datasets — are common
patterns that seem to call for a deeper theoretical explanation. On
the other hand, compared to the university e-mail dataset, we find
that the “core” of active communicators is much smaller in both the
Enron corpus (since it is data from a limited set of employees’ mail-
box folders) and in Wikipedia (due to the specifics of community
dynamics), and this makes the range of an edge in the unweighted
communication skeleton harder to interpret and to correlate with
other measures for both these other domains. In a sense, this is nat-
ural: principles about long-range edges and their effects are derived
from properties of large populations with natural sub-communities
— as we find in the university e-mail data — and it is not clear that
long-range edges carry the same meaning in much smaller popula-
tions.

In general, we see the analysis framework proposed here as a
way of comparing the different kinds of communication dynamics
within different communities. Further investigation of these no-
tions could ultimately shed light on the principles that govern the
dynamics of different types of information, and how these princi-
ples interact with the directed, weighted nature of social communi-
cation networks.
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