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Abstract
The spread of influence among individuals in a social net-
work can be naturally modeled in a probabilistic framework,
but it is challenging to reason about differences between var-
ious models as well as to relate these models to actual so-
cial network data. Here we consider two of the most fun-
damental definitions of influence, one based on a small set
of “snapshot” observations of a social network and the other
based on detailed temporal dynamics. The former is partic-
ularly useful because large-scale social network data sets are
often available only in snapshots or crawls. The latter how-
ever provides a more detailed process model of how influence
spreads. We study the relationship between these two ways
of measuring influence, in particular establishing how to in-
fer the more detailed temporal measure from the more readily
observable snapshot measure. We validate our analysis using
the history of social interactions on Wikipedia; the result is
the first large-scale study to exhibit a direct relationship be-
tween snapshot and temporal models of social influence.

Introduction
The ways in which people influence each other through their
interactions is a powerful but subtle process that is pervasive
in social networks. There is a long history of empirical work
on this topic in sociology, through studies of effects such as
opinion formation and the diffusion of innovations (Rogers
1995; Strang and Soule 1998); in economics, theoretical
models have been developed to cast social influence as a pro-
cess by which individuals in a social network tend to coordi-
nate (or anti-coordinate) their decisions (e.g. (Blume 1993;
Young 1998)). More recently, computer scientists have be-
gun developing models for influence in social networks, mo-
tivated by applications such as viral marketing (Domingos
and Richardson 2001; Kempe, Kleinberg, and Tardos 2003;
Leskovec, Adamic, and Huberman 2006), the spread of on-
line news (Gruhl et al. 2004; Leskovec et al. 2007), and the
growth of on-line communities (Backstrom et al. 2006).

It is natural to model influence in a social network using
a probabilistic framework: as a behavior spreads through a
population, we can examine the probability that a particu-
lar individual adopts the new behavior, given that k of his
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or her neighbors in the social network have done so. By
“neighbors” here, we mean the people to whom the indi-
vidual has direct social network links; we will refer to peo-
ple as “adopters” or “non-adopters” at any point in time,
depending on whether they have exhibited the new behav-
ior by that time. Within the past few years, data from on-
line settings has enabled the estimation of such probabili-
ties for behaviors spreading on very large populations with
detailed information about network structure, including the
probability of a product purchase as a function of the num-
ber k of recommendations by e-mail (Leskovec, Adamic,
and Huberman 2006), and the probability of joining an on-
line community as a function of the number k of neigh-
bors belonging to the community (Backstrom et al. 2006;
Shi et al. 2009).

Definitions of Social Influence. It has become clear
through these initial studies that there is not yet a stan-
dard model for representing influence, and this has become
a source of difficulty in understanding large-scale network
data on social influence. In fact, the relationships among the
possible models here are subtle, and understanding these re-
lationships forms the basic motivation for the present work.
To begin with, here are two natural but distinct notions that
one might mean by the probability of adoption, expressed as
a function of the number k of neighbors who have already
adopted. To make these notions easier to express, we say
that an individual is k-exposed to the behavior at a particular
point in time t if they are a non-adopter at time t, but they
have exactly k neighbors in the network who are adopters at
time t.

Two natural definitions follow from the notion of being
k-exposed:

• Ordinal-time definition. Consider a complete time se-
quence of an evolving social network that includes each
time a new network link is formed and each time an indi-
vidual adopts a new behavior. For each k, consider the set
of all individuals who were ever k-exposed at any time,
and define po(k) to be the fraction of this set that became
adopters before acquiring a (k + 1)st neighbor who is an
adopter.



• Snapshot definition. Consider two snapshots of the net-
work at different points in time. For each k, consider
the set of all individuals who are k-exposed in the first
snapshot. Let ps(k) be the fraction of individuals in this
set who have become adopters by the time of the second
snapshot.

In other words, for the ordinal-time definition, we imagine
that at the moment a non-adopter acquires their kth neigh-
bor who is an adopter, he or she flips a coin of fixed bias
po(k) to decide whether to adopt. For the snapshot defini-
tion we imagine that everyone who is k-exposed in the first
snapshot flips a coin of fixed bias ps(k) to decide whether
to adopt. In the two cases, we determine the maximum-
likelihood values of these fixed probabilities, po(k), ps(k),
respectively. The measurements of influence probabilities
by Kossinets and Watts (2006), Backstrom et al. (2006), and
Shi et al. (2009) used the snapshot definition—though with
widely varying numbers of snapshots—while the work of
Leskovec et al. (2006) used something closer to, though dif-
ferent than, ordinal time. This difference in models, without
an understanding of the relationship between them, makes
it difficult to compare results. Moreover, no direct imple-
mentation of the ordinal-time definition on large-scale data
has appeared in the literature, thus limiting our ability to
draw conclusions about the temporal evolution of adoption
behavior.

While the ordinal-time definition is appealing in posit-
ing an operational procedure by which influence is mani-
fested, the snapshot definition is more widely applicable; it
is amenable to settings, such as Web crawls or some types
of on-line communities, in which one can only take periodic
mass observations of the network, without the ability to per-
form moment-by-moment measurement. Here we address
the following questions. What is the relationship between
these definitions? How do they differ when both applied to a
single dataset? And how can one infer an ordinal-time mea-
surement with reasonable accuracy given only snapshots?

Wikipedia as a Dataset for Analyzing Social Influence.
We address these questions both through analysis and
through the study of a large dataset, based on Wikipedia, in
which social influence can be measured using both models.
Wikipedia has been the subject of research both because its
entire history is freely available for analysis, and because,
beyond serving as an encyclopedia, it is also a community
(see e.g. (Viegas et al. 2007; Stvilia et al. 2005; Voss 2005;
Wilkinson and Huberman 2007; Crandall et al. 2008)). In-
deed, while most people may experience Wikipedia simply
by reading its articles, it also has a rich social structure in
which several hundred thousand contributors interact with
one another in the process of creating those articles. In par-
ticular, many contributers maintain user-talk pages and talk
to one another through postings on these pages.

For our purposes, this makes Wikipedia an ideal system
in which to study the spread of behaviors in the presence of
social influence. We can define an (undirected) social net-
work link between two Wikipedia editors u and v if one has
written on the user-talk page of the other, and we can define

a “behavior” associated with the editing of each individual
article. Since user-talk page interactions are often concerned
with the content being created, there is a strong connection
between these interactions and the kinds of influence that
lead a user to edit a particular article. Thus it is not surpris-
ing that a user’s interaction with editors of a particular article
indeed increases that user’s probability of subsequently edit-
ing the article. How this probability depends on the social
interaction is precisely the effect we wish to measure, using
both the snapshot and ordinal definitions: in other words,
we ask how the probability of adopting a behavior, which in
this setting corresponds to editing an article, depends on the
number k of links one has had to previous editors of the ar-
ticle. Wikipedia’s edit history provides us with ordinal time
data, which we can then use to generate snapshot data at any
point in time.

A final interesting feature of Wikipedia is the fact that
there is actually more than one Wikipedia: over a dozen
languages have their own Wikipedias with at least 100,000
articles; another 50 or so have at least 10,000. Al-
though some contributors participate in multiple languages,
each Wikipedia evolves independently and provides its
own historical data. We can therefore assess the gen-
erality of our models and results by evaluating them on
multiple large Wikipedias. In this paper, we will dis-
cuss results primarily in terms of the English Wikipedia,
but the findings carry over remarkably closely to Ger-
man and French. Although all are from the same domain
of creating encyclopedias, the English, French and Ger-
man Wikipedias are all large, independent data sets, with
largely disjoint sets of editors. Each one also has their
own set of cultures, norms, and administrative processes,
the differences of which have been studied elsewhere (such
as (Pfeil, Zaphiris, and Ang 2006); see also the article
at http://en.wikipedia.org/wiki/User:Elian/comparison by a
longtime Wikipedia contributor who participates in both the
German and English versions). Thus, it is important to note
that the empirical evaluation has been done on three quite
different datasets.

Relationships Among the Definitions. Figure 1 shows
the basic contrast between the shape of influence curves
for the snapshot and ordinal-time definitions using the
Wikipedia data. The snapshot-based curve is qualitatively
consistent with what one finds in other datasets, such as
community membership in LiveJournal (Backstrom et al.
2006) and engaging in email correspondence (Kossinets and
Watts 2006): the extent of influence steadily increases with
more links, but the marginal influence of each additional
link slowly decreases. In apparent contrast, the ordinal-time
curve shows that the first five links have increasing effect,
after which subsequent links have relatively constant effect
(with a gradual decline).

As one of our main results, we will provide a method for
converting from influence probabilities based on snapshots
to influence probabilities based on the more fine-grained no-
tion of ordinal time. On the Wikipedia data, we find that
in fact the shape of the ordinal-time plot—including the in-



(a) Wikipedia: Ordinal-Time Definition (b) Wikipedia: Snapshot Definition

Figure 1: The probability of editing an article on Wikipedia, as a function of the number k of previous editors of that article
with whom one has had user-talk-page interactions. Results are shown for (a) the ordinal-time definition and (b) the snapshot
definition. The error bars represent ±2 standard errors.

crease over the first five values of k followed by leveling
off—can be approximated from the data inherent in just a
single snapshot. Thus, the specifics of the ordinal-time pro-
cess can be approximately inferred even in cases when one
is given coarse snapshot views of the network, rather than
moment-by-moment temporal data. This offers the promise
of applying more detailed social influence models to do-
mains in which one has much less finely resolved views of
the underlying dynamics.

Analysis of Adoption Behavior
We restrict our attention to users who have both Wikipedia
user ID’s and user-talk pages. Anonymous edits are
recorded by IP address, which might combine the activity
of many people, while users without user-talk pages have
very few social connections. As of April 2, 2007, for En-
glish Wikipedia there are approximately 510,000 users with
user ID’s and user-talk pages. These users were responsible
for 61% of all edits to articles on the English Wikipedia.

We now provide a bit of additional terminology that will
be useful in what follows. First, if nodes u and v are con-
nected by an edge in a social network, we refer to them as
“neighbors”. In the context of Wikipedia, we create an edge
between u and v at the first time either one edits the other’s
talk page; they are neighbors from that time onward. Here
we will consider only undirected relations, although there
are also interesting questions involving directed edges, em-
phasizing the distinction between u writing on v’s user-talk
page and v writing on u’s.

A second piece of terminology is the following: each be-
havior defines a community of nodes, simply consisting of
all those who have engaged in the behavior. (Thus the term
“community,” like “neighbor,” is meant in this paper in a
specific technical sense.) The membership of a commu-
nity grows over time as more people adopt the behavior; the

spread of a behavior through the network can therefore be
equivalently viewed as the growth of the associated commu-
nity. In the case of Wikipedia, there is a community asso-
ciated with each article; it is the set of all users who have
ever edited the article. The crucial question is how a node’s
probability of joining a community depends on the set of
neighbors it has within the community.

Ordinal time. We begin by recalling the definition of
po(k) from the introduction, broadened here to reflect the
fact that there are multiple communities being studied on
the same network. To begin with, we say that a node u is
k-exposed to a community C at a time t if it has k neighbors
in C at time t, but does not belong to C at time t.

Informally, po(k) is the fraction of cases in which a node
that is k-exposed to a community C proceeds to join C be-
fore acquiring a (k + 1)st neighbor in C. That is, we define
po(k) as the ratio of two quantities, po(k) = no(k)/do(k),
where do(k) is the number of triples (u,C, k) for which u
was ever k-exposed to C, and no(k) is the number of triples
(u,C, k) for which u was k-exposed to C, and then joined
C before acquiring a (k + 1)st neighbor in C.

We can now investigate these quantities in the context of
Wikipedia. Because Wikipedia maintains such a finely time-
resolved history of edits to articles and user-talk pages, we
know the precise interleaving of social network link forma-
tion and community joining behavior, allowing us to com-
pute the quantities do(k) and no(k). We do this analysis
for all of the edits that have occurred since the beginning of
Wikipedia on January 15, 2001 until April 2, 2007.

For the English Wikipedia data, Figure 2(a) shows the
plots of no(k) and do(k) on a log-log scale, along with the
best linear fit. A linear model accounts relatively well for the
data over a large range, suggesting a power law is a reason-
able approximation for each of these quantities. This is not



(a) Ordinal Time: Numerator and Denominator (b) Snapshot: Numerator and Denominator

Figure 2: The numerator and denominator for ordinal-time and snapshot on a log-log scale along with their linear fits. The
numerators are solid and their fit is dotted-dashed. The denominators are dashed and their fit is dotted. In both plots the
denominators appear above the numerators.

surprising, given that do(k) can be viewed as a variation on
the standard degree distribution: it measures the distribution
of the “degree” (number of edges) of each node into each
community. The corresponding plot of po(k) was shown in
the introduction as Figure 1(a), where it was observed that
the probability increases for the first five neighbors before
becoming roughly constant (with a gradual decline). In the
next section, we will look more closely into how the shape
of the po(k) curve relates to power laws fitted to no(k) and
do(k).

Snapshots. Analogously, we can extend the snapshot def-
inition of influence ps(k), given in the introduction, to mul-
tiple communities. Suppose that we take two snapshots of
all community memberships in the network: the first at time
t1 and the second at time t2. As with ordinal time, it is
now useful to define ps(k) as the ratio of two quantities,
ps(k) = ns(k)/ds(k). Here ds(k) is the number of triples
(u,C, k) for which u was k-exposed to C at time t1, and
ns(k) is the the number of triples (u,C, k) for which u was
k-exposed to C at time t1, and such that u joined C between
times t1 and t2. For the English Wikipedia data, Figure 2(b)
shows the plots of ns(k) and ds(k) on a log-log scale, along
with the best linear fit. Here again, the linear model ac-
counts relatively well for these two quantities indicating that
a power law is a good approximation for each of them.

Recall that there are many settings with on-line social in-
teraction data in which it is feasible to produce snapshots
of the system, but not to obtain the kind of time-resolved
data necessary to compute the ordinal-time measure po(k).
Using the Wikipedia ordinal time data we generated two
snapshots, choosing November 1, 2005 and November 6,
2006 as two relatively arbitrary moments at which which we
measure the full set of community memberships. We then
computed ps(k) using the snapshot method, shown in Fig-

ure 1(b).
Clearly the snapshot curve looks qualitatively very differ-

ent from the ordinal-time curve, and understanding the rela-
tionship between the two will be the focus of the next sec-
tion. It is interesting that it is quite similar to other snapshot-
based influence curves from earlier work, such as for Live-
Journal community memberships (Backstrom et al. 2006),
considering that these other curves come from very different
domains with different numbers of users and communities
and different reasons for joining communities. In each case,
the snapshot curves show a general sublinear increase with
a marked dip at k = 1 and rise at k = 2. However, the
Wikipedia curve is much closer to linear than the LiveJour-
nal curve up to moderate k.

Relating Snapshot Measurements with
Ordinal Time Measurements

In this section we investigate how the snapshot definition
and ordinal-time definition are related to each other. To de-
scribe this relationship we first define some notation for var-
ious sets of tuples in terms of the two snapshots. Informally,
B will denote the set of instances in which a user joined a
community before the first snapshot, J will denote the set
of instances in which a user joined a community between
the two snapshots, and N will denote the set of instances in
which a user did not join a community by the second snap-
shot. More formally,
• B(t1) = {(u,C, k1) | u joined C before t1 and u had k1

neighbors in C at t1}
• J(t1, t2) = {(u,C, k1, k2) | u had k1 neighbors in C at
t1, u joined C between t1 and t2, u had k2 neighbors in
C at t2}

• N(t2) = {(u,C, k2) | u did not join C before t2 and u
had k2 neighbors in C at t2}.



With these definitions we begin analyzing the difference
between po(k) and ps(k). To do this we will analyze how
each of the three sets defined above contribute to no(k),
ns(k), do(k) and ds(k).

The effect of B(t1). First we consider the joining events
that occur before before the first snapshot; by definition
these are the triples (u,C, k1) ∈ B(t1). Of all the join-
ing events that occur, the snapshot method only captures
those which occur between the two snapshots; thus such a
(u,C, k1) ∈ B(t1) will not contribute in any way to ps. On
the other hand, since the ordinal time method captures all
joining events, this tuple will contribute to po. More specif-
ically, if u actually had 0 ≤ δ ≤ k1 neighbors in C just
before joining, then it will contribute to no(δ). Furthermore,
since u did not join until it acquired δ neighbors, this tuple
will contribute to each of do(0), . . . , do(δ). Thus, for each
value of k, no(k) and do(k) will be shifted upwards with re-
spect to ns(k) and ds(k) due to the effect of triples inB(t1).

The effect of J(t1, t2). Next we analyze the effects of the
joining events that occur between the two snapshots. First
we consider their effect on ns and no and then we con-
sider their effect on ds and do. If a tuple (u,C, k1, k2) is
in J(t1, t2), then u joined C at some time between t1 and
t2. Thus this tuple will contribute to ns(k1). Note that u
had k1 neighbors in C at t1 and k2 neighbors in C at t2.
Now u could have had 0 ≤ δ ≤ k2 − k1 neighbors between
t1 and joining C. Thus this joining event would contribute
to no(k1 + δ). We can think of this as a “stretching” ef-
fect: the contribution to no is pushed out to a higher value
of k relative to ns. This is a result of the finer-grained ob-
servations available with the ordinal-time definition. If we
assume that no and ns are closely approximated by power
laws, this stretching will cause the log-log slope of no to be
greater than that of ns.

Now we analyze how joining events that occur between
the two snapshots affect do(k) and ds(k). Again, let
(u,C, k1, k2) ∈ J(t1, t2) and suppose u actually joined C
after getting k1 + δ neighbors where 0 ≤ δ ≤ k2 − k1.
First observe that this tuple will contribute to ds(k1) and
do(k1 + δ). This is another instance of the “stretching”
phenomenon that we observed occurring from ns to no.
In addition, this tuple will also contribute to do(j), for all
0 ≤ j < k1 + δ. This is because after u acquired its jth
neighbor, it acquired yet another neighbor before joining C.
Thus, a joining event given snapshot observations only con-
tributes to ds(k1), whereas in the ordinal-time measure it
contributes to do(0), . . . , do(k1 + δ).

We can think of this as an “accumulation” phenomenon
that extends the stretching phenomenon: the contribution
to do is accumulated over multiple values of k. More con-
cretely, we have do(k) =

∑
j≥k ds(j − δ). If ds(k) is ap-

proximated by a power law distribution, ds(k) ≈ ck−α, then

do(k) ≈ c
∫ ∞
x=k

(x− δ)−α ≈ c′k−α+1,

where c and c′ are constants.

The effect of N(t2). Finally, we analyze the effect of the
tuples in N(t2). Recall that if (u,C, k2) ∈ N(t2) then u
did not join C before t2 and u had k2 neighbors in C at t2.
Since u did not join C between the two snapshots, this tu-
ple does not contribute to ns. But u may join C after the
second snapshot, which would contribute to no(k) for some
k ≥ k2. This would cause no(k) to shift upwards. Since
u had k2 neighbors at t2 and u did not join C before that,
this tuple will contribute to ds(k2). Also, u will contribute
to do(0), . . . , do(k2) for the reason just discussed above: for
any 0 ≤ j < k2, user u acquired at least one more neigh-
bor before joining C. This again results in the accumulation
phenomenon.

Combining the contributions. In summary, the sets B
and N result in shifting no and do upwards with respect
to ns and ds. Also, the set J results in stretching no and
do when compared to ns and ds. Finally, the sets J and N
result in do becoming an accumulation or integration of ds.

Table 1 shows the slope and y-intercept of the linear fits
on a log-log scale to the power law approximations to no,
ns, do, and ds. The plots of these for English Wikipedia are
shown in Figure 2. Since the x-axis in Figure 2 measures
the number of neighbors u has in a community, we have lit-
tle data for x values over 30 or so. Thus we cannot use the
methods of Clauset et al. (2009) to estimate the parameters
of the power law or to say with statistical confidence whether
or not the data is better approximated by some other type of
distribution. Instead we use the best methods available to us
to measure the parameters of these distributions which ap-
pear to be power laws. We only use these distributions as
examples to illustrate the relationship between snapshot and
ordinal time given above which applies to general distribu-
tions.

We now see whether the data supports this analysis. First
observe that the y-intercepts for no and do dominate the y-
intercepts for ns and ds. This shows the upward shift of no
and do due to B and N . Also, in the case of English, the
slope of no is slightly greater then ns, and in the case of
French and German these slopes are almost identical. This
implies that the stretching caused by the set J is very minor.
Finally, one can see that the difference in slopes between
do and ds is close to 1. This illustrates the accumulation
phenomena and also shows that the effect of the stretching
is minimal. We can also see this reflected in Figure 2, where
the lines for no and do in 2(a) are roughly parallel, while the
lines for ns and ds in 2(b) are converging due to slopes that
differ by approximately 1.

If, as is indicated by the data, we assume that both the
stretching of the numerator in going from ns to no is neg-
ligible and that do is approximately the integral of ds, then
we can relate the plot of ps to the plot of po. Observe that a
large span of ps, shown in Figure 1(b), is roughly linear. So
ps(k) ≈ ck for some constant c. Since transforming ns to
no leaves the numerator roughly unchanged, and transform-
ing ds to do increases the exponent of the power law in the
denominator by one, the roughly linear span of ps will corre-
spond to a roughly constant span of po. This is exhibited by



no ns do ds
slope y-int. slope y-int. slope y-int. slope y-int.

English -2.26 6.74 -2.50 6.12 -2.37 9.49 -3.49 9.02
German -2.58 6.64 -2.57 5.91 -2.72 9.26 -3.59 8.68
French -2.54 6.32 -2.52 5.44 -2.78 8.99 -3.70 8.28

Table 1: The slopes and y-intercepts of the linear fits on a log-log scale to no, ns, do, and ds.

Figures 1(a) and 1(b). On the other, consider an interval of
k over which ps(k) grows sublinearly; that is ps(k) ≈ ckα,
for some interval of k and 0 < α < 1. By the analogous
reasoning to the linear case, po(k) would be roughly approx-
imated by 1/(k1−α). Thus a sublinear span of ps(k) would
correspond to a decreasing span of po(k). Observe that in
Figure 1(b) when k ≥ 20 the curve begins to become sub-
linear, and this corresponds to a decreasing region of po(k).
Finally, by the same reasoning as above, if ps(k) exhibits a
large superlinear region approximated by kα where α > 1,
this will correspond to po(k) being roughly approximated by
kα−1 which is increasing.

These arguments do not directly explain the dramatic
ramp-up of po(k) that occurs from k = 0 to k = 5. To
do this, we look at the best fit lines to no(k) and do(k) in
Figure 2(a). We see that when k is small, no(k) approaches
the best fit line from below and do(k) approaches the best
fit line from above. This indicates that for the first few val-
ues of k, po(k) will begin significantly below its eventually
(approximately) constant value.

Simulating Ordinal Time from Snapshots
We now consider how one might take snapshot data and pro-
duce a simulated ordinal-time plot from it. This has clear
potential utility in cases where only snapshots of a system
are available, and one wants to make approximate compar-
isons with systems where ordinal-time influence measures
exist.

Roughly, the simulation works by hypothesizing the num-
ber of neighbors each node had at the moment it joined a
community; choosing this number from among the possible
values consistent with the snapshot observations. We ex-
ploit both the B(t1) and the J(t1, t2) sets. Recall the set
B(t1) consists of triples (u,C, k1), where u joined C be-
fore t1, and u had k1 neighbors in C at t1. We choose an
integer j uniformly at random in [0, k1] and assume that u
had j neighbors in C at the time it joined C. Similarly, the
set J(t1, t2) consists of tuples (u,C, k1, k2) where u joined
C between t1 and t2, u had k1 neighbors in C at t1, and u
had k2 neighbors in C at t2. Here we construct the approx-
imation to ordinal-time by choosing an integer j uniformly
at random from [k1, k2] and again assuming that that u had
j neighbors in C at the time it joined C. Finally, we do
not assume that u joins C for any tuple (u,C, k) ∈ N(t2).
There are clearly (and necessarily) many approximations be-
ing made in this simulation, and so it is not a priori clear that
an ordinal-time plot produced in this way from snapshot data
will have a reasonable fit with the true ordinal-time plot.
However, we shall see the agreement on Wikipedia data is

surprisingly close at a qualitative level, even capturing the
detailed structure of the ramp-up for the first few values of
k.

The approximation of ordinal time data from snapshot
data depends on two factors: the number of snapshots used,
and the amount of time between the snapshots. We begin by
considering the effect of the number of snapshots. We show
how the simulation of ordinal-time depends on the number
of snapshots taken for English Wikipedia in Figure 3. Fig-
ures 3(b), 3(c), and 3(d) show the results of the method de-
scribed in the previous paragraph using two, three, and seven
snapshots respectively. Figure 3(a) shows the results in an
even more extreme situation, with only a single snapshot,
when we do not have a set of the form J(t1, t2). As one
would expect, the approximation is becoming increasingly
accurate with more snapshots. This is because as the num-
ber of snapshots increases the time between them goes to
0. Thus, in the limit, snapshot measurements converge to
the ordinal-time measurements. Figure 3 shows that empir-
ically just a few snapshots produce good results for these
datasets which means the convergence occurs fairly rapidly
as the number of snapshots increases. Repeating these sim-
ulations for the French and German Wikipedia gives quali-
tatively similar results.

In Figure 4 we explore the effect of changing the amount
of time between snapshots, focusing on the case of two snap-
shots. The figures show the result of doing the approxima-
tion on English Wikipedia using two snapshots each one,
three and six months apart; recall that the result of doing the
approximation using two snapshots twelve months apart is in
Figure 3(b). Varying the amount of time between two snap-
shots cannot produce effects as accurate as we saw for in-
creasing the number of snapshots, in Figure 3, but as the time
between snapshots gets longer we observe increasing accu-
racy in the approximation. Note in particular the more accu-
rate values of the absolute probabilities on the y-axis com-
pared the ground truth from Figure 1(a). This is natural be-
cause as the time between the two snapshots increases, more
joining events are captured between them which causes the
quality of the approximation to improve.

In general, the simulated probabilities of po computed
using a varying number of snapshots, shown in Figure 3,
are higher than the actual ordinal time probabilities shown
in Figure 1(a). We believe this happens because the algo-
rithm tends to hypothesize low values of k too often. In
Wikipedia, the probabilities for k < 5 are below the aver-
age; a uniform distribution guesses k values between 0 and
4 too often, increasing estimates of no(k) in this range. This
also reduces all estimates of do(k): every time the algorithm
guesses a too-low k, it misses some stretching of the de-



(a) Approximation from One Snapshot (b) Approximation from Two Snapshots

(c) Approximation from Three Snapshots (d) Approximation from Seven Snapshots

Figure 3: Approximating ordinal time from One, Two, Three, and Seven Snapshots on English Wikipedia. In panels b, c and d
the time between the first and last snapshot is one year.

nominator (e.g., by guessing k = 1 instead of k = 6, do(k)
for 2 ≤ k ≤ 6 are not incremented). Both errors inflate
the algorithm’s estimates of po(k) for all k. One improve-
ment would use the snapshot data to estimate a better-than-
uniform probability distribution. Direct application of this
idea, however, such as assuming that the relative probabili-
ties for each k are the number of tuples in J(t1, t2) where
u had exactly k neighbors in C at t1 and t2, divided by the
number of tuples in N(t2) where u had k neighbors in C at
t2, did not improve the results, suggesting that that there is
an interesting and subtle problem here for future work.

Conclusion
Our work complements and extends the existing literature
around influence in online communities. Prior work has
shown that how one’s friends influence the groups one joins
online is quite similar across a variety of domains, content
types, community goals, and ways of inferring ties. We
show that this type of social influence occurs in Wikipedia
as well. Furthermore, our demonstration of the relationship
between snapshot and ordinal-time measurements may help
researchers better understand social influence by allowing
them to more easily compare data gathered with different

sampling procedures. The correspondence between fine-
grained ordinal data and the approximation of it made from
snapshots is not perfect, but it appears close enough to make
useful comparisons. Future work that improves the mod-
els presented here will make snapshot approximations both
more useful and more comparable, which we hope will al-
low researchers to better understand the similarities and dif-
ferences that underlie the dynamics of influence online.
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