
Preventing Unraveling in Social Networks: The
Anchored k-Core Problem

Kshipra Bhawalkar1, Jon Kleinberg2, Kevin Lewi1, Tim Roughgarden1, and
Aneesh Sharma3

1 Stanford University, Stanford, CA, USA
2 Cornell University, Ithaca, NY, USA

3 Twitter, Inc.

Abstract. We consider a model of user engagement in social net-
works, where each player incurs a cost to remain engaged but de-
rives a benefit proportional to the number of engaged neighbors.
The natural equilibrium of this model corresponds to the k-core of
the social network — the maximal induced subgraph with minimum
degree at least k.
We study the problem of “anchoring” a small number of vertices
to maximize the size of the corresponding anchored k-core — the
maximal induced subgraph in which every non-anchored vertex has
degree at least k. This problem corresponds to preventing “unravel-
ing” — a cascade of iterated withdrawals. We provide polynomial-
time algorithms for general graphs with k = 2, and for bounded-
treewidth graphs with arbitrary k. We prove strong inapproxima-
bility results for general graphs and k ≥ 3.

1 Introduction

A defining property of social networks — where nodes represent individuals, and
edges represent friendships — is that the behavior of an individual is influenced
by that of his or her friends. In particular, they often exhibit positive “network
effects”, where the utility of an individual is increasing in the number of friends
that behave in a certain way. For example, empirical work has determined that
individuals are more likely to contribute useful content to a social network if
their friends do [4]. Increasingly, empirical studies suggest that the influence of
interactions in social network extends to behavior outside of these networks, as
well [9]. An obvious question, studied from a system-building perspective in [10],
is how to design or modify social networks to maximize the participation and
engagement of its users.

For concreteness, consider scenarios where each individual of a social network
has two strategies, to “engage” or to “drop out”. Being engaged could mean
contributing to a public good (like network content), signing up for a new social
network feature, adopting one technology instead of another, and so on. We

2

assume that a player is more likely to be engaged if many friends are. For this
Introduction, we focus on our most basic model. We first describe our model via
a process of cascading withdrawals, and then formulate it using a simultaneous-
move game.

Assume that all individuals are initially engaged, and for a parameter k, a
node remains engaged if and only if at least k friends are engaged. For example,
engagement could represent active participation in the social network, which is
worthwhile to an individual if and only if at least k friends are also actively par-
ticipating. Or, dropping out could represent the abandonment of an incumbent
product in favor of a newly arrived competitor; when the number of one’s friends
using the old product falls below k, one switches to the new product.

In this basic model, it is clear that all individuals with less than k friends
will drop out. These initial withdrawals can be contagious, spreading to indi-
viduals with many more than k friends. See Figure 1 for an example of this
phenomenon. In general, when such iterated withdrawals die out, the remaining
engaged individuals correspond to a well-known concept in graph theory — the
k-core of the original social network, which by definition is the (unique) maximal
induced subgraph with minimum degree at least k. Alternatively, the k-core is
the (unique) result of iteratively deleting nodes that have degree less than k, in
any order.

Schelling [17, P.214] describes this type of “unraveling” in typically pic-
turesque language, by contrasting the cycle with the line (with k = 2). He
imagines people sitting with reading lamps, each of whom can get additional
partial illumination from the lamps of their neighbor(s):

In some cases the arrangement matters. If everybody needs 100 watts to
read by and a neighbor’s bulb is equivalent to half one’s own, and everybody
has a 60-watt bulb, everybody can read as long as he and both his neighbors
have their lights on. Arranged in a circle, everybody will keep his light on if
everybody else does (and nobody will if his neighbors do not); arranged in a
line, the people at the ends cannot read anyway and the whole thing unravels.

A Game-Theoretic Formulation. The k-core can be seen as the maximal
equilibrium in a natural game-theoretic model; it has been studied previously in
this guise in the social sciences literature [5,6,16]. Concretely, imagine that each
node in a social network G is considering whether to remain engaged in a social
activity. We suppose that each node v in G incurs an (integer) cost of k > 0 for
the effort it must spend to remain engaged. Node v also obtains a benefit of 1
from each neighbor w who is engaged; this reflects the idea that the benefit from
participation in the activity comes from interaction with neighbors in the social
network.

If each node makes its decision simultaneously, we can model the situation as
a simultaneous-move game in which the nodes are the players, and v’s possible
strategies are to remain engaged or to drop out. For a choice of strategies σ by
each player, let Sσ be the set of players who choose to remain engaged. The
payoff of v is 0 if it drops out, and otherwise it is v’s degree in the induced

3

subgraph G[Sσ] minus k. Note that we can talk about sets of engaged nodes and
strategy profiles interchangeably.

There is a natural structure to the set of pure Nash equilibria in this game: σ
is an equilibrium if and only if G[Sσ] has minimum degree k (so that no engaged
player wants to drop out), and no node in V − Sσ has k or more neighbors in
Sσ (so that no player who has dropped out wants to remain engaged). There
will generally be multiple equilibria — for example, if G has minimum degree at
least k, then Sσ = ∅ and Sσ = V define two of possibly many equilibria. There
is always a unique maximal equilibrium σ∗, in the sense that Sσ∗ contains Sσ
for all other equilibria σ. This maximal equilibrium is easily seen to correspond
to the k-core of G — the unique maximal set S∗ of minimum internal degree at
least k in G.

Chwe [5,6] and Saaskilahti [16] argue that it is reasonable to assume that
this maximal equilibrium will be selected in an actual play of the game, since it
optimizes the welfare of all the players simultaneously (as well as the provider
of the service, whose goal is to attract a large audience). That is, all incentives
are aligned to coordinate on this equilibrium.

(a) The original graph G (b) The 3-core of G

Fig. 1. k-core for k = 3 on an example graph G

The Anchored k-Core Problem. The unraveling described in Schelling’s line
example is often undesirable, and could represent the end of a social network,
a product, or a public good. When and how can such unraveling be prevented?
For instance, in Schelling’s example, the solution is clear: giving the two readers
at the ends an extra lamp yields persistent illumination for all.

We formalize this problem as the anchored k-core problem. In the most basic
version of the problem, the input is an undirected graph and two parameters
k, b ∈ {1, 2, . . . , n}, where b denotes a budget. Solutions correspond to subsets
of at most b vertices, which are said to be anchored. Anchored vertices remain
engaged no matter what their friends do — for example, due to external incen-
tives like rewards for participation, or rebates for using a product. The anchored
k-core, corresponding to the final subgraph of engaged individuals, is computed
like the k-core, except that anchored vertices are never deleted. That is, unan-

4

chored vertices with degree less than k are deleted iteratively, in any order. In
Schelling’s line example, anchoring the two endpoints causes the anchored 2-core
to be equal to the entire network. Another example, with b = 2 and k = 3, is
displayed in Figure 2.

(a) An assignment of 2
anchors to G

(b) The vertices saved in
an anchored 3-core (with
budget 2) of G

Fig. 2. Anchored 3-core with budget 2 on G

Summarizing, we have seen that cascades of withdrawals can cause an un-
raveling of engagement, but that such cascades can sometimes be prevented by
anchoring (i.e., rendering non-strategic) a small number of individuals. The goal
of this paper is to study systematically the optimization problem of anchoring
a given number of individuals to maximize the amount of engagement in a so-
cial network — to maximize the size of the resulting anchored k-core. Solving
this problem identifies the individuals whose participation is most crucial to the
overall health of a community.

Our Results. We first study general graphs, where we identify a “phase tran-
sition” in the computational complexity of the anchored k-core problem with
respect to the parameter k. (The problem is interesting for all k ≥ 2.) First, we
prove that the anchored 2-core problem is solvable in polynomial (even near-
linear) time. Second, we prove that the anchored k-core problem admits no non-
trivial polynomial-time approximation algorithm for every k ≥ 3. Precisely, we
prove that it is NP-hard to distinguish between instances in which Ω(n) vertices
are in the optimal anchored k-core, and those in which the optimal anchored
k-core has size only O(b). This inapproximability result holds even for a natural
resource augmentation version of the problem. We also prove, for every k ≥ 3,
that the problem is W [2]-hard with respect to the budget parameter b.

Our negative results motivate studying the anchored k-core problem in re-
stricted classes of graphs, and here we provide positive results. For arbitrary k,
we show that the anchored k-core problem can be solved exactly in polynomial
time in graphs with bounded treewidth. Our polynomial-time algorithm extends

5

to many natural variations of the problem: for directed graphs, for non-uniform
anchoring costs, for vertex-specific values of k, and others.

Further Related Work. Our mathematical model of user engagement in social
networks appears to be new, although it is related to a number of previous works
in the social sciences literature. Saaskilahti’s model [16] is the closest to ours
— the payoff structure in [16] includes ours as a special case, though only a
few special network topologies are considered (the complete graph, the cycle,
and the star). Earlier economic models that capture positive network effects of
participation but consider only the complete graph are given in Arthur [1] and
Katz and Shapiro [11]. Blume [2], Ellison [8], and Morris [14] analyze economic
models with general network topolgies, but these works focus on competing
behaviors rather than on positive network effects, resulting in models different
from ours.

The papers cited above focus on equilibrium analysis and do not consider
algorithms for optimizing an equilibrium, as we do here. The problem of identi-
fying influential nodes of a social network in order to incite cascades, introduced
by Kempe et al. [12] and studied further in [13,15], shares some of the spirit of
the optimization problem studied in the present work.

2 General Graphs

In this section, we investigate the anchored k-core problem on general graphs.
We will see that the problem can be solved exactly for k = 2 but becomes
intractable for k ≥ 3. Also, we’ll show that one can’t (under suitable complexity
assumptions) substantially improve upon the brute-force algorithm that tries all(
n
b

)
subsets of placements for anchors unless FPT = W[2].
We first make the following observation. Let G be a graph for which we would

like to compute the anchored k-core with budget b. We construct a new graph
from G, which we will call RemoveCore(G), in the following manner: Compute
the set of vertices of the k-core, Ck, and remove all edges between pairs of vertices
u, v ∈ Ck. We also imagine an anchor placed at each vertex v∗ ∈ Ck (without
actually subtracting from the budget).

Proposition 1. An assignment of anchors has size z in RemoveCore(G) if and
only if it has size z in G.

Intuitively, each v∗ ∈ Ck would remain in the graph without the assistance
of any anchors. So, we can think of these vertices as already being anchored, and
the structure within Ck no longer affects the anchored k-core of G. Thus, it is
enough to devise a solution for the graph RemoveCore(G) in order to obtain a
solution for the anchored k-core problem on G.

2.1 Anchored 2-Core

The RemoveCore procedure greatly simplifies the structure of the input graph G
for the case of k = 2.

6

Proposition 2. For every input graph G, with k = 2, RemoveCore(G) is a
forest, where each tree in the forest contains at most one member of the k-core.

For each tree in the graph, we will call a tree rooted if there exists a member
of the k-core in the tree, and non-rooted otherwise. Let R and S be the set of
rooted and non-rooted trees, respectively.

An Efficient Optimal Algorithm. We now show how to solve the anchored 2-
core problem for any budget b. We describe this algorithm intuitively and present
it more explicitly as Algorithm 2.1 below. First, find two vertices v1, v2 ∈ R such
that placing an anchor at v1 maximizes the number of vertices saved across all
placements of a single anchor in R, and v2 does the same assuming that v1
has already been placed. Next, find v3, v4 ∈ S such that placing anchors at
v3 and v4 simultaneously maximizes the number of vertices saved across all
placements of two anchors in S. Let cR(v1), cR(v2), and cS(v3, v4) denote the
number of vertices saved by placing v1, v2, and v3 and v4 (together), respectively.
If cR(v1)+cR(v2) > cS(v3, v4), or b = 1, then place an anchor at v1 and decrease b
by 1. Otherwise, place anchors at v3 and v4 and decrease b by 2. After the anchor
placement, re-run RemoveCore on the graph (now with the saved vertices as part
of the k-core) and repeat the process of determining {v1, v2, v3, v4} until b = 0.

Algorithm 2.1 An efficient, exact algorithm for anchored 2-core

G← RemoveCore(G) // G is now a forest
S ← ∅
while b > 0 do

Partition the trees of G into sets R and S
v1 ← a vertex furthest from root of trees in R
v2 ← a vertex to be furthest from root of trees in R after v1 is anchored
(v3, v4)← a pair of vertices on the endpoints of a longest path across trees in S
if cR(v1) + cR(v2) > cS(v3, v4) or b = 1 then

S ← S ∪ {v1}, b← b− 1 // Place an anchor on v1
else

S ← S ∪ {v3, v4}, b← b− 2 // Place an anchor on v3 and v4
G← RemoveCore(G) // G modified due to anchoring vertices

Theorem 1. Algorithm 2.1 yields an anchored 2-core of maximum size.

A Faster Implementation. The above algorithm runs in time O(n2), since
both the RemoveCore step and finding the maximum path across all trees takes
time O(n), and this must be repeated for each anchor placed. However, there is
an implementation of the algorithm that runs in time O(m + n log n) through
the use of priority queues, and is detailed in the full version.

Corollary 1. There is an O(m+n log n) time exact algorithm for the anchored
2-core problem.

7

2.2 Inapproximability of k ≥ 3

The natural next step is to determine the complexity of the anchored k-core
problem for k ≥ 3. Note that every solution to the anchored k-core problem
has objective function value in the range [b, n]. In this section we show that for
k ≥ 3, it is NP-hard to approximate the optimal anchored k-core within a factor
of O(n1−ε).

A Preliminary Construction. Our reduction is from the Set Cover prob-
lem. Fix an instance I of set cover with n sets S1, . . . , Sn and m elements
{e1, . . . , em} =

⋃n
i=1 Si. We first give the construction only for instances of set

cover such that for all i, |Si| ≤ k − 1. Then, we show how to lift this restriction
while still obtaining the same results.

We now define a corresponding anchored k-core instance. Let H be an arbi-
trarily large graph where every vertex has degree k except for a single vertex with
degree k−1 — call this vertex t(H). Now, consider the graph consisting of a set of
nodes {v1, . . . , vn} associated with sets S1, . . . , Sn and a set B = {H1, . . . ,Hm}
consisting of m disjoint copies Hj of H, where each copy of H is associated with
an element ej . There is an edge between vi and t(Hj) if and only if ej ∈ Si.

Lemma 1. For instances of set cover with maximum set size at most k − 1,
there is a set cover of size z if and only if there exists an assignment in the cor-
responding anchored k-core instance using only z anchors such that all vertices
in B are saved.

Proof. Notice that the Hj ’s are designed such that if there exists some i such
that vi is adjacent to t(Hj), then all vertices in Hj will be saved. Thus, if there
is a set cover C of size z, then one can place the z anchors at vi for all i such
that Si ∈ C and hence save all vertices in B. For the converse, we see that it is
enough to restrict attention to assignments with anchors placed on vi’s. Since we
are assuming that |Si| < k for all sets, each vi will not be saved unless anchored.
Thus, we must anchor some vertex adjacent to t(Hj) for each copy Hj , which
corresponds precisely to a set cover of size z.

Now, define tree(d, y) to be a perfect d-ary tree (each node has exactly d
children) with exactly y leaves, if y ≥ d, and a single root node with y leaves
when y < d. To lift the restriction on the maximum set size, we replace each
instance of vi with tree(k − 1, |Si|), and if y1, . . . , y|Si| are the leaves, then for
each e` ∈ Si, we contract the pairs of vertices (y`, e`).

Lemma 2. For every instance of Set Cover, there is a set cover of size z if and
only if there exists an assignment for the corresponding anchored k-core instance
using only z anchors such that all vertices in B are saved.

The Reduction from Set Cover. At this point, we have already shown that
obtaining an optimal solution for the anchored k-core problem for k ≥ 3 is NP-
hard. Now, there exists a way to arrange the edges between each copy of H

8

such that if there exists some vertex of B which is not saved, then the majority
of the vertices will not be saved, either. Since this construction is somewhat
complicated, we defer the details to the full version. From here on, we refer to
the full construction as the graph G(c, I), where I is an instance of Set Cover
and c is an arbitrarily large constant.

Recall the decision problem for (unweighted) Set Cover: Given a collection
of sets C which contain elements from a universe of size m, does there exist a set
cover of size at most `? We are able to show that G(c, I) has the following two
properties:

1. If I is a yes-instance, then there exists an assignment of ` anchors such that
at least kmc+1` vertices are saved.

2. If I is a no-instance, then no assignment of ` anchors can save more than
km` anchors.

Since c can be arbitrarily large, we can ensure that kmc+1` = Ω(n), where
n is the number of vertices in the anchored k-core instance. We can therefore
conclude with the following theorem and corollary.

Theorem 2. It is NP-hard to distinguish between instances of anchored k-core
where the optimal solution has value Ω(n) versus when the optimal solution has
value O(b).

Corollary 2. It is NP-hard to approximate the anchored k-core problem on gen-
eral graphs within an O(n1−ε) factor.

Resource Augmentation Extensions. Suppose we are interested in compar-
ing the performance of an algorithm given a budget of O(b · α) anchors against
the optimal assignment given only b anchors, for some α > 1. In the full version,
we augment the original reduction above to yield the following result.

Corollary 3. For α = o(log n), unless P = NP, there does not exist a polyno-
mial time algorithm which, given O(b · α) anchors, finds a solution within an
O(n1−ε) multiplicative factor of the optimal solution with b anchors.

W[2]-hardness with Respect to Budget. We can also show that the an-
chored k-core problem is not in FPT with respect to the budget parameter b.
We establish this result via a reduction from the Dominating Set problem, and
the proof can be found in the full version. Recall that the decision version of
Dominating Set is as follows: given a budget `, determine if there a subset S of
vertices such that |S| ≤ ` and each vertex in V \ S is adjacent to a vertex in
S. As shown in [7], this problem is W[2]-hard. In the full version, we establish
that if the anchored k-core problem can be solved in time O(f(b) · poly(n)) for
any k ≥ 3, then Dominating Set is in FPT with respect to `, and hence FPT =
W[2].

Theorem 3. For every k ≥ 3, the anchored k-core problem is W[2]-hard with
respect to the parameter b.

9

3 Graphs with Bounded Treewidth

Although we see that the anchored k-core problem is hopelessly inapproximable
on general graphs, we next give polynomial time exact algorithms for graphs
with bounded treewidth. The treewidth of a graph is defined as the minimum
width over all tree decompositions of the graph, where the width of a tree decom-
position is one more than the size of the largest node in the tree decomposition
(see [3] for a tutorial and survey on treewidth). In this section, we present an
algorithm that runs in time O(f(k,w)·b2)·poly(n), where f(k,w) = (3(k+1)2)w,
using w−1 as the graph’s treewidth. To distinguish the vertices of a tree decom-
position from the vertices of the original graph, we will call the elements of a
tree decomposition nodes, and the elements of the original graph will remain as
vertices. We will use the concept of nice tree decompositions for graphs, defined
in [3] — the idea that a tree decomposition can be converted into another tree
decomposition (a “nice” one) of the same treewidth and O(n) nodes, but with
the special property that each node comes in one of four types:

– Leaf Node: Only one vertex is associated with this node
– Introduce Node: The node has a single child, and if X is the set of vertices

associated with this node and Y is the child, then X = Y ∪ {v} for some v.
– Forget Node: The node has a single child, and if X is the set of vertices

associated with this node and Y is the child, then X = Y \ {v} for some v.
– Join Node: The node has two children, and if X is the set of vertices associ-

ated with this node, Y and Z are its children, then X = Y = Z.

We show how to solve a generalization of the anchored k-core problem. Let
threshold(v) represent the threshold of v, which is the minimum number of neigh-
bors that v requires in order to remain in the k-core (assuming v is not anchored).
Traditionally, in k-core, we use threshold(v) = k for all v ∈ V (G). Since we are
now considering a situation where the threshold function varies across vertices,
we will instead use k to denote the maximum threshold across all vertices.

For a fixed assignment of anchors, a vertex is either anchored, not saved, or
indirectly saved (not anchored, but saved). We show that the categorization of
vertices into these three types is enough to capture the complexity of the problem
on graphs with bounded treewidth. Define a fixture f of a tree decomposition T
to be an assignment of these three types to a subset of G[r(T)], the vertices of
G that are associated with the root node of T . We say that an assignment A of
anchors to vertices satisfies a fixture f if under the assignment A, the type of each
vertex designated by the fixture agrees with the type induced by the assignment
A. Define a threshold alteration m (which we will simply call an alteration) to
be a setting of the thresholds of some subset S ⊆ V (G) so that for each v ∈ S,
m reduces the threshold of v by some integer in the interval [0, threshold(v)]. We
use the notation m(T) to denote the tree obtained by lowering the thresholds of
all vertices as prescribed by m.

3.1 The Algorithm

10

Algorithm 3.1 Solve(T): The main subroutine used in the exact algorithm for
graphs with bounded treewidth.

(SolutionsT1 ,SolutionsT2)← (Solve(T1),Solve(T2))
for all fixtures f , alterations m, and budgets b do

if r(T) is a leaf node then
SolutionsT [f][m][b]← the result dicated by the fixture f

if r(T) is a forget node then
S ← {fixtures f ′ of T1 : ∀v ∈ G[r(T)], f(v) = f ′(v)}
SolutionsT [f][m][b]← maxf ′∈S SolutionsT1 [f ′][m][b]

if r(T) is an introduce node then
Set f ′ to be such that ∀v ∈ G[rT1)], f ′(v) = f(v)
Let v be the sole element of G[r(T)] \G[r(T1)]
Set m′ so that ∀u ∈ N(v),m′(u) = m(u)− 1 and ∀u 6∈ N(v),m′(u) = m(u)
if f(v) is anchored then

SolutionsT [f][m][b]← SolutionsT1 [f ′][m′][b− 1]
if f(v) is not saved then

SolutionsT [f][m][b]← SolutionsT1 [f ′][m][b]
if f(v) is indirectly saved then

SolutionsT [f][m][b]← SolutionsT1 [f ′][m′][b]
if r(T) is a join node then

b̂← b− |{v : f(v) is anchored}|
t← maxi∈[0,b̂],m̂∈[0,k]w (SolutionsT1 [f][m̂][i] + SolutionsT2 [f][m− m̂][b̂− i])
SolutionsT [f][m][b]← t

return SolutionsT

We first define a subroutine: Solve(T) for a tree decomposition T , also out-
lined in Algorithm 3.1. The output of Solve(T) will be, for all fixtures f and

all alterations m (within r(T)), and b̂ ∈ [1, b], the table Solutions(m(T), f, b̂).
Each entry of this table of solutions, SolutionsT [f][m][b], will describe an opti-
mal assignment of b anchors which satisfies the fixture f on the graph G[T], the
vertices of G that are associated with the nodes of T , under alteration m. Note
that if no such assignment that satisfies the stated restrictions can exist, then
the output of the entry is ⊥. (This could occur if, for example, the fixture f
requires 3 nodes to be anchored yet b < 3.)

Thus, Solve(T) will output at most (3(k + 1))w · b solutions. The 3w term is
due to the fact that there are 3w possible fixtures, and the (k+ 1)w term comes
from the fact that each vertex has threshold at most k, and so there are at most
k+ 1 choices for lowering the thresholds of each vertex in the root node (within
the range [0, k]). We now show that given the outputs of Solve(Ti) for each child
subtree Ti, we can compute Solve(T). This will be done through a case analysis
on the node type of the root node, denoted by r(T).

If r(T) is a leaf node, then Solutions(m(T), f, b) is trivial to determine for all
alterations m, fixtures f , and budgets b, as there is only one vertex associated
with r(T) and there are no other nodes in T (and so, an anchor is placed on this
vertex if it is anchored under f and b ≥ 1). Otherwise, let T1 and T2 denote the
child subtrees of r(T). If r(T) is a forget node, then let v be the vertex that is

11

associated with the child node but not in G[r(T)]. To find Solutions(m(T), f, b)
for all f , m, and b, we simply compute the maximum solution over possible
choices of the fixture type of v and the threshold alteration induced by the
partial fixture of the other vertices in G[r(T)].

If r(T) is an introduce node, then let v be the vertex in G[r(T)] that is
not associated with the child node. For fixtures f such that v is anchored, we
simply subtract one from the budget for T1 and retrieve the optimal solution
there under the induced partial fixture. This is obtained from the output of
Solutions(m′(T), f, b), where m′(u) = m(u) − 1 if u ∈ N(v) and m′(u) = m(u)
otherwise. If v is indirectly saved, we do not change the budget but obtain the
optimal solution under the induced partial fixture for Solutions(m′(T), f, b). If
v is not saved, we use the optimal solution on T1 under the induced fixture f .
Finally, if r(T) is a join node, then let i ∈ [1, b]. Also, for a fixture f , let S
be the set of all vertices in the root node that are indirectly saved. Note that
|S| ≤ w. We iterate over all of the at most (k + 1)w possibilities of dividing up
the thresholds for each v ∈ R between T1 and T2. We then iterate over all pairs
of solutions OPT(m(T1), f, i) and OPT(m(T2), f, b − i) and take the maximum
over such i.

This approach is repeated in a bottom-up manner until we have covered
the entire tree. Finally, we simply take the output of Solve(T) (the original tree
decomposition T of the entire graph) and find the optimal solution corresponding
to the tree on b anchors by taking the maximum value over all fixtures. The
formal proof of correctness is deferred to the full version.

Generalizations. This dynamic programming approach allows for several gen-
eralizations to the anchored k-core problem on graphs with bounded treewidth,
all of which can be solved exactly and run in time O(f(k,w) · poly(n, b)). For
example, one can assign weights to vertices. Also, as we have already seen, the
vertex thresholds can be non-uniform. Furthermore, the edges of the graph can
be directed, and each arc a = (u, v) can have a weight w(a) such that ensuring
that u is in the graph contributes a value of w(a) to the threshold of v.

4 Concluding Remarks

There remain several attractive open problems related to the anchored k-core
problem, especially on restricted classes of graphs. Is there a PTAS for planar
graphs? What can be said about the problem on random graphs? Can the run-
ning time of our polynomial-time algorithm for bounded treewidth graphs be
improved? Is there a linear-time algorithm for the anchored 2-core problem in
general graphs?

References

1. W. Brian Arthur. Competing technologies, increasing returns, and lock-in
by historical events. The Economic Journal, 99(394):116–131, March 1989.

12

2. Larry Blume. The statistical mechanics of strategic interaction. Games and
Economic Behavior, 5:387–424, 1993.

3. Hans L. Bodlaender and Arie M. C. A. Koster. Combinatorial optimization
on graphs of bounded treewidth. Comput. J., pages 255–269, 2008.

4. Moira Burke, Cameron Marlow, and Thomas Lento. Feed me: motivating
newcomer contribution in social network sites. In CHI, 2009.

5. Michael Suk-Young Chwe. Structure and strategy in collective action. Amer-
ican Journal of Sociology, 105(1):128–156, July 1999.

6. Michael Suk-Young Chwe. Communication and coordination in social net-
works. Review of Economic Studies, 67:1–16, 2000.

7. Rodney G. Downey, Michael R. Fellows, Catherine McCartin, and Frances
Rosamond. Parameterized approximation of dominating set problems. In-
formation Processing Letters, 109:68–70, 2008.

8. Glenn Ellison. Learning, local interaction, and coordination. Econometrica,
61:1047–1071, 1993.

9. Nicole B. Ellison, Charles Steinfield, and Cliff Lampe. The Benefits of Face-
book Friends: Social Capital and College Students’ Use of Online Social
Network Sites. Journal of Computer-Mediated Communication, 2007.

10. Rosta Farzan, Laura A. Dabbish, Robert E. Kraut, and Tom Postmes. In-
creasing commitment to online communities by designing for social presence.
In CSCW, 2011.

11. Michael L. Katz and Carl Shapiro. Network externalities, competition, and
compatibility. American Economic Review, 75(3):424–440, June 1985.

12. David Kempe, Jon Kleinberg, and Éva Tardos. Maximizing the spread of
influence through a social network. In KDD, pages 137–146, 2003.

13. David Kempe, Jon Kleinberg, and Éva Tardos. Influential nodes in a diffu-
sion model for social networks. In ICALP, pages 1127–1138, 2005.

14. Stephen Morris. Contagion. Review of Economic Studies, 67:57–78, 2000.
15. Elchanan Mossel and Sébastien Roch. On the submodularity of influence in

social networks. In STOC, pages 128–134, 2007.
16. Pekka Saaskilahti. Monopoly pricing of social goods. Technical report,

University Library of Munich, Germany, 2007.
17. Thomas C Schelling. Micromotives and Macrobehavior. Norton, 1978.

	Preventing Unraveling in Social Networks: The Anchored k-Core Problem

