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Abstract

Economic models are evaluated by testing the correctness of their predic-

tions. We suggest an additional measure, “completeness”: the fraction of the

predictable variation in the data that the model captures. We calculate the

completeness of prominent models in three problems from experimental eco-

nomics: assigning certainty equivalents to lotteries, predicting initial play in

games, and predicting human generation of random sequences. The complete-

ness measure reveals new insights about these models, including how much

room there is for improving their predictions.
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1 Introduction

There is more reason to look for ways to improve a model that predicts poorly than

one that predicts well. But what constitutes “good” performance? Our view is

that the answer depends on how well the outcome could possibly be predicted given

the specified “features” (i.e. the explanatory variables). To fix ideas, suppose we

have data on whether customers agreed to a particular loan offer. Loan offers differ

on characteristics such as the interest rate or the term of the loan. One model

(the “NPV model”) of how these characteristics relate to demand might posit that

customers view loans through the lens of expected cost of capital over the duration of

the loan. The expected cost of capital is a specific function of the available features.

We could test the predictions of this model by evaluating it on data, e.g. by seeing

if demand increases when the effective interest rate drops. These tests allow us to

reject wrong models, but they do not tell us how much better a different model could

do.

To get at this, we propose comparing the model’s accuracy to that of the best

prediction of demand that could be made using the features we have that describe

each loan. Comparing the benchmark’s predictive accuracy to that of the NPV model

would tell us how much of the predictable signal in the outcome (given the baseline

features) is captured by the NPV model. If the best predictions are much better

than those of NPV model, there may be another model built on the same features

that substantially improves predictive accuracy. For example, another model might

postulate that customers ignore future interest rates and focus only on the initial

interest rate, or that 2.99% is viewed differently from 2.95%. On the other hand, if the

best predictions are not much better than those of the NPV model, then alternative

models built on the same features cannot possibly do much better on these data.

New models could help but they must do so by identifying new variables that are not

currently measured. For example, models that emphasize framing and persuasion

would point to expanding our dataset to include the vocabulary used in the loan

descriptions.

Moving beyond this specific example, any model’s prediction error can generally

be decomposed into two sources: (1) intrinsic noise in the outcome due to limitations

of the features we have measured, i.e. the irreducible error, and (2) regularities in the
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data that the model does not capture. The irreducible error provides an upper bound

benchmark for how well any model (based on the measured features) could possibly

do.

A benchmark at the other end is the performance of a naive model, such as “guess

at the outcome at random”.1 We use these extremes to measure what we call the

“completeness” of any behavioral model:

Enaive − Emodel

Enaive − Eirreducible

where Enaive is the out-of-sample prediction error under a naive baseline (e.g. “guess

at random”), Emodel is the out-of-sample error of the model, and Eirreducible is the

irreducible error. That is, completeness is the model’s reduction in prediction error

(relative to the naive baseline), divided by the achievable reduction in prediction error.

A model with a completeness of 0 does not improve upon the naive baseline, while

a model with a completeness of 1 eliminates all but the irreducible error. Crucially,

a model can be complete for the given measured features even if the it predicts

poorly and its R2 is low. The distinction between a complete model and a perfectly

predictive model as especially relevant for the social sciences, where we expect there

to be substantial irreducible noise in most outcomes of interest given the measurable

features. Economists can rarely hope for our models to be perfectly predictive, but

we can hope for them to be relatively complete.

In addition to proposing the completeness measure, we demonstrate that com-

pleteness can be accurately estimated for a diverse range of experimental data sets.

The challenge is estimating irreducible error. In general, the performance of black box

machine learning methods can be used as a stand-in for irreducible error. When the

data consists of a large number of outcome observations for each vector of features,

then it is possible to obtain a fairly precise estimate of irreducible error using a simple

“lookup table,” which nonparametrically searches the space of possible models, and

finds the model that maximizes out-of-sample predictive accuracy for the set of avail-

able features. Many lab data sets have this property: for example, a large number

of observations of game play for each of a small set of games, or a large number of

observations of certainty equivalents for each of a small set of lotteries.

1Diebold and Kilian (2001) proposes benchmarking the accuracy of time series forecasts relative

to that of a bad forecast. This is in the spirit of our comparison against to a naive model.
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Our applications use data sets like this to evaluate the completeness of prominent

models from three experimental domains: Cumulative Prospect Theory (Tversky

and Kahneman, 1992) for prediction of certainty equivalents, the Poisson Cognitive

Hierarchy Model (Camerer et al., 2004) for prediction of initial play in games, and

Rabin and Vayanos (2010) for prediction of human perception of randomness.

We find that Cumulative Prospect Theory is 92% complete for predicting certainty

equivalents; that is, it almost achieves the best possible error given the explanatory

variables that we use. Simply evaluating the absolute level of the model’s error

would not have revealed this, as the mean-squared error is seemingly high, 68.43. In

contrast, the Rabin and Vayanos (2010) model is only 14% complete, suggesting that

there is further room for improvements in predictive accuracy using other regularities

in behavior. In the setting of initial play, we find that the predictive limits vary

substantially across different kinds of games, and so the same level of prediction error

can mean different things.

In all of these prediction problems, we find that the irreducible error is substantial,

so simply looking at the absolute level of a model’s predictive error would paint a

misleading picture. This is starkest in our application of predicting human generation

of random outcomes, where the Rabin and Vayanos (2010) model reduces prediction

error (relative to the naive benchmark of guessing at random) by only 0.0008, but

is nevertheless 14% complete. These, and the subsequent observations we make in

Sections 5.1–5.3, are informative about the problem domains and how much room

there is for improving the predictions of their leading models without obtaining new

sorts of data.

Our completeness measure depends on a specified set of features and is evaluated

on a given data set. If we change either the underlying feature set or the data, we

would expect the measurement of completeness to change, as we discuss in Section

6.2. Moreover, a model’s completeness depends on which experiments are run, e.g.

which lotteries or games are used in testing. As we show in Sections 5.2, the way that

the completeness of a model varies across test cases is of independent interest, as it

can shed light on the domains in which the model performs well or performs poorly.
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1.1 Related Work

Irreducible error is an old concept in statistics and machine learning. A large literature

has studied the decomposition of this error into bias (reflecting error due to the

specification of the model class) and variance (reflecting sensitivity of the estimated

rule to the randomness in the training data). Depending on the quantity of data

available to the analyst, it may be preferable to trade off bias for variance or vice

versa.2 This paper abstracts from these concerns, as well as the related concern

of overfitting. We work exclusively with data sets where there is enough data that

the best feasible out-of-sample prediction accuracy is well approximated by searching

across the unrestricted space of mappings from X into Y (see Appendix A).

The only previous measures of predictive success for economic models in exper-

imental work that we know of are Selten (1991)’s measure of the relative frequency

of successful predictions, Erev et al. (2007)’s definition of the equivalent number of

observations, and Apesteguia and Ballester (2020)’s measure of goodness-of-fit for

stochastic choice models. Our work differs in that we focus on understanding the

best possible prediction in a given problem, and evaluate performance relative to

that benchmark.

Several recent papers compare a model’s predictive performance to that of specific

machine learning algorithms. These algorithms sometimes approximate the best pos-

sible predictions. For example, Peysakhovich and Naecker (2017a) compares the per-

formance of economic models for the willingness to pay for three-outcome lotteries to

the performance of regularized regression algorithms, and Bodoh-Creed et al. (2019)

compares the performance of simple OLS models using known regressors against the

performance of random forests built on a rich feature set, for the problem of pre-

dicting pricing variation. The algorithms used in these papers need not achieve the

irreducible error, but they do provide a lower bound for the best achievable accuracy.

We show that in experimental contexts, it can be possible to directly estimate the

best achievable accuracy and use that as a benchmark.

Other papers directly use an algorithmic approach to predict economic behavior,

e.g. Plonsky et al. (2017), Noti et al. (2016), and Plonsky et al. (2019) for prediction of

choice, and Camerer et al. (2019) for prediction of disagreements in bargaining. The

2For example, given small quantities of data, we may prefer to work with models that have fewer

free parameters, leading to higher bias but potentially lower variance.
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improvements achieved by these more complex algorithms over the existing economic

models are sometimes modest. One reason for this might be intrinsic noise, as Bourgin

et al. (2019) points out. We show how this noise can be quantified.

Finally, we note that in the special case where performance is measured by mean-

squared error, and the naive rule is an unconditional mean, then our completeness

measure can be seen as a ratio of the model’s R2 and the nonparametric R2, as we

explain in Appendix B. Our approach is not special to this loss function, however,

and can be implemented with any metric of accuracy.

2 Example

We begin with a simple example that illustrates the need for a measure such as

completeness. Let y be a binary outcome of interest, which is related to two binary

features x1 and x2. Specific theories make predictions about how the given features

relate to the outcome. Suppose that our model posits that the features enter linearly

according to y = β · (x1 + x2) for some β ∈ R. We can test this model by acquiring

observations of (x1, x2, y) drawn from their true joint distribution, estimating β, and

using the estimated model to predict outcomes in a new data set. The (out-of-sample)

prediction error would then be the error of the model’s predictions according to i.e.

the (average) squared difference between the predicted and true outcomes. But it is

hard to interpret the magnitude of this error without additional information. To see

the problem, consider Table 1, which describes two data-generating processes for the

value of y given x1 and x2.

x1 x2 E(y|x)

0 0 0

0 1 0.5

1 0 0.5

1 1 1

x1 x2 E(y|x)

0 0 0

0 1 0.1

1 0 0.9

1 1 1

Table 1: Two processes specifying the expected value of y given the values of x1 and

x2. In both cases, the distribution over features is uniform.

For both data-generating processes, the estimated value of the parameter β (given
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sufficient data) is β = 0.5, and so the estimated model is f(x) = 0.5 · (x1 + x2). The

expected prediction error of this model is 0.125 under both of the data generating

processes in Table 1. Taking the absolute level of prediction error at face value would

suggest that the model is equally predictive for both versions of ground truth. But

the equality of the prediction errors obscures an important difference, which is that

in the first case there is no alternative model built on x1 and x2 that can make more

accurate predictions, while in the second case the model y = β1x1 + β2x2 (with β1

estimated to 0.1 and β2 estimated to 0.9) achieves a prediction error of 0.045. That is,

the proposed model is complete given the first data-generating process but incomplete

given the second. Our subsequent approach formalizes this notion of completeness.

3 Completeness

Section 3.1 introduces the setting of prediction problems and Section 3.2 defines

completeness.

3.1 Preliminaries

In a prediction problem, there is an outcome Y whose realization is of interest, and

features X that are statistically related to the outcome. The goal is to predict the

outcome given the observed features. Some examples include predicting an individ-

ual’s future wage based on childhood covariates (city of birth, family income, quality

of education, etc.), or predicting a criminal defendant’s flight risk based on their

past record and properties of the crime (Kleinberg et al., 2018). We focus on three

prediction problems that emerge from experimental economics:

Example 1 (Risk Preferences). Can we predict the valuations that people will assign

to various money lotteries?

Example 2 (Predicting Play in Games). Can we predict how people will play the first

time they encounter a new simultaneous-move game?

Example 3 (Human Generation of Random Sequences). Given a target random pro-

cess—for example, a Bernoulli random sequence—can we predict the errors that a

human will make while mimicking this process?
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Formally, suppose that the observable features belong to some space X and the

outcome belongs to Y . There is a true but unknown joint distribution P over X ×Y .

A map f : X → Y from features to outcomes is a (point) prediction rule.3 Many

economic models can be described as a family of prediction rules FΘ indexed by an

interpretable parameter set Θ. For example, the model class may impose a linear

relationship f(x) = 〈x, θ〉 between the outcome and a set of features x, in which case

the parameter θ ∈ Θ defines a vector of weights applied to each feature. In Section

5.1, one specification of FΘ is a family of utility functions u(z) = zθ over dollar

amounts, where the parameter θ reflects the degree of risk aversion.

3.2 Definition

We suppose that our prediction problem comes with a loss function, ` : Y × Y → R,

where `(y′, y) is the error assigned to a prediction of y′ when the realized outcome

is y. The commonly used loss functions mean-squared error and classification error

correspond to `(y′, y) = (y′ − y)2 and `(y′, y) = 1(y′ 6= y) respectively.4

Definition. The expected error (or risk) of prediction rule f on a new observation

(x, y) ∼ P is

EP (f) = EP [`(f(x), y)]. (1)

The prediction rule in the parametric class FΘ that minimizes the expected pre-

diction error is

f ∗Θ = arg min
f∈FΘ

EP (f).

The expected error of this “best” rule in F is EP (f ∗Θ). In Section 4, we discuss how

to estimate EP (f ∗Θ) on finite data; here we discuss how to interpret it.

To understand a model’s error, it is helpful to distinguish between two different

sources of error. First, if the conditional distribution Y | X is not degenerate, then

3Note that prediction of a probability distribution over Y can be cast as the prediction of a point

in the space Y ′ = ∆(Y) of distributions on Y; for many loss functions this prediction problem will

have an irreducible error of zero.
4Different loss functions are typically used when predicting distributions, see e.g. Gneiting and

Raftery (2007).
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even the ideal prediction rule

f ∗(x) = arg min
y′∈Y

EP [`(y′, y) | x]

does not predict perfectly.

Definition. The irreducible error in the prediction problem is the expected error

EP (f ∗) = EP [`(f ∗(x), y)] (2)

of the ideal rule on a new test observation.

The irreducible error is a lower bound on the error when predicting Y using the

features in X.

A second source of prediction error is the specification of which prediction rules

are in the class FΘ. Typically the best possible model will not be an element of FΘ,

as most model classes are at least slightly misspecified. If FΘ leaves out an important

regularity in the data, then there may be models outside of FΘ that yield much better

predictions.5

These two sources of prediction error have very different implications for how to

generate better predictions. If the model’s prediction error is substantially higher than

the irreducible error, it may be possible to identify new regularities and incorporate

them into models that improve prediction given the same feature set. These new

models might be preferable if they do not involve too great an increase in complexity

or in the number of parameters. Conversely, if the model’s prediction error is close

to the irreducible error for the current feature set, the priority should be to identify

additional features that will allow for better predictions.

We propose the ratio of the reduction in prediction error achieved by the model,

compared to the achievable reduction, as a measure of how close the model comes

to the best achievable performance. We call this ratio the model’s completeness.

To operationalize this measure, we select a naive rule fnaive : X → Y suited to

the prediction problem, e.g. “predict uniformly at random.” The performance of this

naive rule is interpreted as a “worst case” prediction accuracy. We assume throughout

that fnaive belongs to FΘ, as is the case in our subsequent applications.

5On the other hand, expanding the model class risks overfitting, so more parsimonious model

classes can lead to more accurate predictions when data is scarce (Hastie et al., 2009). As we discuss

in Sections 1.1 and 4, all of the data sets we consider here are large relative to the number of features.
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Definition. The completeness of the parametric model class FΘ is

EP (fnaive)− EP (f ∗Θ)

EP (fnaive)− EP (f ∗)
. (3)

Completeness is a normalized measure of the reduction in error. A model with com-

pleteness 0 does no better than the naive rule, while a “fully complete” model with

completeness 1 removes all but the irreducible error.6

3.3 Discussion

User inputs. The proposed measure depends on two user inputs: a naive bench-

mark fnaive and a marginal distribution PX on an underlying feature space X. In

many cases, there is a natural choice for the naive rule, or a range of natural choices.

In Appendix C.1, we expand one of our applications by estimating completeness rel-

ative to a set of possible naive benchmarks. We show that completeness is stable

across these choices.

On the other hand, there generally isn’t a corresponding notion for “standard”

choices of PX , although for experimental data this distribution too is typically chosen

by the analyst—e.g. which games to ask laboratory participants to play or which

lotteries to offer to subjects.7 Ideally, we would like the chosen distribution over

features to be the one that is most “economically relevant,” but in practice, it may

be difficult to define what this means. We show in Section 5.2 that completeness can

vary substantially across different marginal distributions PX , especially those with

different support. This reflects the fact that some models perform better for certain

kinds of inputs (e.g. certain kinds of lotteries or certain kinds of games). We view

the ability of the completeness measure to capture this variation as a strength of the

approach. In particular, one can study how completeness varies across subsets of the

domain, as we do in the subsequent application in Section 5.2.

6This is one of many possible measures with completeness 1 when the model removes all but

irreducible error and 0 when the model coincides with the naive error. Our definition measures

“units” of completeness as percentage improvements in prediction error, which facilitates comparison

across settings with different loss functions.
7For naturally occurring data, the distribution over the feature space X may be governed by an

external process.
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Expanding X . Completeness is defined for a fixed feature set X , which we generally

interpret as the measured features in the data. If we vary X by expanding it to include

new measured features, then the predictive performance of the original model remains

the same, but the predictive optimum weakly improves.8 So a model that is complete

for one feature set X may not be complete for another X ′ ⊃ X . In general, if a model

is nearly complete for the measured features, the only way to improve predictive

accuracy is to measure new features and develop new models on the larger feature

set.

Choice of prediction problem. Here we consider a “model” to be a map from

features to the prediction of interest, which differs from other common uses of this

word. The completeness of a model depends on the specified prediction problem:

With the same features, a model of the effect of a price cut on sales might be able

to predict the aggregate effect (e.g. a 5% increase in sales) very well but unable to

predict which consumers would increase their purchases.

3.4 Evaluating Models

Predictive accuracy is only one of many criteria that matter for selecting theories.

Economists typically also value parsimony, portability, and tractability, and trade

them off against accuracy and each other when selecting models. This paper is not

designed to be about the tension between these criteria. Rather, our definition of

completeness is meant as a tool to facilitate making such tradefoffs.

A high-level analogy is to the idea of polynomial-time approximation algorithms

for NP-hard optimization problems. In the theory of approximation algorithms, there

is a tension between efficient algorithms (which run quickly and produce sub-optimal

solutions in general) and the optimal solution (which may be hard to find, but whose

value cannot be improved). To even state this tension, one needs the notion of

8Fix any random variable X = (X1, X2) taking values in X = X1×X2 and let P denote the joint

distribution of (X1, X2, Y ). As in the main text, define f∗ to be the mapping from X to Y satisfying

f∗(x) = arg miny′∈Y EP [`(y′, y) | x] for all x ∈ X . Now define P1 to be the marginal distribution of P

on X1×Y and define f∗1 to be the mapping from X1 to Y satisfying f
∗
1(x) = arg miny′∈Y EP1 [`(y′, y) |

x1] for all x1 ∈ X1. Then, EP1(f∗1 (X1), Y ) ≥ EP (f∗(X), Y ); that is, irreducible error is higher given

the smaller set of features.
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“the optimal solution” in the first place. This is obvious in context of optimization

problems and efficient algorithms for them, but as far as we know, the analog of the

“optimal solution” is not in common use in experimental settings. Evaluating the

completeness of a model makes it possible to talk about the tension between simple

and complex models, as well as related trade-offs, with reference to how close these

models come to the best achievable performance.

Restrictive versus Complete Models. In general, the more flexible a model is,

the higher its completeness. At the extreme, a model class FΘ that includes all

possible mappings from X to Y achieves full completeness. But such a model is also

vacuous, as it has no falsifiable predictions: For a fixed level of predictive accuracy,

we thus prefer models that are more restrictive. Fudenberg et al. (2020) provide an

algorithmic measure of a model’s “restrictiveness” by evaluating the completeness

of the model on a range of synthetic data. Since the best achievable error varies

substantially across data sets, low absolute error on these data sets is not enough to

conclude that a model is unrestrictive; likewise, high absolute error does not imply

that the model imposes substantial restrictions. But a model that is complete on all

data is not restrictive. The paper uses completeness together with restrictiveness to

evaluate several economic models.

Interpretable Versus Predictive Models. In many applications, researchers may

prefer to sacrifice some predictive power and completeness to use a model that is easier

to interpret, for example using a model of preferences to predict choice as opposed

to a black box. Having a measure for completeness tells us how much we sacrifice in

terms of predictive power by requiring the model to be interpretable. In some cases,

such as the CPT model in Section 5.1, it turns out that simple and intepretable

models achieve completeness comparable to that of black box algorithms, meaning

this tradeoff is not present.9 On the other hand, the Rabin (2000) model achieves only

partial completeness—these could be because a better, interpretable model exists, or

it could be because human behavior in this domain is fundamentally complex and

cannot be capture by a simple model. Having the measure of completeness makes it

possible to describe this tradeoff.

9Fudenberg and Liang (2019) demonstrates a similar point for the domain of initial play in matrix

games.
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4 Estimating Completeness from Finite Data

We now discuss how to estimate completeness from finite data. When the feature

space X is “small” and there are a large number of observations of Y for each unique

x ∈ X, then a natural estimator for the irreducible error is the performance of a lookup

table, which simply learns the best prediction of Y for each x. While the assumption

that there is a large number of observations per x may seem demanding, it turns

out to be satisfied for a potentially large number of experimental data sets, including

the ones we subsequently study. We view a substantial part of the contribution of

this paper as demonstrating that irreducible error can be approximated quite simply

across a diverse range of experimental contexts.

When nonparametric estimation of irreducible error via a lookup table is not feasi-

ble, then econometric methods such as splines, sieves, and black box machine learning

algorithms (e.g. lasso regression) can potentially be used as substitutes.10 In those

cases, the estimate of the ratio of the model’s improvement relative to the improve-

ment achieved by the black box can be seen as an upper bound on the completeness

of the model, as in Peysakhovich and Naecker (2017b).

We subsequently describe in detail the estimators we use in this paper, with

Section 4.1 describing our estimators for the expected prediction errors in (3), and

Section 4.2 describing our estimator for completeness.

4.1 Estimators for Expected Prediction Errors

Our approach applies to an arbitrary set F of maps from X to Y . The special cases

F = {fnaive}, F = FΘ, and F = X Y (i.e. the unrestricted set of all possible maps

from features in X into outcomes in Y) respectively return the desired prediction

errors EP (fnaive), EP (f ∗Θ), and EP (f ∗) from (3).

In each case, we select a mapping from F based on a set of training observations,

and evaluate the out-of-sample prediction error of the chosen mapping. Our estimator

for the expected prediction error is the tenfold cross-validated out-of-sample error.

We describe this procedure in some detail as it may be new for some readers, but it

is standard, and familiar readers may skip directly to to Section 5.

10These methods may have better finite-sample performance when suitable regularity assumptions

apply, but those assumptions may not be directly testable.
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1. Split data into K = 10 folds. All of the available data is randomly split into

K equally-sized disjoint subsets Z1, . . . , ZK . In each iteration 1 ≤ i ≤ K of the

procedure, the subset Zi
test ≡ Zi is identified as the test data and the remaining

subsets Zi
train ≡ ∪j 6=iZj are used as training data.

2. Select the mapping from F that best fits the training data. For each

iteration i ∈ {1, . . . , K} and mapping f , the in-sample performance of f for

predicting the observations in Zi
train is

e(f, Zi
train) =

1

|Zi
train|

∑
(x,y)∈Zitrain

`(f(x), y)).

This is a sample analog of the expected prediction error in (1). The best-fit

model for the i-th training set is fi ≡ arg minf∈F e(f, Z
i
train).11

3. Evaluate how well the chosen mapping performs out of sample. The

selected model f̂ is subsequently evaluated on the disjoint set of test observations

in Ztest. and this model’s out-of-sample performance on the i-th test set is

CVi = e(fi, Z
i
test). (4)

4. Average over out-of-sample errors. The average out-of-sample error across

the K test sets is

CV(F , {Zi}Ki=1) =
1

K

K∑
i=1

CVi. (5)

4.2 Estimator for Completeness

Define

Ênaive ≡ CV({fnaive}, {Zi}Ki=1)

ÊΘ ≡ CV(FΘ, {Zi}Ki=1)

Êbest ≡ CV(X Y , {Zi}Ki=1).

11When there are multiple minimizers, choose between them randomly.
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In the main text, we refer to these estimates simply as prediction errors, understanding

that they are finite-data estimates. In place of the theoretical completeness measure

described in (3), we compute the empirical ratio

Ênaive − ÊΘ

Ênaive − Êbest

(6)

from our data. The tables we report in the subsequent applications in Sections 5.1-5.3

are structured as follows:

Error Completeness

Naive Benchmark Ênaive 0%

Economic Model ÊΘ 100×
(
Ênaive − ÊΘ

)
/
(
Ênaive − Êbest

)
%

Irreducible Error Êbest 100%

Theoretical Guarantees. The empirical quantities Ênaive, ÊΘ, and Êbest are consis-

tent estimators for EP (fnaive), EP (f ∗Θ), and EP (f ∗), respectively (Hastie et al., 2009),

and the empirical estimate of completeness in (6) is a consistent estimator for (3).

These estimates are good approximations for the theoretical quantities when the

number of observations is sufficiently large. In particular, for Êbest to be a good

approximation of the irreducible noise EP (f ∗), the analyst must have access to a

sufficiently large number of observations for each distinct x ∈ X . This can be a

demanding criterion. To evaluate whether we have “enough” data in our applications,

we consider two tests in Appendices A.1 and A.2. First, we compare the performance

of the lookup table with a machine learning algorithm that is better suited to smaller

data sets (bagged decision trees). The out-of-sample performances are comparable,

but the lookup table has a lower error for all of our applications (see Appendix A.1).

Second, we investigate whether the out-of-sample performance of the lookup table has

converged by evaluating its performance on subsamples of our data. The prediction

errors using just 70% of the data are very close to those using all of our data. These

analyses suggest that our estimate for irreducible error is a reasonable approximation

in each of our applications. Additionally, we report for each model class a heuristic
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(but popular) estimate of the standard error, which is√√√√ 1

K

K∑
k=1

(CVk − CV )2

with CVi as defined in (4) and CV = 1
K

∑
CVk denoting the average cross-validated

error across the folds. For all of the data sets we analyze, the standard errors are

small relative to the magnitudes of the prediction errors.

In general, the condition that the data includes many observations per feature is

easier to satisfy in experimental settings, where the experimentalist has control over

the structure of the data and can choose to acquire a large number of observations for

each of a fixed set of feature values. For example, in the data sets that we consider,

there is an average of 179 observations per unique x for estimation of a mean (Section

5.1), 50 observations per unique x for estimation of a mode among three outcomes

(Section 5.2), and 164 observations per unique x for estimation of a mean (Section

5.3).

5 Three Applications

5.1 Domain #1: Assigning Certain Equivalents to Lotteries

Background and Data. An important question in economics is how individuals

evaluate risk. In addition to Expected Utility models (von Neumann and Morgen-

stern, 1944; Savage, 1954; Samuelson, 1952), one of the most influential models of

decision-making under risk is Cumulative Prospect Theory (Tversky and Kahneman,

1992). This model provides a flexible family of risk preferences that accommodates

various behavioral anomalies, including reference-dependent preferences and nonlin-

ear probability weighting.

A standard experimental paradigm for eliciting risk preferences, and thus for eval-

uating these models, is to ask subjects to report certainty equivalents for lotteries—i.e.

the lowest certain payment that the individual would prefer over the lottery. We con-

sider a data set from Bruhin et al. (2010), which includes 8906 certainty equivalents

elicited from 179 subjects, all of whom were students at the University of Zurich or
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the Swiss Federal Institute of Technology Zurich. Subjects reported certainty equiv-

alents for the same 50 two-outcome lotteries, half over positive outcomes (e.g. gains)

and half over negative outcomes (e.g. losses).

Prediction Task and Models. In this data set, the outcomes are the reported

certainty equivalents for a given lottery, and the features are the lottery’s two possible

monetary prizes z and z, and the probability p of the first prize. A prediction rule is

any function that maps the tuple (z, z, p) into a prediction for the certainty equivalent,

i.e. a function f : R×R× [0, 1]→ R. We use mean-squared error as the loss-function:

In a test set of n observations {(zi, zi, pi; yi)}ni=1—where (zi, zi, pi) is the lottery shown

in observation i and yi is the reported certainty equivalent—the mean-squared error

of f is
1

n

n∑
i=1

(f(zi, zi, pi)− yi)
2 .

We evaluate a prediction rule based on Cumulative Prospect Theory (CPT)12,

which predicts

v−1 (w(p)v(z) + (1− w(p))v(z))

for each lottery, where w is a probability weighting function and v is a value function.

We follow Bruhin et al. (2010) in our choice of functional forms:

v(z) =

{
zα if z > 0

−(−zβ) if z ≤ 0
w(p) =

δpγ

δpγ + (1− p)γ
. (7)

This model has four free parameters: α, β, δ, γ ∈ R+.

Finally, as a naive benchmark, we predict the expected value of the lottery, which

is pz + (1− p)z. As we report in Appendix C.1 completeness of CPT is very similar

with other benchmarks such as risk-averse variants of Expected Utility.

Results. The following table reveals that CPT’s out-of-sample predictions improve

upon the Expected Value benchmark:13

12CPT and the original Prospect Theory are equivalent on the 2-outcome lotteries we consider.
13The parameter estimates for CPT are α = 0.8, β = 1.2, δ = 0.9, and γ = 0.5.
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Error

Expected Value 103.81

(4.00)

CPT 68.43

(4.18)

Table 2: CPT predicts better than EV.

CPT does much better than the expected value benchmark, but falls far short of

perfect prediction. It is difficult to interpret the size of CPT’s error based on Table

2 alone. It is not surprising that these models do not achieve perfect prediction,

as we expect different subjects to report different certainty equivalents for the same

lottery, and thus a model that provides the same prediction for each (z, z, p) input

cannot possibly predict every reported certainty equivalent. But besides the intrisic

variation in certainty equivalents for any fixed lottery, another potential source of error

is the functional form imposed in (7). Could a different (potentially more complex)

specification for the value function or probability weighting function lead to large

gains in prediction? Relatedly, might there be other features of risk evaluation, yet

unmodelled, which lead to even larger improvements in prediction?

To separate these sources of error, we need to understand how CPT’s error com-

pares to the irreducible error for this data. We estimate the irreducible error in this

problem using a lookup table, where each of the 50 unique lotteries is mapped to

the average certainty equivalent for that lottery in the training data. With 179 ob-

servations for each of the lotteries, we are able to approximate the mean certainty

equivalent for each lottery using the training data, thus (approximately) minimizing

the out-of-sample prediction error. We report the estimated irreducible error and its

standard error in Table 3.
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Error Completeness

Naive Benchmark 103.81 0%

(4.00)

CPT 68.43 92%

(4.18)

Irreducible Error 65.58 100%

(3.00)

Table 3: CPT is nearly complete for prediction of our data.

Table 3 shows that the CPT prediction error is almost as low as the irreducible

error—CPT achieves 92% of the feasible reduction in prediction error over the naive

baseline.14 Thus this data suggests that there is no reason to try to construct more

predictive theories that use only the features (z, z, p).15 To further reduce error, we

would need to expand the set of variables on which the model depends. For example,

as we discuss in Section 10, we could group subjects using auxiliary data such as their

evaluations of other lotteries or response times, or use non-choice data, such as the

hypothetical choices in Bernheim et al. (2020).

We note that our completeness measure does not imply that in general CPT is

a nearly-complete model for predicting certainty equivalents, since the completeness

measure we obtain is determined from a specific data set, so its generalizability de-

pends on the extent to which that data is representative. However, Peysakhovich and

Naecker (2017a) find that CPT approximates the performance of regularized regres-

sion models for a data set of 3 outcome lotteries, which suggests that our finding is

robust to certain 3 outcome lotteries, although the results of Bernheim and Sprenger

(2020) show this will not be true for all of them.16

14In Appendix C.2, we show that completeness is nearly identical for other popular functional

form specifications of CPT.
15It is hard to know whether the high completeness of CPT (in the specified functional form) comes

from its good match to actual behavior or because it is flexible enough to mimic most functions in

XY . This question is explored in Fudenberg et al. (2020).
16The specification of CPT in Peysakhovich and Naecker (2017a) sets δ = 1 and thus has one

fewer free parameter, so its model error may be higher.
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5.2 Domain #2: Initial Play in Games

Background and Data. In many game theory experiments, equilibrium analysis

is a poor predictor of the choices that people make when they encounter a new game.

This has led to models of initial play that depart from equilibrium theory, for example

the level-k models of Stahl and Wilson (1994) and Nagel (1995), the Poisson Cognitive

Hierarchy model (Camerer et al., 2004), and the related models surveyed in Crawford

et al. (2013). These models represent improvements over the equilibrium predictions,

but we do not know whether these models exhaust the main regularities in initial

play.

Prediction Task and Models. We consider prediction of the action chosen by

the row player in a given instance of play of a 3× 3 normal-form game. The available

features are the 18 entries of the payoff matrix, and a prediction rule is any map

f : R18 → {a1, a2, a3} from 3× 3 payoff matrices to row player actions.

For each prediction rule f and test set of observations {(gi, ai}ni=1—where gi is the

payoff matrix in observation i, and ai is the observed row player action—we evaluate

error using the misclassification rate

1

n

n∑
i=1

1 (f(gi) 6= ai) .

This is the fraction of observations where the predicted action was not the observed

action.

As a naive baseline, we consider guessing uniformly at random for all games, which

yields an expected misclassification rate of 2/3. We use this benchmark to evaluate

a prediction rule based on the Poisson Cognitive Hierarchy Model (PCHM), which

supposes that there is a distribution over players of differing levels of sophistication:

The level-0 player randomizes uniformly over his available actions, while the level-

1 player best responds to level-0 play (Stahl and Wilson, 1994, 1995; Nagel, 1995).

Camerer et al. (2004) defines the play of level-k players, k ≥ 2, to be the best response

to a perceived distribution

pk(h) =
πτ (h)∑k−1
l=0 πτ (l)

∀ h ∈ N<k (8)
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over (lower) opponent levels, where πτ is the Poisson distribution with rate parameter

τ .17 We can derive a predicted distribution over actions by supposing that the pro-

portion of level-k players in the population is proportional to πτ (k). Assuming this

is the true distribution of play, the misclassification rate is minimized by predicting

the mode of this distribution. We define the PCHM prediction to be that mode.

Comparison Across Games. We compare the performance of the PCHM relative

to the best achievable performance on three subsamples of a data set from Fudenberg

and Liang (2019).18 Our full data set consists of 23,137 total observations of initial

play from 486 3 × 3 matrix games, where observations are pooled across all of the

subjects and games.19,20

The first subsample, Game Set A, consists of the 16,660 observations of play from

the 359 games with no strictly dominated actions.21 Game Set B consists of the 7,860

observations of play from the 161 games in which the profile that maximizes the sum

of the players’ payoffs is much larger (at least 20% of the largest row player payoff

in the game) than the highest sum of payoffs that can be achieved when the row

player chooses a level-k action (for any k).22 For example, in the game below (which

is included in Game Set B), the action profile (a2, a2) leads to a payoff sum of 160,

17Throughout, we take τ to be a free parameter and estimate it from the training data.
18 Fudenberg and Liang (2019) studied a related prediction task, namely predicting the modal

row player action in a given game. For that prediction task, the best achievable error is always zero.

Here we consider prediction of the action played, where the best achievable error depends on the

true distribution of play.
19This data is an aggregate of three data sets: the first is a meta data set of play in 86 games,

collected from six experimental game theory papers by Kevin Leyton-Brown and James Wright, see

Wright and Leyton-Brown (2014); the second is a data set of play in 200 games with randomly

generated payoffs, which were gathered on MTurk for Fudenberg and Liang (2019); the third is a

data set of play in 200 games that were “algorithmically designed” for a certain model (level 1) to

perform poorly, again from Fudenberg and Liang (2019).
20There was no learning in these experiments—subjects were randomly matched to opponents,

were not informed of their partners’ play, and did not learn their own payoffs until the end of the

session.
21Specifically, we consider games where no pure action is strictly dominated by another pure

action.
22Following Stahl and Wilson (1995) and Nagel (1995), level-0 corresponds to uniform play, and

each level-k action is the best response to level-(k − 1) play.

20



but the largest payoff sum using level-k actions is 120. The difference, 40, is more

than 20% of the max row player payoff in this game, 100.23

a1 a2 a3

a1 40, 40 10, 20 70, 30

a2 20, 10 80, 80 0, 100

a3 30, 70 100, 0 60, 60

Finally, Game Set C consists of the 9,243 observations of play from the 175 games

where the level 1 action’s expected payoff against uniform play is much higher than

the expected payoff of the next best action (specifically, it is larger by at least 1/4 of

the max row player payoff in the game).

The analysis we perform for these three subsamples can be conducted for arbitrary

sets of games.

Results. Below we report the estimated irreducible error and associated complete-

ness measures for each of the three sets of games.

Game Set A Game Set B Game Set C

Error Completeness Error Completeness Error Completeness

Naive Benchmark 0.66 0% 0.66 0% 0.66 0%

PCHM 0.49 68% 0.44 68% 0.28 97%

(0.006) (0.009) (0.004)

Irreducible Error 0.41 100% 0.34 100% 0.27 100%

(0.005) (0.006) (0.005)

Table 4: Comparison of the completeness of PCHM across the three sets of games.

Our estimate for the irreducible error is derived using a lookup table, where each

game is mapped to the action most commonly chosen in that game in the training

data. Since we have on average 50 observations per game, the modal action in the

training data is a good approximation for the modal action in the test data. High

23In this game, action a3 is level 1, since it yields the highest expected payoff against uniform

play, and action a1 is level 2, since it is a best response against play of a1. Because (a1, a1) is a

pure-strategy Nash equilibrium, action a1 is level-k for all k ≥ 2.

21



irreducible error means that there is substantial heterogeneity in play, so predicting

the mode still leads to a high rate of incorrect classification. Low irreducible error

means that play across subjects is more coordinated on a single action. We find that

the estimated irreducible error is largest—and hence, there is the most heterogene-

ity in play—in Data Set A, which includes only games where there are no strictly

dominated actions, and smallest in Data Set C, which includes only games where the

level-1 action has by far the highest expected payoff against uniform play.

Next we use the estimated irreducible errors as a benchmark to evaluate the

completeness of PCHM on the three data sets. Although the PCHM achieves a

better absolute prediction error in Game Set A than in Game Set B, its completeness

is approximately 68% on both data sets. In contrast, the PCHM achieves 97% of

the feasible reduction in prediction error in Game Set C. This means that PCHM

captures essentially all of the predictable variation in games where the level 1 action

clearly has the largest expected value against uniform play, while there is additional

structure beyond the PCHM in Game Sets A and B. We leave to future work the

question of what additional properties of the game are important determinants of the

completeness of the PCHM.

5.3 Domain #3: Human Generation of Random Sequences

Background and Data. Extensive experimental and empirical evidence suggests

that humans misperceive randomness, for example expecting that sequences of coin

flips “self-correct” (too many Heads in a row must be followed by a Tails) and are

balanced (the number of Heads and Tails are approximately the same) (Bar-Hillel

and Wagenaar, 1991; Tversky and Kahneman, 1971). These misperceptions are sig-

nificant not only for their basic psychological interest, but also for the ways in which

misperception of randomness manifests itself in a variety of contexts: for example,

investors’ judgment of sequences of (random) stock returns (Barberis et al., 1998),

professional decision-makers’ reluctance to choose the same (correct) option multiple

times in succession (Chen et al., 2016), and people’s execution of a mixed strategy in

a game (Batzilis et al., 2016).

A common experimental framework in this area is to ask human participants to

generate fixed-length strings of k (pseudo-)random coin flips, for some small value
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of k (e.g. k = 8), and then to compare the produced distribution over length-k

strings to the output of a Bernoulli process that generates realizations from {H,T}
independently and uniformly at random (Rapaport and Budescu, 1997; Nickerson and

Butler, 2009). Following in this tradition, we use the platform Mechanical Turk to

collect a large dataset of human-generated strings designed to simulate the output of

a Bernoulli(0.5) process, in which each symbol in the string is generated from {H,T}
independently and uniformly at random. To incentivize effort, we told subjects that

payment would be approved only if their (set of) strings could not be identified as

human-generated with high confidence.24,25 After removing subjects who were clearly

not attempting to mimic a random process, our final data set consisted of 21,975

strings generated by 167 subjects.26

Prediction Task, Performance Metric, and Models. We consider the prob-

lem of predicting the probability that the eighth entry in a string is H given its

first seven entries. Thus the outcome here is a number in [0, 1]—a distribution on

{H,T}—and the feature space is {H,T}7 (note that as in the previous examples,

we fit a representative-agent model and do not treat the identity of the subject as a

feature).

Given a test data set {(s1
i , . . . , s

8
i )}ni=1 of n binary strings of length-8, we evaluate

24In one experiment, 537 subjects each produced 50 binary strings of length eight. In a second

experiment, an additional 101 subjects were asked to each generate 25 binary strings of length eight.
25Subjects were informed: “To encourage effort in this task, we have developed an algorithm

(based on previous Mechanical Turkers) that detects human-generated coin flips from computer-

generated coin flips. You are approved for payment only if our computer is not able to identify your

flips as human-generated with high confidence.”
26Our initial data set consists of 29,375 binary strings. We chose to remove all subjects who

repeated any string in more than five rounds. This cutoff was selected by looking at how often each

subject generated any given string and finding the average “highest frequency” across subjects. This

turned out to be 10% of the strings, or five strings. Thus, our selection criteria removes all subjects

whose highest frequency was above average. This selection eliminated 167 subjects and 7,400 strings,

yielding a final dataset with 471 subjects and 21,975 strings. We check that our main results are not

too sensitive to this selection criteria by considering two alternative choices in Appendix D.2—first,

keeping only the initial 25 strings generated by all subjects; second, removing the subjects whose

strings are “most different” from a Bernoulli process under a χ2-test. We find very similar results

under these alternative criteria.
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the error of the prediction rule f using mean-squared error

1

n

n∑
i=1

(
s8
i − f(s1

i , . . . , s
7
i )
)2

where f(s1
i , . . . , s

7
i ) is the predicted probability that the eighth flip is ‘H’ given the

observed initial seven flips s1
i , . . . , s

7
i , and s8

i is the actual eighth flip.27 Note that the

naive baseline of unconditionally guessing 0.5 guarantees a mean-squared prediction

error of 0.25. Moreover, if the strings in the test set were truly generated via a

Bernoulli(0.5) process, then no prediction rule could improve in expectation upon the

naive error.28 We expect that behavioral errors in the generation process will make it

possible to improve upon the naive baseline, but do not know how much it is possible

to improve upon 0.25.

In this task, the natural naive baseline is the rule that unconditionally guesses

that the probability the final flip is ‘H’ is 0.5. We compare this baseline to prediction

rules based on Rabin (2002) and Rabin and Vayanos (2010), both of which predict

negatively autocorrelated sequences.29 Our prediction rule based on Rabin (2002)

supposes that subjects generate sequences by drawing sequentially without replace-

ment from an urn containing 0.5N ‘1’ balls and 0.5N ‘0’ balls. The urn is “refreshed”

(meaning the composition is returned to its original) every period with independent

probability p. This model has two free parameters: N ∈ Z+ and p ∈ [0, 1].

Our prediction rule based on Rabin and Vayanos (2010) assumes that the first flip

s1 ∼ Bernoulli(0.5) while each subsequent flip sk is distributed

sk ∼ Ber

(
0.5− α

k−2∑
t=0

δt(2 · sk−t−1 − 1)

)
,

27Alternatively we could have defined the outcome to be an individual realization of H or T , so that

prediction rules are maps f : {H,T}7 → {H,T}, and then evaluated error using the misclassification

rate (i.e. the fraction of instances where the predicted outcome was not the realized outcome). We

do not take a stand on which method is better, but note that the completeness measure can depend

on which approach is used. In Appendix D.1 we show that the completeness measures are very

similar using this alternative formulation.
28Due to the convexity of the loss function, it is possible to do worse than the naive baseline, for

example by predicting 1 unconditionally.
29Although both of these frameworks are models of mistaken inference from data, as opposed to

human attempts to generate random sequences, they are easily adapted to our setting, as the papers

explain.

24



where the parameter δ ∈ R+ reflects the (decaying) influence of past flips, and the

parameter α ∈ R+ measures the strength of negative autocorrelation.30

Results. Table 5 shows that both prediction rules improve upon the naive baseline.

The need for a benchmark for achievable prediction is starkest in this application, as

the best improvement is only 0.0008, while the gap between the achieved prediction

errors and a perfect zero is large. This is not surprising—since the data is generated

by subjects attempting to mimic a fair coin, we naturally expect substantial variation

in the eighth flip after conditioning on the initial seven flips.

Error

Naive Benchmark 0.25

Rabin (2002) 0.2494
(0.0007)

Rabin and Vayanos (2010) 0.2492
(0.0007)

Table 5: Both models improve upon naive guessing, but the absolute improvement is

small.

For this problem, we can approximate the irreducible error by learning the empir-

ical frequency with which each length-7 string is followed by ‘H’ in the training data.

Although there are 27 unique initial sequences, with approximately 21,000 strings in

our data set we have (on average) 164 observations per initial sequence.

30We make a small modification on the Rabin and Vayanos (2010) model, allowing α, δ ∈ R+

instead of α, δ ∈ [0, 1).
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Error Completeness

Naive Benchmark 0.25 0

Rabin (2002) 0.2494 10%
(0.0007)

Rabin & Vayanos (2010) 0.2492 14%
(0.0007)

Irreducible Error 0.2441 100%
(0.0006)

Table 6: The feasible reduction in prediction error over the naive baseline is small in

this problem.

We find that irreducible error in this problem is 0.2441, so that naively com-

paring achieved prediction error against perfect prediction (which would suggest a

completeness measure of at most 0.4%) grossly misrepresents the performance of the

models. The existing models produce up to 14% of the achievable reduction in pre-

diction error. This suggests that although negative autocorrelation is indeed present

in the human-generated strings and explains a sizable part of the deviation from a

Bernoulli(0.5) process, there is additional structure that could yet be exploited for

prediction.

6 Extensions

6.1 Subject Heterogeneity

So far, we have evaluated the completeness of “representative agent” models that

implement a single prediction across all subjects. When we evaluate models that allow

for subject heterogeneity, the question of what is the largest achievable reduction in

prediction error is still relevant, and the irreducible error for the new expanded feature

set can again help us determine the size of potential error reductions. As a simple

illustration, we return to our evaluation of risk preferences and demonstrate how to

construct a predictive bound for certain models with subject heterogeneity.
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The models that we consider extend the Cumulative Prospect Theory model in-

troduced in Section 5.1 by allowing for three groups of subjects. To test the models,

we randomly select 71 (out of 171) subjects to be test subjects, and 45 (out of 50)

lotteries to be test lotteries. All other data—the 100 training subjects’ choices in all

lotteries, as well as the test subjects’ choices in the 5 training lotteries—are used for

training the models.

We first use the training subjects’ responses in the training lotteries to develop a

clustering algorithm to separate subjects into three groups.31 This algorithm assigns

a group number to new subjects based on the similarity of their choices in the five

training lotteries to those of the training subjects in each group. Second, we use

each group’s training subjects’ responses in the test lotteries to estimate the four free

parameters for CPT. This yields three versions of CPT, one per group.

Out of sample, we first use the clustering algorithm to assign groups to the test

subjects, and then use the associated models to predict each group’s certainty equiv-

alents in the test lotteries. We measure accuracy using mean-squared error, as in

Section 5.1, and we again report the Expected Value prediction as a naive baseline.

Prediction Error

Naive Benchmark 104.17

(12.95)

CPT 57.14

(7.17)

Table 7: Prediction Errors Achieved by Models with Subject Heterogeneity

What we find from Table 7 is very similar to what we observed in Section 5.1:

Both models improve upon the naive baseline, but it is difficult to assess the size of

the improvement without an appropriate benchmark.

Our approach here for estimating the irreducible error is to learn the mean re-

sponse of training subjects in each group for each lottery, and predict those means.

With sufficiently many training subjects, this method approximates the best possible

31We use a simple algorithm, k-means, which minimizes the Euclidean distance between the vectors

of reported certainty equivalents for subjects within the same group.
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accuracy for this prediction task. We find that although the CPT error is substantially

different from zero, the model is again nearly complete.

Prediction Error Completeness

Naive Benchmark 104.17 0%

(12.95)

CPT 57.14 96%

(7.17)

Irreducible Error 55.45 100%

(6.26)

We note that because the same clustering method is used in all of the approaches,

the gap between irreducible error and the prediction errors does not shed light on

how much predictions could be improved by better ways of grouping the subjects.

The development of better clustering techniques is an interesting avenue for future

work.32

6.2 Comparing Feature Sets

In the main text, we considered a fixed feature set X , and evaluated the completeness

of different models for prediction given this feature set. We can alternatively compare

irreducible error across different feature sets as a way of contrasting the predictive

limits of those features. We illustrate this comparison by revisiting our problem

from Section 5.3—predicting human generation of randomness—and considering three

feature sets.

The first feature set, X1:7, is our main feature set, which consists of the initial seven

flips. Define X4:7 = {H,T} × {H,T} × {H,T} as the feature set corresponding to

flips 4–7, and XH = {0, 1, 2 . . . , 7} as the number of ‘H’ realizations in the first seven

flips. Interpreted as lookup tables, these new feature sets correspond to “compressed”

32A comparison of the irreducible error under clustering, 55.45, with the irreducible error from

Section 5.1, 65.58, sheds light on the size of predictive gains achieved by the present method for

clustering.
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lookup tables built on different properties of the initial seven flips, where strings

are partitioned based on certain properties. We can estimate irreducible error by

predicting the average continuation probability of ‘H’ among all strings in the same

partition element.

Table 8: Comparison of the value of various feature sets.

Error Completeness

Naive Benchmark 0.25 0%

Irreducible Error for X4:7 0.2478 36%
(0.0010)

Irreducible Error for XH 0.2464 59%
(0.0009)

Irreducible Error for X1:7 0.2441 100%
(0.0006)

We find that the feature sets X4:7 and XH achieve large fractions of the achievable

improvement from using X1:7. For example, using only the number of Heads as a

feature, it is possible to achieve 59% of the achievable reduction of the full structure

of the initial flips. Using only the most recent three flips achieves 36% of the reduction

from using all seven initial flips. On the other hand, the gap between irreducible error

for X4:7 and for X1:7 demonstrates that there is predictive content in flips 1–3 beyond

what is captured in flips 4–7.

The feature set X1:7 could be expanded to create richer feature sets, and it would

be interesting to consider what additional features might significantly improve pre-

dictive accuracy, for example “neuroeconomic” data such as the speed with which

the strings were entered, or demographic data such as age or education.33 The ex-

ercise in Section 6.1, in which we used subject types (determined based on choices

in auxiliary problems), illustrates yet another way to expand the feature set. As

33As another example: recent work by Bernheim et al. (2020) test how well a model of Cumulative

Prospect Theory that is trained on two-outcome lotteries predicts certainty equivalents for three-

outcome lotteries. It finds that these “cross-domain” predictions can be improved using additional

non-choice features (e.g. survey responses).
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we have shown above, comparing irreducible error across different feature sets is one

potentially useful approach for measuring the predictive value of those features.34

7 Conclusion

When evaluating the predictive performance of an economic model, it is important to

know not just whether the model is predictive, but also how complete its predictive

performance is. Thus we should compare the prediction errors achieved by our models

against the best achievable error for that problem, namely the irreducible error. What

is perhaps striking is that irreducible error can be precisely estimated in certain

prediction problems of interest in experimental economics. We demonstrate three

domains in which completeness can help us evaluate the performance of existing

models. Occasionally, as we found in Section 5.1, a model that has large prediction

errors may nevertheless be nearly complete given its feature set.

We conclude with a brief discussion of our completeness measure, its limitations,

and possibilities for extension.

Counterfactuals. Economic models are often used to provide counterfactual

predictions about the impact of new policies. Of course, if there is no data about

such policies, these counterfactual predictions rely on untested intuitions about the

robustness of various forces that drive behavior. Suppose for example that the price

variation in our data only comes from price changes by firms, and we want to predict

the effect of a sales tax. We might conjecture that the price effects are the same as

before, but in some cases consumers might be either more or less willing to accept

a price increase imposed by the government. With or without an economic theory,

any attempt to extrapolate from data in settings without sales taxes to the effects of

sales taxes requires an untested hypothesis. And if we do have representative data on

the past effect of sales taxes, the prediction problem does not involve a substantive

counterfactual.35

Experimental Data. Experimental economists have a degree of control over the

34Note that the value of individual features will in general depend on what other features are

available.
35Except in the trivial sense that any extrapolation from past data to future outcomes requires

some form of inductive hypothesis.
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scope of their data that is not available in field studies. In particular, the experimen-

talist can choose to acquire a large number of observations for a fixed input space, so

that nonparametric estimation of irreducible error for those inputs is feasible. Thus

estimating completeness for laboratory data is feasible in many instances, as illus-

trated in the three applications in this paper. The main tradeoff is between gathering

more instances of observations for a given set of feature values, versus ranging over a

larger set of feature values. With a sufficiently large budget, both may be possible.

Alternative Measures of Completeness. In some cases, it may be possi-

ble to indirectly evaluate irreducible noise. For example, an interesting analogy to

our approach to completeness is found in the literature on inheritability. Biologists

have discovered a gap between two different methodologies for discovering how much

of a particular outcome (say propensity to have a disease) is heritable, dubbed the

‘missing heritability problem’ (Manolio et al. (2009)). Traditional methods of mea-

suring heritability, such as through carefully controlled twin studies, do not attempt

to isolate individual genes. Newer measurement techniques instead allow us to pos-

tulate individual genes as the carrier of heritability. Yet for many outcomes, the

explanatory power of individual genes has proven far smaller (sometimes by an order

of magnitude) than overall measures of heritability suggest. This gap has motivated

further theorizing and measurement to isolate where the “missing heritability” may

lie. Roughly speaking, the aggregate measures of heritability are in effect being used

as an analog of our completeness metric for the specific gene-based theories.

Measuring Portability. One important question is how to compare the trans-

ferability of models across domains. Indeed, we may expect that economic models

that are outperformed by machine learning models in a given domain have higher

transfer performance outside of the domain. In this sense, within-domain complete-

ness may provide an insufficient measure of the “overall completeness” of the model,

and we leave development of such notions to future work.
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Appendix

A How Good is Our Estimate of Irreducible Er-

ror?

In the main text, we present an approach for estimating irreducible error, where given

training data Ztrain, we estimate a “lookup table” function f̂LT which satisfies

f̂LT (x) ∈ arg min
y∈Y

∑
(x,y′)∈Ztrain

`(y, y′) ∀x ∈ X .

Below we investigate whether the data sets we study are large enough for the out-of-

sample error of the lookup table to be a good approximation for irreducible error.

In Section A.1, we compare the out-of-sample performance of the lookup table with

that of bagged decision trees, an algorithm that works better on smaller quantities of

data. We find that in each of our applications, the two prediction errors are similar,

and the lookup table weakly outperforms bagged decision trees. In Section A.2, we

study the sensitivity of the lookup table’s performance to the quantity of data. The

predictive accuracies achieved using our full data sets are very close to those achieved

using, for example, just 70% of the data. This again suggests that only minimal

improvements in predictive accuracy are feasible from further increases in data size.

A.1 Comparison with Scalable Machine Learning Algorithms

One way to evaluate whether the out-of-sample performance of the lookup table

approximates the best possible prediction accuracy is to compare it with the per-

formance of other machine learning algorithms. Below we compare the lookup table

with a bagged decision tree algorithm (also known as bootstrap-aggregated decision

trees). This algorithm creates several bootstrapped data sets from the training data

by sampling with replacement, and then trains a decision tree on each bootstrapped

training set. Decision trees are nonlinear prediction models that recursively partition

the feature space and learn a (best) constant prediction for each partition element.

The prediction of the bagged decision tree algorithm is an aggregation of the predic-

tions of individual decision trees. When the loss function is mean-squared error, the
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decision tree ensemble predicts the average of the predictions of the individual trees.

When the loss function is misclassification rate, the decision tree ensemble predicts

based on a majority vote across the ensemble of trees.

Table 9 shows that for each prediction problem, the error of the bagged decision

tree algorithm is comparable to and slightly worse than that of the lookup table.

These results again suggest that our estimate of irreducible error is a reasonable

approximation.

Risk Games A Games B Games C Sequences

Bagged Decision Trees 65.65 0.45 0.36 0.29 0.2442

(0.10) (0.004) (0.005) (0.004) (0.0005)

Lookup Table 65.58 0.41 0.34 0.27 0.2441

(3.00) (0.005) (0.006) (0.005) (0.0006)

Table 9: The lookup table outperforms Bagged Decision Trees in each of our predic-

tion problems.

A.2 Performance of the Lookup Table on Smaller Samples

Finally, we report the lookup table’s cross-validated performance on random samples

of x% of our data, where x ∈ {10, 20, . . . , 100}. For each x, we repeat the proce-

dure 1000 times, and report the average performance across iterations. We find that

performance error flattens out for larger values of x, suggesting that the quantity of

data we have is indeed large enough that further increases in the data size will not

substantially improve predictive performance.
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x% Risk Games A Games B Games C Sequences

10% 69.47 0.4191 0.3473 0.2729 0.2592

(11.13) (0.012) (0.018) (0.0015) (0.0034)

20% 67.13 0.4183 0.3476 0.2718 0.2504

(7.95) (0.0018) (0.024) (0.0020) (0.0018)

30% 66.28 0.4178 0.3472 0.2714 0.2479

(6.51) (0.0022) (0.0029) (0.0025) (0.0014)

40% 66.25 0.4169 0.3470 0.2708 0.2464

(5.65) (0.0024) (0.0032) (0.0028) (0.0011)

50% 65.68 0.4157 0.3459 0.2703 0.2458

(4.59) (0.0025) (0.0036) (0.0032) (0.0010)

60% 65.68 0.4141 0.3449 0.2691 0.2452

(4.24) (0.0027) (0.0040) (0.0035) (0.0008)

70% 65.68 0.4131 0.3435 0.2682 0.2448

(3.95) (0.0031) (0.0045) (0.0037) (0.0007)

80% 65.68 0.4119 0.3427 0.2677 0.2445

(3.95) (0.0034) (0.0046) (0.0040) (0.0007)

90% 65.66 0.4109 0.3416 0.2672 0.2443

(3.71) (0.0034) (0.0047) (0.0042) (0.0007)

100% 65.58 0.4100 0.3404 0.2668 0.2441

(3.00) (0.0036) (0.0051) (0.0045) (0.0006)

Table 10: Performance of Lookup Table f̂LT using x% of the data, averaged over 100

iterations for each x

B Completeness and Nonparametric R2

Consider the special case in which the loss function is mean-squared error `(y′, y) =

(y−y′)2, and the naive benchmark is the unconditional mean of the outcome variable,

fnaive(y) = EP (y), i.e. the unconditional mean of the outcome variable.
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Because EP (fnaive) = var(y), the R2 for the model class is

R2
Θ =

EP (fnaive)− EP (f ∗Θ)

EP (fnaive)

Alternatively, defining f ∗(x) = EP (y | x) to be the conditional mean function, we

have the nonparametric R2:

R2
nonpar =

EP (fnaive)− EP (f ∗)

EP (fnaive)
.

Then, our completeness measure coincides with the ratio R2
Θ/R

2
nonpar.
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C Supplementary Material to Section 5.1

C.1 Alternative Naive Benchmarks

We use the expected value of the lottery as a naive benchmark in the main text. Below,

we explore how completeness varies across alternative choices of naive benchmarks

from three families of Expected Utility models. Each of these families specifies a

value function v over money, and the predicted certainty equivalent is v−1(p · v(z) +

(1− p) · v(z)). Completeness is very similar across these different naive benchmarks

and lower bounded by 89%. This reinforces our view that CPT is very complete for

prediction of this data.

Power Function. The utility function over money is v(z) = zα for z ≥ 0 and

v(z) = −(−z)α for z < 0.

Constant Absolute Risk Aversion. The utility function over money is v(z) =

−e−ρz for all z.

Constant Relative Risk Aversion. The utility function over money is

v(z) =

{
z1−γ

1−γ if γ 6= 1

ln(z) if γ = 1

36We thank an anonymous referee for making this observation.
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for z ≥ 0, and −v(−z) for z < 0.

We sample 1000 choices of α, ρ, and γ from [0, 1] uniformly at random, and report

below the corresponding histograms of completeness values.

Figure 1: Completeness of CPT relative to different naive benchmarks. Clockwise

from top-left: Power, CARA, CRRA.

C.2 Alternative Specifications of CPT

Besides the specification of CPT that we use in the main text, some other common

alternatives include the original Tversky and Kahneman (1992) specification, which

posits that the weighting function is

w(p) =
p

(pγ + (1− p)γ)1/γ

and the Karmarkar (1978) specification, which is equivalent to the one we use in the

main text with δ set to 1. We report below the completeness of these alternative

specifications of CPT, which are not statistically distinguishable from one another.
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Error Completeness

Naive Benchmark 103.81 0%

(4.00)

CPT (Original) 68.43 92%

(4.18)

CPT (Karmarkar) 68.55 92%

(3.51)

CPT (Kahneman-Tversky) 68.77 92%

(6.70)

Irreducible Error 65.58 100%

(3.00)

Table 11: Different specifications of CPT yield comparable levels of completeness.

D Supplementary Material to Section 5.3

D.1 Robustness

Here we check how our results in Section 5.3 change when the outcome space and error

function are changed so that prediction functions are maps f : {H,T}7 → {H,T}
and the error for predicting the test data set {(s1

i , . . . , s
8
i }ni=1 is defined to be

1

n

n∑
i=1

1(s8
i 6= f(s1

i , . . . , s
7
i )),

i.e. the misclassification rate. We use as a naive benchmark the prediction rule that

guessesH and T uniformly at random; this is guaranteed an expected misclassification

rate of 0.50.

For this problem, we can estimate irreducible error by using a lookup table that

learns the modal continuation for each sequence in {0, 1}7. We find that the complete-

ness of Rabin (2002) and Rabin (2000) relative to this benchmark are respectively

19% and 9%.
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Error Completeness

Naive Benchmark 0.50 0

Rabin (2002) 0.45 19%
(0.003)

Rabin & Vayanos (2010) 0.475 9%
(0.01)

Irreducible Error 0.23 1
(0.002)

D.2 Different Cuts of the Data

Initial strings only. We repeat the analysis in Section 5.3 using data from all sub-

jects, but only their first 25 strings. This selection accounts for potential fatigue in

generation of the final strings, and leaves a total of 638 subjects and 15,950 strings.

Prediction results for our main exercise are shown below using this alternative selec-

tion.

Error Completeness

Naive Benchmark 0.25 0

Rabin & Vayanos (2010) 0.2491 5%
(0.0008)

Irreducible Error 0.2326 100%
(0.0030)

Removing the least random subjects. For each subject, we conduct a Chi-

squared test for the null hypothesis that their strings were generated under a Bernoulli

process. We order subjects by p-values and remove the 100 subjects with the lowest

p-values (subjects whose generated strings were most different from what we would

expect under a Bernoulli process). This leaves a total of 538 subjects and 24,550

strings. Prediction results for our main exercise are shown below using this alternative

selection.
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Error Completeness

Naive Benchmark 0.25 0

Rabin & Vayanos (2010) 0.2491 12%
(0.0005)

Irreducible Error 0.2427 100%
(0.0016)

E Experimental Instructions for Section 5.3

Subjects on Mechanical Turk were presented with the following introduction screen:
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