
An Approximation Algorithm for the Disjoint Paths Problem in Even-Degree
Planar Graphs

Jon Kleinberg ∗

Abstract

In joint work with Éva Tardos in 1995, we asked whether
it was possible to obtain a polynomial-time, polylogarith-
mic approximation algorithm for the disjoint paths problem
in the class of all even-degree planar graphs [19]. This
paper answers the question in the affirmative, by providing
such an algorithm. The algorithm builds on recent work
of Chekuri, Khanna, and Shepherd [7, 8], who considered
routing problems in planar graphs where each edge can
carry up to two paths.

1 Introduction

The problem of connecting nodes in a network via dis-
joint paths is a basic algorithmic question for graphs. In
addition to its applications in such areas as network routing
[4, 28] and VLSI layout [16, 23, 29], it is also a fundamental
issue in graph theory, with developments on disjoint paths
problems often proceeding in close connection with general
structural results concerning graphs [12, 34].

In this paper we consider the following well-studied op-
timization version of the disjoint paths problem: given an
undirected graph G, and a collection T of pairs of nodes in
G – the terminal pairs – we wish to connect as many ter-
minal pairs as possible using paths that are mutually edge-
disjoint. (If all terminal pairs can be connected by edge-
disjoint paths, we say the instance is realizable.) This is
one of Karp’s original NP-complete problems [15]; due
to the problem’s intractability, and its role in applications,
attention has turned to the design of approximation algo-
rithms: a c-approximation algorithm for this problem is a
polynomial-time algorithm that routes at least 1

c ·OPT(G, T)
terminal pairs using edge-disjoint paths, where OPT(G, T)
is the maximum possible.

∗Department of Computer Science, Cornell University, Ithaca NY
14853. Email: kleinber@cs.cornell.edu. Supported by a David and Lu-
cile Packard Foundation Fellowship and NSF grants CCF-0325453, IIS-
0329064, and CCR-0122581; work done in part while on sabbatical leave
at Carnegie Mellon University.

Despite a significant amount of research, there are wide
gaps in our understanding of the approximability of the
disjoint paths problem. It is known that no polynomial-
time algorithm can achieve an approximation guarantee
of O(m1/2−ε) on directed graphs with m edges (unless
P = NP) [14], but this result is intrinsically based on
intractabilities for the directed case (specifically, hardness
with just two terminal pairs) that do not have analogues in
the undirected case. For undirected graphs, the strongest
hardness-of-approximation bounds are very recent results
of Andrews and Zhang and Chuzhoy and Khanna, lead-
ing to a lower bound of Ω((log m)1/2−ε) [2, 9]; and it is
entirely plausible — though quite out of reach using cur-
rent techniques — that there may be a corresponding poly-
logarithmic upper bound for all undirected graphs as well.
Currently, however, the only classes of undirected graphs
for which constant or polylogarithmic approximation algo-
rithms are known are the classes of trees with parallel edges
[13], expanders [18, 21], and grids and grid-like graphs
[3, 4, 19, 20].

The approximation results for trees are based on the
highly simplified structure of the underlying graph, and the
results for expanders are based on existence results assert-
ing that every instance of the disjoint paths problem in an
expander has a large optimum [5, 22]. The results for grids
and grid-like graphs, on the other hand, make use of a tech-
nique that can potentially be applied much more broadly:
relating the optimum to its fractional relaxation. In the frac-
tional variant of the problem (a version of the multicommod-
ity flow problem), each terminal pair can route a real-valued
amount of flow between 0 and 1, and this flow can be split
fractionally across a set of distinct paths. If we denote the
maximum value of a solution to the fractional relaxation by
OPT∗(G, T), then this provides a tractable upper bound on
the true optimum OPT(G, T) — a fact that provides signif-
icant analytical leverage when OPT(G, T) and OPT∗(G, T)
are close in value.

The Class of Even-Degree Planar Graphs. Short of a
result for all undirected graphs, what is a broad intermedi-
ate class of graphs for which we might hope to obtain strong

1

(b)(a)

Figure 1. The brick-wall graph (a) and the grid (b) are structurally very similar, differing primarily in
the degrees of their internal nodes (three versus four respectively).

approximation results? In our work with Éva Tardos on dis-
joint paths in grid-like graphs [19, 20], we made extensive
use of structural properties of grids (the quadratic growth
rate of balls, for example), but we observed that the success
of the algorithm seemed to depend most intrinsically on two
much more basic properties of grids:

(i) that they are planar graphs, and, more subtly,
(ii) that (almost) all their nodes have even degree.

Motivated by this, we say that an even-degree planar graph
is one in which each node’s degree is divisible by two.1 We
will also refer to even-degree graphs as Eulerian.

To understand the role of this even-degree condition in
the disjoint paths problem, it helps to consider three points.
First, a canonical approach to routing on grids is to pro-
duce large sets of mutually crossing paths, which can act
as “switching” structures for connecting up terminal pairs.
On a graph whose nodes have degree three, edge-disjoint
paths cannot cross, and so such an approach clearly can-
not be applied. Second, the gap between the true opti-
mum OPT(G, T) and its fractional relaxation OPT∗(G, T)
is bounded by a polylogarithmic factor in grids [19, 20], but
there are instances on 3-regular planar graphs for which it
can be as large as Ω(

√
n), providing essentially no help in

bounding the optimum. And third, there are many exactly
solvable special cases known for the disjoint paths problem
in planar graphs [12], but almost all require some type of
evenness assumption on the node degrees; thus, assuming
even degrees gives one access to this body of results.

To appreciate these issues in a very concrete setting, con-
sider the disjoint paths problem on the brick wall graph pic-
tured in Figure 1(a). (A general brick wall graph has n rows
and n columns; the figure shows n = 5.) Structurally, this
graph is extremely similar to the n× n grid, but because its
internal nodes have degree three instead of four, one can-
not use structures based on crossing paths for routing, and
one also cannot usefully relate the optimal solution to its
fractional counterpart. In fact, obtaining a polylogarithmic
approximation algorithm for disjoint paths on the brick wall
graph is an open problem that appears to be quite difficult; it

1While the grid does not completely satisfy this, due to the degree-three
nodes on its boundary, we will see later that this is a type of exception that
can be handled within our main result.

is very close in nature to the comparably hard node-disjoint
paths problem for grids.2

Based on considerations like this, we posed the follow-
ing open question in [19]:

(∗) Is it possible to obtain a polynomial-time,
polylogarithmic approximation algorithm for the
disjoint paths problem in the class of all even-
degree planar graphs?

Our Results. In this paper, we settle this question in
the affirmative, providing an O(log2 n)-approximation al-
gorithm for the disjoint paths problem in even-degree pla-
nar graphs. Our approximate solution is in fact within an
O(log2 n) factor of the fractional optimum, showing the re-
quirement of even degrees is all that is needed to reduce
the general polynomial gap between the fractional and true
optima in planar graphs down to a polylogarithmic factor.
(The algorithm can in fact handle planar graphs in which
a single face may contain nodes with odd degrees; in this
way, the class of graphs under consideration includes the
grid itself.)

Our algorithm builds on very interesting recent work of
Chekuri, Khanna, and Shepherd [7, 8], who considered the
routing problem with capacity two. This can be viewed as
the variation of the disjoint paths problem in which each
edge is allowed to carry two paths, rather than just one;
Chekuri et al. gave an O(log n)-approximation algorithm
(henceforth referred to as the CKS algorithm) for routing
with capacity two in arbitrary planar graphs. This was
considerably stronger than previous results, which required
edge capacity Ω(log n/ log log n) in order to achieve com-
parable guarantees (albeit in arbitrary graphs) [30, 31].

2It is natural to ask at this point why we do not consider the weaker con-
dition that the minimum degree be four — at a superficial level, this too
rules out the problems posed by degree-three nodes. But in fact this weaker
restriction would not gain us anything. Consider an instance of the disjoint
paths problem on an arbitrary planar graph G that may have degree-three
nodes, and attach by two edges to each node in G a constant-sized pla-
nar graph of minimum degree five. This new graph G′ has minimum de-
gree five, but the resulting instance of the disjoint paths problem is clearly
equivalent to the original one in G. Due to examples like this, it appears
that restrictions weaker than the even-degree condition are too “brittle” to
avoid the qualitative problems associated with degree-three nodes.

There is a natural connection between the CKS algo-
rithm and question (∗), which can be appreciated as follows:
One way to represent a planar graph G with edge capacity
two is to replace every edge of G with two parallel copies,
obtaining a planar graph G′. The disjoint paths problem on
G′ is then equivalent to the routing problem G with capacity
two; and clearly any such graph G′ has even node degrees
(since all its edges come in pairs). Of course, such graphs
form a particular special case of the class of all even-degree
planar graphs; thus, our result can be interpreted in this way
as a generalization of the capacity-two case. (One should
note, however, that our bound for this more general prob-
lem is weaker by a logarithmic factor: O(log2 n) instead of
O(log n).)

If one considers the disjoint paths problem in terms of
its motivating routing applications, it is natural to ask how
crucial disjointness is, compared with relaxed constraints
like capacities of two. The answer seems to vary depending
on the application. For settings in which each connection
consumes a large fraction of the bandwidth on a link, a ca-
pacity of two may be a reasonable assumption – essentially,
one is positing that each connection uses at most half the
bandwidth. In other settings, however, the disjointness re-
quirement is motivated by specific circuit-switched models,
by fault-tolerance, or by the need for failure-independence
among connections, and here it differs in qualitative ways
from the condition of a small edge capacity c > 1.

Ultimately, however, as suggested above, understanding
the tractability of the disjoint paths problem is also a fun-
damental issue in graph algorithms, and progress in map-
ping out the boundary between approximability and inap-
proximability is a crucial issue in this light as well. Our
result here illustrates the surprisingly powerful role that the
even-degree condition plays for approximability in planar
graphs, enabling the use of fractional relaxations and lead-
ing to strong performance guarantees.

2 Preliminaries and Overview

Grids and Crossbars. In addition to their importance as
a special case, grid graphs have played a significant role
in the development of disjoint paths algorithms due to the
special routing properties they exhibit. One key property
is their usefulness as “crossbar” structures: any instance of
the disjoint paths problem on an n × n grid in which the
terminals reside at distinct nodes in the first column is real-
izable. (Essentially, one routes each terminal pair out to a
distinct column, and then connects them up there — hence
the term “crossbar,” to suggest that the grid can act as a
large “switching station” for terminals on its boundary.) As
a result of this simple observation, many disjoint paths al-
gorithms try to identify a “grid-like” subgraph in the input
graph, route many terminals to the boundary of this sub-

graph, and then use the subgraph as a crossbar to link them
up inside [3, 7, 8, 17, 19, 20]. This general strategy helps
form the basis for our algorithm here as well.3

The CKS algorithm. Our algorithm builds on the CKS
algorithm, adapting it to make use of the even-degree con-
dition so as to produce paths that are edge-disjoint. It is
therefore useful to briefly review their approach first. The
crucial ingredient in the CKS algorithm is the following.
For a set of nodes S ⊆ V , let δ(S) denote the set of
edges with exactly one end in S. We say that a set of
nodes Z in G is well-linked if for every set S containing
at most half of Z, we have |δ(S)| ≥ |S ∩ Z|. Chekuri
et al. show that for any input (G, T), one can efficiently
compute node-disjoint induced subgraphs G1, . . . , Gr of G,
and corresponding disjoint subsets T1, . . . , Tr of T , so that
(a) the terminal pairs in Ti belong to Gi; (b) the mem-
bers of the terminal pairs in Ti are well-linked as a set of
nodes in Gi; and (c) the total size of the sets Ti is at least
OPT∗(G, T)/λ(n) ≥ OPT(G, T)/λ(n), for a polylogarith-
mic function λ(n). In [8], it is shown that one can bound
λ(n) by O(log n). We will leave the value of the function
λ(n) implicit, since improvements in this bound translate
directly to improvements in the performance guarantee of
the overall algorithm (as they do in [7, 8] as well). We will
refer to each instance (Gi, Ti) as a well-linked instance, and
the division of (G, T) into these instances as a well-linked
decomposition.

By standard reduction techniques [7, 12], one can also
modify all instances so that the maximum node degree is
four (and this can be done in such a way that no odd-degree
nodes are introduced).

Given a well-linked instance (Gi, Ti), with Gi planar,
Chekuri et al. [7] adapt a technique of Robertson, Seymour,
and Thomas [35] to construct a minor of Gi isormorphic
to an Ω(|Ti|) × Ω(|Ti|) grid.4 By routing Ω(|Ti|) terminals
to the boundary of this grid minor, and then using the grid
minor itself as a crossbar structure, they are able to route
a constant fraction of all terminal pairs in the instance. A
capacity of two is required because they are using a grid
minor rather than an actual grid subgraph; for example, if
the grid minor is built from a brick wall graph in Gi, then
clearly some edges of Gi will in fact carry two paths when

3Although it is not crucial to our discussion here, it is worth noting
that grid structures also play a central role in Robertson and Seymour’s
algorithm for the disjoint paths problem with a constant number of terminal
pairs [34], but for a slightly different reason: Rather than using a grid as
a crossbar directly, they implicitly use its crossbar properties to declare
certain internal nodes of a large grid structure “irrelevant” to the solvability
of the input instance.

4For graphs G and H, we say that G contains an H-minor if one can
identify disjoint connected subgraphs of G (“super-nodes”) corresponding
to the nodes of H, such that two super-nodes have an edge of G connecting
them whenever the corresponding nodes in H are joined by an edge. We
give a more extensive discussion of minors in Section 4.

(b)(a)

Figure 2. In these examples, a well-linked decomposition must separate the weakly-attached sub-
graphs from the larger enclosing graph, producing odd-degree nodes in the process.

used as part of this crossbar.

Making Use of the Even-Degree Condition. Intuitively,
one should use the even-degree condition on Gi to construct
a better type of grid. For example, if Gi contained a sub-
graph H actually isomorphic to a grid, or at least to a sub-
division of a grid (i.e., a grid in which each edge is replaced
by a chain of degree-two nodes), then one could use H as a
crossbar in which the paths remained edge-disjoint. While
our algorithm follows this intuition in a very general sense,
the situation is in fact more complex than this for two fun-
damental reasons.

(i) First, an even-degree planar graph may contain a large
well-linked set of nodes and yet not contain a subdivi-
sion of a grid of more than constant size. (For exam-
ple, consider a copy of the brick wall graph in which
every alternate edge in each row is replaced with two
parallel copies.) So if we want to use a stronger type
of grid structure, we need to look for something more
complicated than a subdivision.

(ii) Second, we cannot in fact assume that each Gi in a
well-linked decomposition has even degrees: the pro-
cess of dividing G into the subgraphs Gi will change
the degrees of nodes in hard-to-control ways.

We deal with the first of these problems by defining a
structure that we call a transparent minor — roughly, this
is a minor whose super-nodes are well-connected enough
that instances of the disjoint paths problem defined inside
them are realizable. Essentially by definition, a transpar-
ent grid minor can be used as a crossbar with edge-disjoint
paths; and we show that an even-degree planar graph with
a well-linked set of size k contains a transparent minor iso-
morphic to an Ω(k)×Ω(k) grid. We do this by adapting the
technique of Robertson, Seymour, and Thomas mentioned
above, combining it with the Okamura-Seymour theorem
[27] to produce edge-disjoint paths that cross extensively.

However, as noted in (ii), the graphs Gi may not in fact
be even-degree, and we describe next how to deal with this
further difficulty.

Handling Odd-Degree Nodes. To understand how odd-
degree nodes can arise in Gi — and to see that they can-
not be avoided just by choosing a well-linked decomposi-
tion carefully — consider the examples illustrated schemat-
ically in Figure 2: These examples are constructed by taking
a grid-like planar graph, removing one or more subgraphs
from the interior, and reconnecting these subgraphs by very
sparse sets of edges to the rest of the graph. With terminals
defined appropriately, any well-linked decomposition must
separate out these subgraphs, and thereby introduce odd-
degree nodes. As a richer example, consider a recursive ver-
sion of Figure 2(a): within each of the four weakly-attached
subgraphs, there are four more weakly-attached subgraphs
each, and four more within each of these, and so forth recur-
sively. Any well-linked decomposition may have to break
apart all these subgraphs along the sparse cuts.

Our goal will be to try partially “restoring” the even-
degree condition, by modifying each subgraph in the well-
linked decomposition. The challenge here is that these mod-
ifications may destroy the property that all subgraphs are
node-disjoint, but we will try to control how they overlap so
that a large subset of them remains mutually disjoint. In the
recursive version of Figure 2(a), we could carry out these
modifications as follows: for each subgraph Gi at level `
of the recursion, we “fill back in” all its weakly-attached
subgraphs from deeper levels (but don’t introduce any new
terminals). We thus have a well-linked instance (G′

i, Ti)
with odd-degree nodes only on the outer face, so we can
use an extension of the Okamura-Seymour theorem due to
Frank [11, 12] to construct a large transparent grid minor
in G′

i. Moreover, the subgraphs G′

i at a fixed level remain
node-disjoint, so we can produce paths in all of them inde-
pendently; and since there are only O(log n) levels of recur-
sion, we can work just with the level on which we route the
most terminal pairs and lose only a further O(log n) factor
in the approximation.

This won’t work for the recursive version of Figure 2(b),
however, where we introduce just one internal weakly-
attached subgraph at each level of the recursion. Here the
recursion goes on for Θ(n) levels, and filling in the nodes
at level ` interferes with the routing at all deeper levels. But

here, things work out for the following completely different
reason. The recursion runs very deeply because there is only
one internal subgraph per level, and so the subgraphs Gi

in the well-linked decomposition have odd nodes on only
two faces. We therefore use Okamura’s extension of the
Okamura-Seymour theorem [26], which can be adapted to
allow odd-degree nodes on up to two faces, and we con-
struct large transparent grid minors in all the subgraphs Gi

without having to modify them.
Of course, this discussion has been in terms of the sin-

gle pair of recursive examples derived from Figure 2. But
it gives the basic idea in general: for an arbitrary planar
graph, we define a notion of “level,” and take advantage of
the trade-off between having a small number of levels (as in
(a)) and having many subgraphs Gi with odd-degree nodes
on only two faces (as in (b)).

Outline. The remainder of the paper is organized as fol-
lows. In Section 3, we show how to implement the ap-
proach just discussed, partitioning the instances and par-
tially restoring the evenness condition. In Section 4, we pro-
vide basic definitions and properties of transparent minors,
and related structures that we call weavings. In Sections 5
and 6, we describe how to construct large transparent grid
minors in the subgraphs arising from the well-linked de-
composition, as modified by the construction in Section 3.
Finally, we summarize the full routing algorithm in Sec-
tion 7.

3 Partially Restoring the Evenness Condition

Suppose we are given a well-linked decomposition of an
instance (G, T), where G is an even-degree planar graph.
Let G denote the set of all subgraphs Gi in this decompo-
sition; we may assume that each Gi ∈ G is connected. We
wish to establish the following fact.

Theorem 3.1 There is a polynomial-time algorithm to con-
struct a set of subgraphs {G′

i : Gi ∈ G}, and partition these
subgraphs into O(log n) classes, such that

(i) Gi is a subgraph of G′

i, which in turn is a subgraph of
G.

(ii) Each G′

i has nodes of odd degree on at most two faces,
and

(iii) All the subgraphs G′

i in a single class are node-
disjoint.

Note that since each (Gi, Ti) is a well-linked instance,
so is (G′

i, Ti) (as we produce the new instance (G′

i, Ti)
by adding nodes and edges to the graph, but not defining
any new terminals). In the following sections, we show
how to take a well-linked instance (G′

i, Ti), where G′

i sat-
isfies (ii), and route a constant fraction of all its terminal

pairs. Since we may do this for all the instances in a sin-
gle class simultaneously (by (iii) their underlying graphs
are disjoint), and since one of the classes contains at least
OPT(G, T)/(λ(n) log n) terminal pairs, we thereby obtain
an approximation guarantee of O(λ(n) log n) = O(log2 n)
by simply doing this for each class, and taking the one in
which we route the most terminal pairs.

We now proceed to prove Theorem 3.1. We fix a drawing
of the graph G in the plane R

2; we will also use G to denote
to the drawing of the graph, when there is little risk of con-
fusion. A face of G is a connected component of R

2 \ G;
the outer face of G is the unbounded component of R

2 \G,
and all other faces are internal. Each face is bordered by the
set of nodes and edges incident to it, which are naturally or-
dered in a facial walk: this is a cycle that may repeat nodes
and edges.

From a drawing of G, we can define a drawing for each
subgraph Gi ∈ G, obtained by simply deleting all nodes in
G \ Gi. Now, every internal face Γ of Gi is either also a
face of G, or else it is the result of deleting some number
of nodes of G \ Gi that were drawn inside Γ. In the former
case, we will refer to Γ as a basic face of Gi, and in the latter
case we will refer to it as an exceptional face. (We will not
refer to the outer face of Gi as either basic or exceptional.)
We note the following simple observation.

Lemma 3.2 If a node v has odd degree in Gi, then it is
incident to the outer face of Gi or to at least one exceptional
face.

As suggested earlier, we will define each subgraph G′

i by
“filling in” the nodes missing from some of the exceptional
faces of Gi. We now investigate how this interferes with
the node-disjointness condition, by defining the following
partial order. Given subgraphs Gi and Gj , since they are
connected and node-disjoint, it is either the case that one
is drawn inside an exceptional face of the other, or each is
drawn in the outer face of the other. We define a partial
order on the subgraphs in the decomposition, writing Gi �
Gj if Gi is drawn inside an exceptional face of Gj . Here is
the key property of this partial order.

Lemma 3.3 If Gi, Gj , and Gk are subgraphs such that
Gi � Gj and Gi � Gk, then Gj and Gk are compara-
ble with respect to �.

This lemma allows us to represent the partial order �
on G as follows. We say that a partial order v on a set U
is tree-representable if there exists a rooted forest H with
node set U , and connected components equal to rooted trees
T1, . . . , Tr, such that u v v if and only if u and v belong
to the same component and u is a descendent of v. By
Lemma 3.3, we have

Lemma 3.4 The partial order � on G is tree-representable.

Let T1, . . . , Tr be the trees in the representation provided
by Lemma 3.4. We now use the structure of these trees to
guide the construction of the subgraphs G′

i and their parti-
tion into a small number of classes.

The main tool for this is the following simple decompo-
sition result for trees; it is reminiscent of the caterpillar de-
composition [24, 25], though different in its specifics. Given
a rooted tree T , and a subset of nodes X , we use T [X] to
denote the rooted forest induced on the nodes of X ; we say
that T [X] is a rooted path if it is a connected subset of a
single root-to-leaf path in T .

Lemma 3.5 Given a rooted tree T with n nodes, one can
partition its nodes into sets X1, X2, . . . , X` such that ` =
O(log n), and for all i we have the following:

(i) Each component of T [Xi] is a rooted path.
(ii) If u, v ∈ Xi are such that one is a descendent of the

other in T , then they belong to the same component of
T [Xi].

The proof is omitted due to lack of space. Essentially, the
construction that proves the lemma is as follows. Viewing
T as an undirected graph, we can find a separator node: a
node v such that no component of T \{v} has more than n/2
nodes. We define X1 to be any root-to-leaf path containing
v. In general, having produced X1, . . . , Xb, we define Tb =
T \ (X1 ∪ · · · ∪ Xb). We apply the above construction in
each component of Tb, producing one rooted path in each
component that together form the set Xb+1.

We now prove Theorem 3.1 by applying this decompo-
sition result to the tree representation of �.

Proof Sketch for Theorem 3.1. As above, let T1, . . . , Tr

be the trees in the representation of the partial order �
provided by Lemma 3.4. We apply Lemma 3.5 to each
tree Ta, producing sets Xa,1, Xa,2, . . . , Xa,`(a). Let ` =
maxa `(a), and define Yb = ∪aXa,b for b = 1, 2, . . . , `.
We note that ` = O(log n).

Observe that for each b, the set Yb consists of a collection
of rooted paths in the partial order, with elements in differ-
ent paths incomparable. It follows that for any subgraph
Gi ∈ Yb, all the subgraphs Gj ∈ Yb for which Gj � Gi are
drawn inside a single exceptional face Γi of Gi. We define
G′

i by adding to Gi all nodes drawn inside all exceptional
faces other than Γi. Thus, Γi is the only exceptional face of
G′

i.
One can now verify that this collection of subgraphs sat-

isfies the conditions of the theorem.

Following the plan suggested at the beginning of this sec-
tion, we will assume in the following sections that we are
dealing with a single instance (G, T), where T is a well-
linked set of k terminals and G is a planar graph (of max-
imum degree four) with odd-degree nodes on at most two
faces.

4 Transparent Minors and Weavings

Transparent Minors. Here we define the notion of a
transparent minor of a graph. First, we use a slightly un-
usual definition of a minor of a graph that is equivalent
to the standard one: we say that H is a minor of a graph
G = (V, E) if there exist

a collection of super-nodes — disjoint sets of nodes in
G corresponding to the nodes of H , denoted {S(α) :
α ∈ V (H)}, such that each subgraph G[S(α)] is con-
nected; and
a collection of super-edges — paths in G correspond-
ing to the edges of H , denoted {P (α, β) : (α, β) ∈
E(H)}. Each path P (α, β) should have its endpoints
in S(α) and S(β), and its internal nodes should be dis-
joint from all the sets {S(α) : α ∈ V (H)} and from
all other paths P (γ, δ).

We will refer to the subgraph of G consisting of all super-
nodes and super-edges as an H-minor in G.

Informally, a transparent minor of G is one in which
the super-nodes are sufficiently well-connected that one can
solve instances of the disjoint paths problem inside them.
We say that a node of S(α) is a port if it is an endpoint of
one of the incident super-edges P (α, β). For a node α in
H , we let d(α) denote the degree of α. Now, we say that H
is a transparent minor of G if H is a minor of G, and each
super-node S(α) satisfies the following condition:

Let T be a set of ≤ dd(α)/2e terminal pairs in
S(α) such that at most one member of the multiset
{s1, . . . , sk, t1, . . . , tk} is not a port. Then T is re-
alizable in G[S(α)].

It is easily checked that if G contains a subgraph isomor-
phic to a subdivision of H , then G contains a transparent
H-minor; but as noted in the introduction, there exist ex-
amples of graphs containing a transparent H-minor but no
subdivision of H .

But while transparent minors are more general than sub-
divisions, they are defined so as to share a fundamental
property with them: if H is a transparent minor of G, then
one can convert a routing of terminal pairs through H into
a routing through G.

Lemma 4.1 Let {(α1, β1), . . . , (αk , βk)} be a realizable
set of terminal pairs in a graph H , with all 2k terminals
distinct, and let G be a graph that contains a transparent
H-minor. In G, choose arbitrary nodes si ∈ S(αi) and
ti ∈ S(βi) for i = 1, 2, . . . , k. Then the set of terminal
pairs {(s1, t1), . . . , (sk, tk)} is realizable in G.

Weavings. In constructing a transparent grid minor, we
will use sets of paths that intersect one another in particular
ways. This is a standard general approach to constructing

grid minors (see e.g. [1, 7, 8, 10, 32, 33]), though the details
tend to differ depending on the application; here we must be
careful to ensure the transparency of the minor.

We begin with a basic definition. Fix a drawing of a
planar graph K, and consider two simple paths P and Q
that meet at a node v. Let e, e′ be the edges of P incident
to v, and let f, f ′ be the edges of Q incident to v. We say
the meeting of P and Q is oblique if e and e′ appear next
to each other in the clockwise order of {e, e′, f, f ′}, and we
say that meeting is tranverse otherwise.

We now define a particular configuration of crossing
paths. Let K be a planar graph drawn in a disc ∆, and
let W be a set of paths in K. We say W is a weaving in K
if the following properties hold.
(W1) W consists of paths P1, P2, . . . , Pa, Q1, Q2, . . . , Qb

such that the path Pi has endpoints pi, p
′

i,
the path Qj has endpoints qj , q

′

j , and these
endpoints are all distinct and drawn on the
boundary of ∆ in clockwise order q1, q2, . . . ,
qb, p

′

1, p
′

2 . . . , p′a, q′b, q
′

b−1, . . . , q1, pa, pa−1, . . . , p1.

(W2) All paths in W are mutually edge-disjoint.
(W3) For each i < j, there is no tranverse crossing between

Pi and Pj , or between Qi and Qj .
Further, we say that W is a simple weaving in K if all paths
in W are simple (no path revisits the same node), and there
is at most one transverse crossing between any pair of paths.
We refer to the paths P1, . . . , Pa as the rows of the weaving
and the paths Q1, . . . , Qb as the columns; and we refer to
the set of pairs of endpoints of all paths as the anchors of
the weaving. The order of a weaving is min(a, b).

In the next two sections, we show how to construct these
objects in the graph associated with the input instance.

5 Constructing a Weaving

We are given an instance (G, T) of the disjoint paths
problem subject to the assumptions specified at the end of
Section 3; in this section, we show that G contains a sub-
graph with a weaving of order Ω(k). In the next section, we
will claim that one can construct, from this, a simple weav-
ing in G of order Ω(k), and then from this a transparent grid
minor in G of order Ω(k).

Some Sufficient Conditions for Realizability. Let K be
a planar graph (without self-loops, but potentially with par-
allel edges), drawn in the plane R

2. By an arc, we mean a
homeomorphic image of the interval [0, 1], and by a loop,
we mean a homeomorphic image of the unit circle. A loop
or arc in R

2 is K-normal if it meets the drawing of K only
at nodes; for such a loop or arc I ⊆ R

2, we use I ∩ K to
denote the set of nodes of K that are met by I . The length
of a K-normal arc or loop I is defined to be |I ∩ K|. If

L ⊆ R
2 is a loop, then its interior Int(L) is the closure of

the bounded component of R2\L, and its exterior Ext(L) is
the closure of the unbounded component of R

2 \L. An arc
I is a meridian of L with respect to Int(L) (resp. Ext(L))
if both ends of I belong to L, and the interior of I lies in the
interior of Int(L) (resp. Ext(L)). The two arcs obtained
from L by deleting the endpoints of a meridian I will be
called the alternate arcs of L with respect to I .

There are a number of theorems providing sufficient con-
ditions for the solvability of the disjoint paths problem in
planar graphs; here we use a theorem of Okamura [26], gen-
eralizing an earlier theorem of Okamura and Seymour [27].
Let (K,X) be an instance of the disjoint paths problem, and
let K + X denote the graph in which the pairs correspond-
ing to X are added as edges to K. For a set S ⊆ V (K), let
γ(S) denote the set of terminal pairs with exactly one end
in S. Okamura’s Theorem is the following.

Theorem 5.1 ([26]) Let (K,X) be an instance of the dis-
joint paths problem in which

(i) K is planar;
(ii) there are faces Γ and Γ′ such that each terminal pair

in X has both members incident to one of Γ or Γ′;
(iii) the graph K + X is Eulerian; and
(iv) the cut condition holds: for every set S ⊆ V (K), we

have |γ(S)| ≤ |δ(S)|.
Then the instance is realizable, and edge-disjoint paths
joining all terminal pairs can be found in polynomial time.

(The Okamura-Seymour theorem is the variant of this theo-
rem in which (ii) is weakened to require all terminals to be
incident to a single face [27].)

To build a weaving, we will want to be able to construct
edge-disjoint paths in a planar graph with all terminal pairs
on the outer face (these will form the anchors of the weav-
ing), and with nodes of odd degree potentially incident to
both the outer face and an exceptional face Γ∗. This is close
to the setting of Okamura’s Theorem, except that K + X
may not be Eulerian.

We deal with this using an analogue of an idea applied
by Frank to the Okamura-Seymour theorem [11, 12]. We
define each odd-degree node to be a terminal, and we de-
fine new terminal pairs by matching them up consecutively
around each face. We now have the desired Eulerian con-
dition, but the new terminal pairs may have caused the cut
condition to be violated. The cut condition will survive this
construction, however, if we assume a stronger, extended
cut condition on the initial instance; then the extra terminals
cannot push |γ(S)| up high enough to exceed |δ(S)| for any
set S. Here is the precise formulation of the theorem.

Theorem 5.2 Let (K,X) be an instance of the disjoint
paths problem in which

(i′) K is planar.
(ii′) All terminals lie on the outer face Γ0 of K;
(iii′) All odd-degree nodes of K lie on Γ0 and at most one

other face Γ∗.
(iii′′) There is at most one node incident to both Γ0 and Γ∗;

and if there are no nodes incident to both then there are
an even number of odd nodes incident to each.

(iv′) The extended cut condition holds: for every set S ⊆
V (K), such that both K[S] and K \ S are connected,
we have |γ(S)| < |δ(S)|; moreover, if S and V (K) \
S each contain nodes incident to both Γ0 and Γ∗, we
have |γ(S)| < |δ(S)| + 2.

Then the instance is realizable, and edge-disjoint paths
joining all terminal pairs can be found in polynomial time.

Constructing a Weaving. We now return to our instance
(G, T). To construct a weaving, we will find a G-normal
loop L∗ of length Ω(k) bounding a subgraph G∗ in which
the extended cut condition holds for a set of terminal pairs
defined on the outer face of G∗ to form the anchors of a
weaving. We use Theorem 5.2 to construct edge-disjoint
paths; by planarity, these paths must mutually cross, yield-
ing the desired weaving.

Thus, the crux of the following theorem is the existence
of an appropriate G∗ and L∗. We sketch the proof here.

Theorem 5.3 G contains a subgraph with a weaving of or-
der Ω(k), and this weaving can be constructed in polyno-
mial time.

Proof Sketch. We adapt a greedy procedure due to Robert-
son, Seymour, and Thomas [35], a variant of which was
also employed by Chekuri et al. [7, 8]; it was used in
these papers to construct grid minors in planar graphs un-
der assumptions that were similar, but without the even-
degree condition and without the goal of ensuring edge-
disjointness among the paths. The construction is also re-
lated to an approach used in our work with Tardos [19, 20].

We start with a G-normal loop L that completely en-
closes the drawing of G. We now shrink this loop by a
sequence of local operations. Whenever the length of L is
less than ck for a small constant c, we push it inward so
it passes through an additional node. We can also slide it
over an edge between consecutive nodes on L. Finally –
the crucial operation – if L currently bounds a subgraph G′,
we look for a “short-cut” through G′. A short-cut here is
G′-normal meridian I with respect to Int(L) such that both
alternate arcs L1 and L2 are at least as long as I . In this
case, we replace L with Li ∪ I for the i ∈ {1, 2} such that
Int(Li ∪ I) contains more nodes of X .

Since the terminal set in G is well-linked, and the length
of L is always much less than k, this process must stop
while there are still Ω(k) terminals in Int(L). Let L∗ be

the loop at termination, G∗ the subgraph drawn inside it,
and Z the Ω(k) nodes at which L∗ meets G∗. We define
an instance of the disjoint paths problem in G∗ by pairing
members of Z in the order formed by the anchors in the
definition of a weaving.

Because we iteratively updated L until no short-cuts
could be found, the extended cut condition almost holds.
The one difficulty is that we need |γ(S)| < |δ(S)|+2 when
S and V (G∗) \S each contain nodes on both the outer face
of G∗ and also Γ∗. We thus define the iterative procedure
to produce L∗ more broadly: we allow short-cuts that pass
through Γ∗ to be up to two nodes longer than the alternate
arcs. A long short-cut such as this can be produced only
once in the whole process, however, since after construct-
ing it we have all odd-degree nodes on the outer face of G∗.
Hence the length of L∗ can only grow by two nodes above
the bound ck over the course of all iterations, so it remains
sufficiently short for the above arguments to hold.

Thus, we are in a position to apply Theorem 5.2; one then
verifies that the resulting set of paths forms the weaving.

In addition to having a weaving of order Ω(k), we would
like one for which a large subset of terminals can be routed
to the anchors using disjoint paths. We accomplish this us-
ing the folllowing argument of Chekuri et al. [8] (which they
attribute to Paul Seymour).

For two sets of nodes A and B in a graph, with |A| ≤
|B|, we say that A is attachable to B if there exist |A| edge-
disjoint paths, each with one end in A and the other in B.
If the weaving constructed in Theorem 5.3 does not have
the property that the anchors are attachable to the termi-
nals, then by well-linkedness, there is a short loop L′ in-
side G∗ (derived from a small cut) that contains most of the
terminals inside it. We can resume the iterations from the
proof of Theorem 5.3 from L′ and again run them to ter-
mination. Repeating this as often as needed, we eventually
end up with a loop L∗ that establishes the following.

Theorem 5.4 G contains a subgraph with a weaving of or-
der Ω(k) for which the anchors are attachable to the set of
terminals, and this weaving can be constructed in polyno-
mial time.

6 Constructing a Transparent Grid Minor

We now convert the weaving into a transparent grid mi-
nor of comparable size. While it would be possible to de-
scribe the routing algorithm directly in terms of the weav-
ing, in fact weavings are conceptually messier than grids,
and it is useful to abstract this complexity inside the state-
ments of the following two theorems. Moreover, having a
grid minor allows one to directly adapt routing algorithms
that assume the existence of a grid, rather than having to
modify these algorithms.

We first use an iterative procedure that “pulls out” extra
transverse crossings in the weaving, in a manner analogous
to the proof of Theorem 4.1 of Graph Minors III [32]. (The
details differ since our goals here are in a sense the opposite
of [32]: there the construction sought crossing paths that
shared edges, whereas here we seek to keep the paths edge-
disjoint.) We argue this procedure terminates, establishing

Theorem 6.1 G contains a subgraph with a simple weav-
ing of order Ω(k), for which the anchors are attachable to
the set of terminals, and this simple weaving can be con-
structed in polynomial time.

We then take every other row and every other column in
the simple weaving, and show their crossings can be used
to define super-nodes in a transparent grid minor. (It would
not work to use every row and column, as adjacent rows and
columns may be too extensively intertwined.) Thus,

Theorem 6.2 G contains a subgraph with a transparent
grid minor of order Ω(k), and this minor can be constructed
in polynomial time. Moreover, it is possible to select a node
from each boundary super-node so that the resulting set A
is attachable to the set of terminals.

7 The Full Routing Algorithm

Finally, we summarize the full routing algorithm, using
the components developed in earlier sections. First, we use
the method of Chekuri et al. [8] to produce a well-linked de-
composition, and then we apply Section 3 to partition these
instances into O(log n) classes. For each class, we will pro-
duce a routing for all the instances in the class, using paths
that share no edges across instances; we then choose the
class in which the most terminal pairs are routed.

Thus, suppose we are working with a single instance
(G′

i, Ti) having ki terminal pairs. First, using Sections 5
and 6, we construct a subgraph H of G′

i that is a transpar-
ent grid minor of order Ω(ki), such that a set A consisting of
one node from each boundary super-node of H is attachable
to the set X of terminals.

From here, the algorithm now closely follows the CKS
algorithm, with our transparent grid minor playing the role
of their arbitrary grid minor. The goal of the remainder
of the algorithm is to route Ω(ki) terminal pairs via edge-
disjoint paths in G′

i. The fact that the terminal set X is at-
tachable to the boundary of the grid minor, together with the
well-linkedness of X , implies that we can in fact find mem-
bers of a set T ′

i of Ω(ki) terminal pairs that can be routed by
edge-disjoint paths to distinct nodes on the boundary of H .
We then use a technique from [7] to avoid having the paths
used for routing terminals to the boundary of the grid minor
overlap with paths used inside the grid for linking them up:
we find a minor H ′ corresponding to a constant fraction of

the rows and columns of H , such that a constant fraction of
the pairs in T ′

i have both their members outside the draw-
ing of H ′. We route these terminals to distinct nodes on the
boundary of H ′ without using any of its internal edges.

Thus, to conclude the routing, we are left with a sub-
problem in which the underlying graph is the transparent
grid minor H ′, and the terminal pairs T ′′

i consist of the
paired points on the boundary of H ′ where the terminals
in T ′

i were routed. By viewing H ′ as an actual grid (rather
than a minor), we can construct edge-disjoint paths through
H ′ connecting a constant fraction of the terminal pairs in
T ′′

i . Finally, since H ′ is transparent, we apply Lemma 4.1
to convert these grid paths into edge-disjoint paths in G′

i

connecting the same pairs of terminals. We thus route Ω(ki)
terminal pairs using edge-disjoint paths in G′

i.

Acknowledgements. We thank Chandra Chekuri, San-
jeev Khanna, and Bruce Shepherd for valuable comments,
and for pointing out an error in an earlier version of this
work.

References

[1] N. Alon, P. Seymour, R. Thomas. “Planar separators,”
SIAM J. Discrete Math. 7 (1994) 184-193

[2] M. Andrews, L. Zhang. “Hardness of the undi-
rected edge-disjoint paths problem.” Proc. 37th ACM
Symp. on Theory of Computing 2005.

[3] Y. Aumann, Y. Rabani, “Improved bounds for all-
optical routing,” Proc. 6th ACM-SIAM Symp. on Dis-
crete Algorithms, 1995, pp. 567–576.

[4] B. Awerbuch, R. Gawlick, F.T. Leighton, Y. Ra-
bani, “On-line admission control and circuit routing
for high performance computing and communication,”
Proc. 35th IEEE Symp. on Foundations of Computer
Science, 1994, pp. 412–423.

[5] A. Broder, A. Frieze, E. Upfal, “Existence and con-
struction of edge-disjoint paths on expander graphs,”
SIAM J. Computing, 23(1994), pp. 976–989.

[6] C. Chekuri, S. Khanna, B. Shepherd, “The All-or-
Nothing Multicommodity Flow Problem,” Proc. 36th
ACM Symp. on Theory of Computing, 2004.

[7] C. Chekuri, S. Khanna, B. Shepherd, “Edge-disjoint
paths in planar graphs,” Proc. 45th IEEE Symp. on
Foundations of Computer Science, 2004.

[8] C. Chekuri, S. Khanna, B. Shepherd, “Multicommod-
ity flow, well-linked terminals, and routing problems,”
Proc. 37th ACM Symp. on Theory of Computing, 2005.

[9] J. Chuzhoy, S. Khanna. “Improved hardness re-
sults and integrality gaps for edge-disjoint paths,”
manuscript, 2005, cited in [8].

[10] R. Diestel, K.Yu. Gorbunov, T.R. Jensen and C.
Thomassen. Highly connected sets and the excluded
grid theorem, J. Combin. Theory Ser. B 75 (1999).

[11] A. Frank, “Edge-disjoint paths in planar graphs,”
J. Comb. Theory Ser. B, 39(1985), pp. 164–178.

[12] A. Frank, “Packing paths, cuts, and circuits — a sur-
vey,” in Paths, Flows, and VLSI-Layout, B. Korte,
L. Lovász, H.J. Prömel, A. Schrijver, Eds., Berlin:
Springer-Verlag, 1990, pp. 49–100.

[13] N. Garg, V. Vazirani, M. Yannakakis, “Primal-dual ap-
proximation algorithms for integral flow and multicut
in trees, with applications to matching and set cover,”
Proc. International Colloq. on Automata, Languages,
and Programming, 1993, pp. 64–75.

[14] V. Guruswami, S. Khanna, R. Rajaraman, F.B. Shep-
herd, M. Yannakakis. Near-Optimal Hardness Results
and Approximation Algorithms for Edge-Disjoint
Paths and Related Problems. J. Computer and System
Sci., 67(3):473-496, 2003.

[15] R.M. Karp, “Reducibility among combinatorial prob-
lems,” Complexity of Computer Computations, R.E.
Miller, J.W. Thatcher, Eds., Plenum Press, 1972.

[16] R.M. Karp, F.T. Leighton, R. Rivest, C. Thompson,
U. Vazirani, V. Vazirani, “Global wire routing in two–
dimensional arrays,” Algorithmica, 2(1987).

[17] J. Kleinberg, “Decision Algorithms for Unsplittable
Flow and the Half-Disjoint Paths Problem,” Proc. 30th
ACM Symposium on Theory of Computing, 1998.

[18] J. Kleinberg, R. Rubinfeld, “Short paths in expander
graphs,” Proc. 37th IEEE Symp. on Foundations of
Computer Science, 1996.

[19] J. Kleinberg, É. Tardos, “Approximations for the Dis-
joint Paths Problem in High–Diameter Planar Net-
works,” Proc. 27th ACM Symp. on Theory of Comput-
ing, 1995, pp. 26–35.

[20] J. Kleinberg, É. Tardos, “Disjoint Paths in Densely
Embedded Graphs,” Proc. 36th IEEE Symp. on Foun-
dations of Computer Science, 1995, pp. 52–61.

[21] P. Kolman, C. Scheideler. Simple On-Line Algorithms
for the Maximum Disjoint Paths Problem. Proc. 13th
ACM Symp. Parallel Alg. and Arch., 2001.

[22] F.T. Leighton, S. Rao, “Circuit switching: a multicom-
modity flow based approach,” Proc. 9th International
Parallel Processing Symposium, 1995.

[23] T. Lengauer. Combinatorial Algorithms for Integrated
Circuit Layout. Wiley, 1990.

[24] N. Linial, A. Magen, and M. Saks. Low distortion Eu-
clidean embedding of trees. Israel J. Math, 106(1998).

[25] J. Matousek. On embedding trees into uniformly con-
vex Banach spaces. Israel Journal of Mathematics,
114:221-237, 1999.

[26] H. Okamura, “Multicommodity flows in graphs,” Dis-
crete Applied Mathematics 6(1983), pp. 55-62.

[27] H. Okamura, P. Seymour, “Multicommodity flows in
planar graphs,” J. Comb. Theory Ser. B, 31(1981).

[28] S. Plotkin, “Competitive Routing in ATM networks,”
IEEE J. Selected Areas in Communications, 1995.

[29] W.R. Pulleyblank, “Two Steiner tree packing prob-
lems,” invited talk at 27th ACM Symposium on Theory
of Computing, 1995.

[30] P. Raghavan, “Probabilistic construction of determin-
istic algorithms: approximating packing integer pro-
grams,” J. Computer and System Sciences, 37(1988).

[31] P. Raghavan, C.D. Thompson, “Randomized round-
ing: a technique for provably good algorithms and al-
gorithmic proofs,” Combinatorica, 7(1987).

[32] Neil Robertson and P.D. Seymour; Graph minors. III.
Planar tree-width. J. Combin. Theory Ser. B 36(1984)

[33] Neil Robertson and P.D. Seymour; Graph minors. V.
Excluding a planar graph. J. Combin. Theory Ser. B
41(1986)

[34] N. Robertson, P.D. Seymour, “An outline of a disjoint
paths algorithm,” in Paths, Flows, and VLSI-Layout,
B. Korte, L. Lovász, H.J. Prömel, A. Schrijver, Eds.,
Berlin: Springer-Verlag, 1990, pp. 267–292.

[35] Neil Robertson, Paul Seymour, and Robin Thomas;
Quickly excluding a planar graph. J. Combin. Theory
Ser. B 62 (1994) 323-348

