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Abstract

There are a number of domains where agents must collectively form a network in the face of
the following trade-off: each agent receives benefits from the direct links it forms to others, but
these links expose it to the risk of being hit by a cascading failure that might spread over multi-
step paths. Financial contagion, epidemic disease, and the exposure of covert organizations to
discovery are all settings in which such issues have been articulated.

Here we formulate the problem in terms of strategic network formation, and provide asymp-
totically tight bounds on the welfare of both optimal and stable networks. We find that socially
optimal networks are, in a precise sense, situated just beyond a phase transition in the behavior
of the cascading failures, and that stable graphs lie slightly further beyond this phase transition,
at a point where most of the available welfare has been lost. Our analysis enables us to explore
such issues as the trade-offs between clustered and anonymous market structures, and it exposes
a fundamental sense in which very small amounts of “over-linking” in networks with contagious
risk can have strong consequences for the welfare of the participants.

1 Introduction

There are many situations in which self-interested agents form links with one another, producing
an underlying network structure. A growing body of work on strategic network formation [21] has
sought to analyze the structure of networks that develop through such types of interaction: what
characteristic properties do they have, and are they approximately as efficient as networks created
through central planning and coordination? A common theme running through this literature is
the view that links are costly to form, and this cost must be traded off against the benefits of
indirect access to other parts of the network through multi-step paths, as measured by distances
[12, 13, 18], component sizes [7], or point-to-point connectivity [6].

In a wide range of settings where network formation occurs, however, this trade-off is inverted.
Instead of costly links that confer indirect benefits, the agents receive benefits via their direct links,
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but through these links they risk exposure to negative payoffs from a broader set of nodes reachable
on multi-step paths. A canonical example is the problem of financial contagion [2, 3, 11, 16]. In a
highly simplified formulation of this problem, two parties A and B engaging in a transaction must
balance the benefits arising from the intended successful outcome of their transaction against the
underlying counterparty risk: the possibility that the other side will fail to complete the transaction.
This risk can now spread across the links formed by multiple transactions: if A defaults on its
agreement with B, this may mean that B lacks the resources needed to complete a concurrent
transaction with C, and so B too defaults. In this way the failure of A has spread via B to
affect a transaction involving C, and perhaps further. The fear of such cascading failures, and the
behavior of financial institutions in response to this perceived increase in counterparty risk, played
an important role in the financial crisis of Fall 2008.

Financial contagion, however, is just one setting in which strategic agents balance the benefits
of linking against concerns about contagious risk. Other basic examples include the following.

• During a disease epidemic within a human population, high-risk groups will alter their in-
teraction patterns to reduce the risk of contagion, including focusing more on “in-group”
members who belong to similar social circles. In the setting of HIV/AIDS, for example, this
has been studied in the context of sexual contacts [19] and needle-sharing among intravenous
drug users [8].

• In any type of distributed file-sharing application, the spread of malware from one host to
another creates a very similar form of contagious risk, which can be incorporated into decisions
about which hosts to download content from.

• In a different setting, participants in a clandestine organization benefit from the links they
form to other members for purposes of coordination and mutual assistance, but by forming
such links they expose themselves to a form of contagious risk: if certain members are com-
promised by an adversary, they may in turn reveal the identities and whereabouts of others
to whom they are linked, and this process could potentially spread for multiple steps through
the organizational network [15].

Formulating a Model

In all these different settings, the precise formulation of the payoffs to the participants will depend
on details of the domain — for example, precisely how does a node benefit from the presence of a
link, and precisely how does the risk of negative payoff propagate from one node to another? One
of the advantages that general models of strategic network formation have offered is the ability to
draw qualitative insights about the effects of self-interested behavior on network structure across
a range of scenarios, using stylized formulations that capture the basic trade-offs without delving
into the idiosyncracies of any one domain.

A natural modeling strategy for studying strategic network formation is to define a non-
cooperative game whose outcomes are graphs. The precise networks that will emerge will depend
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on the precise details of the game. An enumeration of the possibilities is huge, and the likelihood
of finding tractable formulations seems low. Network theorists, following [18], have finessed this
problem by identifying properties of networks that we could expect to be satisfied by all equilibrium
networks of games of conceivable interest.

In this paper, we develop a general model in this spirit to capture the underlying trade-off
between the benefit of link formation and the problem of contagious risk, using simple definitions
for the payoffs arising from these underlying processes. The model is formulated as follows. To
begin with, we have a set V of n players, and players can choose to form bilateral relationships
with one another, resulting in an undirected graph G = (V,E). A player receives a payoff of a > 0
from each relationship it takes part in. We will generally assume there is an upper bound ∆ on the
number of links any one node is able to form.

Now, once the network is formed, a random process creates cascading failures as follows. First
nodes fail independently with probability q, and then failed nodes have a probability of p of causing
their neighbors to fail as well, with the failure potentially continuing to spread from these newly
failed nodes. In more detail:

• First, each player randomly experiences a failure, independently with probability q > 0. We
will refer to these as the root failures in the graph.

• Next, we declare each edge of G to be live independently with probability p and blocked with
probability 1− p. We think of the live edges as those that transmit failure, and the blocked
edges as those that do not transmit failure. Any node that can reach a root failure using a
path consisting entirely of live edges is declared to fail also.

If a player fails, it loses any benefit from the links it forms, and instead its payoff is defined to be
(−b) < 0.

Thus, if di denotes the degree of node i in G, and φi denote the probability that it fails (taken
over the random choices of root failures and live edges), then we can write i’s expected payoff as

πi = adi(1− φi)− bφi = adi − (adi + b)φi.

As noted above, our formulation of the payoffs is intended to capture the basic trade-off in
a simple way. Links confer benefits that scale linearly in the degree, and failures spread through
direct probabilistic contagion across edges. One can imagine more complex models for both of these
aspects of the payoff, with more complex notions of the way in which a node’s links increase its
payoff, and more complex mechanisms for the spread of failures. These are interesting directions
for further analysis. Here we will see that the present model already exhibits rich behavior, and
suggests avenues for pursuing such generalizations.

Optimality and Stability. For most of the discussion, we will measure the “quality” of a graph
via its minimum welfare (henceforth abbreviated min-welfare), which is the minimum payoff of any
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node in the graph. Unless otherwise specified, a socially optimal graph is one that maximizes this
quantity.

In addition to socially optimal graphs, we will also consider graphs that arise under a solution
concept representing strategic behavior by the nodes. We say that a graph is stable if (i) no node
can strictly increase its payoff by deleting all its incident links (hence removing itself from the
network), and (ii) there is no pair of nodes (i, j) such that (i, j) is not an edge of G, but both i

and j would have higher payoffs, with at least one of them strictly higher, if (i, j) were added to G.
This notion of stability is in the spirit of solution concepts for the formation of undirected graphs,
capturing the notion that it takes two nodes to agree on the formation of a link, but any node
can unilaterally withdraw from its links. Our definition of stability is a relaxation of the notion of
pairwise Nash stability [17], which modifies (i) to allow a node to drop any subset of its incident
links. Thus, any pairwise Nash stable graph is also stable under our definition, and so when we
show upper bounds on the welfare of all stable graphs, it applies to all pairwise Nash stable graphs
as well.

When we consider the structures of socially optimal and stable graphs, much of the interesting
behavior emerges in a natural range of the parameters a, b, p, and q motivated by the following
considerations. Suppose we had just two nodes i and j, and suppose that i is deciding whether
to link to j. If it forms the link, it receives a benefit of a but there is a probability of pq that j
will fail and that this failure will spread to a. We want i to be willing to form the link to j under
these conditions, and so we assume a > bqp. Otherwise no links will form. On the other hand,
suppose that i knew that j were going to fail, so that the only thing protecting i from failure is
the transmission probability p. Under these conditions we do not want i to form the link to j, so
we assume a < bp. Otherwise there will be no strategic component to the analysis. Analogously,
suppose that i knew that any failure at j would definitely spread to i, so that the only thing
protecting i from failure is the chance 1− q that j does not fail. Under these conditions we also do
not want i to form the link to j, so we assume a < bq.

In our analysis, we will focus on the range of parameters in which these bounds hold by arbitrar-
ily large constant factors. That is, we will consider the case in which p and q are small, and for some
sufficiently large constant d, the quantity a exceeds bqp by at least a factor of d, and min(bp, bq) in
turn exceeds a by at least a factor of d. So with δ = 1/d, we have δ−1bqp < a < δmin(bp, bq); we
will refer to δ as the key separation parameter in our model. Finally, we will consider the case in
which the number of nodes n is arbitrarily large compared to these other quantities (and/or their
reciprocals).

Our Results

Our main results provide asymptotically tight characterizations of the welfare obtained by both
socially optimal and stable graphs, as well as structural insights into the properties of such graphs.
In a sense to be made precise below, we find roughly that social optimality occurs just beyond
the edge of a phase transition that controls how failures propagate, while stable graphs lie slightly
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further still past this phase transition, at a point where most of the welfare has already been wiped
out. This narrow region where optimality occurs, and the inability of strategic agents to stay within
this region, is one of the key qualitative behaviors to emerge from our model.

Social Optimality. For social optimality, our first main result is that there is a small ε > 0,
going to 0 with our separation parameter δ, such that no graph can have min-welfare greater than
(1 + ε)a/p. We show this by establishing that once each node forms more than 1/p links, the live
edges — those that transmit failure — form a large connected component with high probability; this
causes the probability of node failure to rise abruptly and to correspondingly reduce the welfare.
This phenomenon is an analogue of the giant-component phase transition in the traditional random
graph model G(n, p) [10], but since we are dealing with the random choice of live edges in an
arbitrary underlying graph defined by the agents, we need to study the random subgraphs of this
arbitrary graph; and hence we must adapt the arguments about the emergence of giant components
to this setting.

This analysis establishes node degrees of 1/p as an important critical point in the behavior of
the nodes’ payoffs: at a degree of 1/p, a node is receiving a benefit of a/p, and in order to raise all
the nodes’ payoffs further, we must push the graph into a region where the propagation of failures
via live edges increases dramatically. It is therefore useful to look more carefully at the structure
of graphs and their resulting payoffs right at the edge of this region. Accordingly, we say that a
family of graphs, with n going to infinity, has super-critical payoffs if their min-welfares exceed a/p
by a multiplicative constant (necessarily depending on the separation parameter δ) that is strictly
greater than 1 — in other words, if they have min-welfare at least (1 + f(δ))a/p. Otherwise, we
will say that they have sub-critical payoffs. It then becomes an interesting question to consider
whether there exist families of graphs achieving super-critical payoffs, and what can be said about
their structure.

Clustered vs. Anonymous Markets. We construct a family of graphs with super-critical
payoffs, by having the agents form a union of disjoint cliques, where each clique has a size chosen to
be very slightly above 1/p. The analysis of such graphs in fact highlights an interesting qualitative
contrast between two kinds of network structures in which the agents can be organized: (i) a union
of disjoint cliques each of size k+ 1, or (ii) a random graph formed by linking each node to k other
nodes selected uniformly at random. Viewing this contrast in terms of an underlying motivation via
economic contagion, we see that the two network structures correspond to two very different kinds
of market formations: (i) is a clustered market where people engage in mutual dealing within their
own community, and thereby insulate themselves from trouble originating in other communities,
while (ii) is an anonymous market where agents can only specify the number of counterparties they
would like to deal with, but cannot specify who these counterparties will be.

What our analysis shows is that while it is possible for clustered markets to yield super-critical
payoffs, anonymous market structures can only produce sub-critical payoffs. In other words, if we
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connect each agent to k other random agents, then once k reaches (1+γ)/p for any positive constant
γ (and n sufficiently large), the node payoffs become sub-optimal. This yields potential insights
into the different contagion dynamics of the two kinds of structures — when the market institution
enables people to separate themselves into protected communities, then it becomes feasible to form
a number of links that pushes past the crucial phase transition; but when interactions happen
anonymously, it is necessary to stay safely on the low side of the phase transition.

Stable Graphs. We then consider the class of stable graphs, and here our main result is that
there is a small ε > 0 (again going to 0 with the separation parameter δ) such that no stable
graph can have min-welfare greater than εa/p. It is interesting that this gap between welfare at
social optimality and at stability arises because of relatively subtle structural differences between
the two kinds of graphs; socially optimal graphs are poised at the edge of a dangerous precipice
in parameter space, and intuitively, we can think of stable graphs as exhibiting a small amount of
additional linking that send them over this precipice.

Our analysis provides a useful way of thinking about how this additional linking occurs. When
a node evaluates forming an extra link, its own change in payoff comes from the benefit of this
new link offset by the increased risk of failure. However, while only the two endpoints of the new
link can experience the benefits of the link, a potentially much larger set of nodes can experience
a payoff decrease due to greater risk. This creates a negative externality by which nodes do not
account for the full amount of risk they generate in forming links, and since we are in a region of
parameter space where small structural changes can yield large payoff changes, this externality is
sufficient to eliminate most of the payoff to nodes.

Finally, as part of our analysis, we also provide a proof that stable graphs exist, and in fact
that one can build stable graphs from unions of disjoint cliques. This construction requires some
amount of care, since the stability condition requires that we produce cliques large enough that
nodes will not want to form links into other cliques, but not so large that nodes will want to drop
out of their own cliques. Arguing that there exists a clique size achieving both of these conditions
involves maintaining control of the payoff functions in the vicinity of the phase transition.

Further Related Work

There have been several papers that deal with problems where one optimizes parameters of a
network under the risk of node failure, but these other models have been quite different from ours
both in the general questions they consider and in the specifics of their formulations.

Caballero and Simsek consider a model of financial contagion in which the failure of nodes in
a network can lead other nodes to engage in a cascade of “fire sales,” in which the price of assets
plummets [11]. However, in addition to the fact that their cascade mechanism is quite different,
they study only the case in which the network structure is simple and given: the nodes are assumed
to be connected in a cycle. Goyal and Vigier consider “attack-defense” games on networks, in which
a designer must choose a network structure, and then an attacker tries to disrupt it by destroying
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nodes [14]. Their work assumes that failure spreads deterministically between nodes, and hence
leads to very different considerations. Gutfraind [15], motivated by the organization of terrorist
cells, considers the question of how to centrally design a network that can optimize a distance-based
function in the presence of probabilistic contagion; in his work, the objective function is again very
different from ours, and the design of such networks is explored through simulation. Finally, the
line of research beginning with Albert, Jeong, and Barabási on the attack-tolerance of random
graphs [1] focuses on the increase in average node distances when an adversary deletes nodes from
an underlying graph, and it leads to different types of questions as well.

2 An Upper Bound on the Optimal Min-Welfare

We begin by establishing an upper bound on the min-welfare of any graph. We use the parametriza-
tion of the model described in the introduction; recall that we will be making the following assump-
tion (motivated there): for a small constant δ > 0, we have

δ−1bqp < a < δmin(bp, bq).

For ease of future reference, we will call this Assumption P(δ). Recall also that we are assuming
an upper bound of ∆ on the maximum number of edges any one node can form. As discussed
above, much of the interesting behavior in this model turns out to take place in graphs where the
average degree is close to 1/p. As a result, we will assume that ∆ is larger than 1/p, but not so
large that any single node can dominate the structure of the graph. In particular, we will assume
that ∆ = c∗/p for a constant c∗ > 1.

Our basic plan for the upper bound is as follows. If the min-welfare in a graph G exceeds
(1 + ε)a

p
, then in particular it implies that all node degrees are at least

(1 + ε)
p

. We declare each

edge to be live independently with probability p > 0, and then study the extent to which nodes are
able to reach one another along live-edge paths — that is, paths consisting entirely of live edges.
If there is a node that can reach many others with reasonable probability, this node experiences a
large probability of failure, and hence has a sharply reduced payoff, which will ultimately contradict
our assumption that G has large min-welfare.

Now, how do we show that some node has a reasonably high chance of reaching many others
on live-edge paths? There is a connection to the basic random graph model G(n, p), in which
an edge is inserted between each pair among n nodes independently with probability p. We can
think of G(n, p) equivalently as the model in which one starts with an n-node clique and, declares
each edge to be live independently with probability p, and then considers the live-edge subgraph.
The challenge in our case is that our graphs G are not necessarily cliques, or even close to being
cliques, and relatively little is known about adapting results from G(n, p) to the case of arbitrary
underlying base graphs [4]. Fortunately, however, we are able to prove a result that is strong enough
for our purposes, adapting techniques for analyzing connected components in G(n, p) to the setting
of live-edge subgraphs of arbitrary underlying graphs.
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We begin with this part of the analysis, as follows.

(2.1) For all ε > 0 there exist constants α, β > 0 such that the following holds. Let H be a

graph in which each node has degree at least r ≥ 1 + ε

p
. Construct a random subgraph of H by

declaring each edge to be “live” with probability p. Then for every node i ∈ V , the number of nodes
reachable from i on live-edge paths is at least αr with probability at least β.

Proof. Let i be any node in H. We now describe a method for exploring the live edges outward
from i, based on Karp’s analysis of random subgraphs of the bidirected complete graph [20] and
Alon and Spencer’s analysis of infinite branching processes [5]. We first take all the nodes (if any)
that i can reach via live edges and put them in a queue. We then repeatedly delete a node j from
the queue and add to the queue all the nodes (if any) that j can reach via live edges, other than
the ones already “discovered” (added to the queue) in previous iterations. Notice, crucially, that
the outcome of the random live/blocked decision for each edge (j, j′) is only examined once in this
process, when one of nodes j or j′ first comes to the front of the queue. Thus, we can assume that
the live/blocked status of (j, j′) is first determined at that moment.

For a small constant α > 0, we say that this process succeeds if at least αr nodes are added to
the queue before the queue ever becomes empty. If the process succeeds with probability at least
β, for a constant β > 0, then our result follows.

Let Qt be the number of nodes in the queue at the end of iteration t, where we define Q0 = 1
to indicate that i starts in the queue. We have

Qt = Qt−1 − 1 +Xt,

where the ”-1” is because we delete a node jt from the queue in iteration t (with j1 = i), and
Xt is a random variable equal to the number of not-yet-discovered nodes that jt can reach via
live edges. (This is where it is useful to assume that the live/blocked status of edges from jt to
not-yet-discovered nodes is only determined when jt reaches the front of the queue.) Unrolling this
recurrence, we have

Qt =

(
t∑

u=1

Xu

)
− t.

We are interested in showing that the probability of Qt > 0 for all t from 1 until at least αr nodes
have been discovered (added to the queue); in this case, the search for nodes using live-edge paths
continues successfully for a sufficient number of steps, as required.

The expectation of Xt, prior to the point at which at least αr nodes have been discovered, can
be determined as follows. The node jt has degree at least r in H, and at most αr nodes have been
discovered by the process thus far, so there are at least (1 − α)r edges emanating from jt leading

to not-yet-discovered nodes. We choose α small enough that (1 − α)r ≥ 1 + ε/2
p

; since each of

these edges is live with probability p, we have E [Xt] ≥ 1 + ε/2. Thus, until αr nodes have been
discovered, we can think of the queue length as a random walk on the integers with positive drift;
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as a result, there is a positive probability that the walk never returns to 0, which is the result we
want.

We can briefly verify this in more detail for our particular case as follows. Let St =
∑t

u=1Xu;
by the Chernoff Bound, we have

Pr [St ≤ t] < Pr [St ≤ (1− ε/4)E [St]] < e−
1
2

ε2

16
t.

Now, the sum
∑∞

t=1 e
− 1

2
ε2

16
t converges; we choose t0 large enough that

∑∞
t=t0

e−
1
2

ε2

16
t < 1. For p

sufficiently small, there is a positive probability that X1, the number of nodes i can reach directly
via live edges, is at least t0. It then follows that St > t for all t < t0. Finally, for all t we have

Pr [St ≤ t | X1 ≥ t0] ≤ Pr [St ≤ t] < e−
1
2

ε2

16
t; summing over t we obtain

∑∞
t=0 Pr [St ≤ t | X1 ≥ t0] <

1.

Next, we simply want to argue that if a node can reach many other nodes via live-edge paths
with reasonably large probability, then it has a large probability of failing and hence a negative
payoff. To do this, we first state a simple lemma about the union of many independent events, and
then we use this to draw the resulting conclusion for a node’s payoff.

(2.2) Consider a collection of independent events E1, . . . , En, each of probability p > 0. Then
the probability of their union is at least min(1

3 ,
2
3np).

Proof. If p ≥ 1
3 then the result follows immediately. Otherwise, if np ≤ 2

3 , then we have

Pr

 n⋃
j=1

Ej

 ≥
n∑
j=1

Pr [Ej ]−
∑
j,j′

Pr
[
Ej ∩ Ej′

]
= np−

(
n

2

)
p2

≥ np− 1
2

(np)2

= np(1− 1
2
np)

≥ 2
3
np.

Otherwise, we can choose a subset S of k ≤ n of the events such that 2
3 < kp ≤ 1. We have

Pr

⋃
j∈S
Ej

 ≥
∑
j∈S

Pr [Ej ]−
∑
j,j′∈S

Pr
[
Ej ∩ Ej′

]
= kp−

(
k

2

)
p2

≥ kp− 1
2

(kp)2

= kp(1− 1
2
kp)

≥ 2
3
· 1

2
=

1
3
.
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Now, for a node i, let the set of nodes it can reach on live-edge paths in G be called its live
component, and let ri(G) be a random variable denoting the size of i’s live component.

(2.3) For all γ0, γ1 > 0 there exist α, δ > 0 such that when p, q ≤ α and Assumption P(δ) holds,
we have the following. If G is a graph with a node i for which ri(G) ≥ γ1

p
with probability at least

γ0, then the payoff of node i satisfies πi(G) < −bq. (We note that the right-hand side is the payoff
i would receive if it had no links).

Proof. If i can reach at least γ1p
−1 nodes on live-edge paths, then by (2.2), the probability that it

fails is at least min(1
3 ,

2
3γ1p

−1q). Removing the conditioning on this event, the probability it fails
is at least φi ≥ min(1

3γ0,
2
3γ0γ1p

−1q). We also have di ≤ ∆ = c∗p−1.
If φi ≥ 1

3γ0, then

πi ≤ adi − bφi ≤ ac∗p−1 − 1
3
bγ0

≤ δbc∗ − 1
3
bγ0 = b(δc∗ − 1

3
γ0)

where the last line is less than −bq for δ sufficiently small and q < 1
3γ0.

If φi ≥ 2
3γ0γ1p

−1q, then defining γ2 = 2
3γ0γ1, we have

πi ≤ adi − bφi
≤ ac∗p−1 − γ2bqp

−1

= ac∗p−1 − (γ2p
−1 − 1)bq − bq

< δc∗b− (γ2p
−1 − 1)bq − bq.

This last line is less than −bq provided that 1 + δc∗ − γ2p
−1 < 0, which holds provided that p is

sufficiently small relative to δ.

Finally, combining (2.1) with (2.3), we get an immediate consequence for the payoffs when all
nodes have large degrees. The upper bound on min-welfare follows directly from this.

(2.4) For all ε > 0, there exist α, δ > 0 such that when p, q ≤ α and Assumption P(δ) holds, we

have the following. If each node has degree at least
(1 + ε)
p

, then for each node i we have πi < −bq.

Proof. For each node i ∈ V , (2.1) implies that we have ri(G) ≥ γ1

p
with probability at least γ0,

It then follows from (2.3) that πi < −bq.

(2.5) For all ε > 0, there exist α, δ > 0 such that when p, q ≤ α and Assumption P(δ) holds,

no graph can have min-welfare greater than
(1 + ε)a

p
.
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Proof. Choose α, δ > 0 as in (2.4) , and suppose by way of contradiction that there is a graph

with min-welfare greater than
(1 + ε)a

p
. It follows that every node i has degree greater than

1 + ε

p
.

But then by (2.4) we have πi < −bq, contradicting the assumption that the min-welfare is greater

than
(1 + ε)a

p
.

3 Super-Critical Payoffs and Anonymous Markets

We now show that the upper bound in Section 2 can essentially be achieved, in an asymptotic
sense, and also consider some of the structural implications of this fact.

To begin with, it is instructive to think about the analysis in Section 2 in terms of the random
graph G(k, r).1 One of the central facts about G(k, r) is that in a small window around probability
r = 1/k, the expected size of the largest connected component jumps from a constant value to a
constant fraction of k. This is the basic phase transition for G(k, r), and (2.1) in Section 2 is a
reflection of this phase transition for an arbitrary underlying graph.

In order for a graph to achieve super-critical payoffs — those of the form
(1 + ε)a

p
for some

ε > 0 — it must lie on the side of the phase transition where the live components are likely to
be large, proportional to 1/p. For this to be possible, it must cross the phase transition by little
enough that these large components do not eliminate the payoff of the nodes. We now show how
to do this, constructing a family of graphs built from disjoint cliques that achieve min-welfare of

the form
(1 + ε)a

p
.

Some Basic Facts about G(k, r). We begin by carefully stating some quantitative results about
the phase transition in G(k, r) in a form that will be useful for the analysis.

(3.1) Let Ci denote the component containing node i in G(k, r). If we fix some other node j

and look at the event j ∈ Ci, then we have Pr [j ∈ Ci] =
1
k
·E [|Ci|]−

1
k
.

Proof.

Pr [j ∈ Ci] =
k∑
s=1

Pr [|Ci| = s] · Pr [j ∈ Ci | |Ci| = s]

=
k∑
s=1

s− 1
k

Pr [|Ci| = s]

=
1
k

k∑
s=1

(s− 1)Pr [|Ci| = s]

=
1
k
·E [|Ci|]−

1
k

1Since n and p are basic parameters in our model, we adopt the different variable names k and r in discussing
G(k, r). Also, in keeping with standard terminology, we will often refer informally to G(k, r) as “a random graph,”
as though it is a single graph rather than a distribution over graphs.
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Thus, looking at the probability a node belongs to i’s component is equivalent to looking at the
expected size of i’s component.

The following pair of standard results describe the contrasting behavior of component sizes on
opposite sides of r = 1/k.

(3.2) Fix x < 1, and consider the component of a given node i in G(k, r), where kr = x. Then
for k sufficiently large, we have the following:

(i) The probability that i’s component exceeds size c decreases exponentially in c.

(ii) Consequently, the expected size of i’s component is bounded by a constant c = c(x), indepen-
dent of k, and the maximum size of any component in the graph is thus O(log k).

(3.3) There is an increasing function θ : [1,∞] → [0, 1] that is continuously differentiable on
(1,∞) and continuously differentiable from the right at x = 1, with θ(1) = 0 and θ′(1) a positive real
number, such that the following holds. Fix x > 1 and ε > 0, and consider G(k, r), where kr = x.
Then for k = k(x, ε) sufficiently large, we have the following:

(i) With probability 1−exp(−k), there is a component of size between (1−ε)θ(x)k and (1+ε)θ(x)k.

(ii) Conditioned on not belonging to the giant component in (i), the probability that a node i

belongs to a component of size greater than c decreases exponentially in c.

(iii) Consequently, the expected size of i’s component is between (1−ε)2θ(x)2k and (1+ε)2θ(x)2k+c
for a constant c = c(x).

Point (iii) follows from (i) and (ii) by considering that with probability (1± ε)θ(x), node i belongs
to a component of size (1± ε)θ(x)k, and with the remaining probability i belongs to a component
of expected size at most c.

A Family of Graphs with Super-Critical Payoffs. For parameters k and s, let Fs (k) denote

the disjoint union of s cliques of size k. We will show that Fs

(
1 + γ

p

)
, for arbitrary s ≥ 1 and a

small constant γ > 0, achieves super-critical node payoffs.
For our construction, we will focus on the special case p = q. A nice feature of this special case

is that we can represent the spread of failures in Fs (k) in the following equivalent way. We imagine
a single “failure node” i∗ associated with each clique, and attached to each real node in the clique,
resulting in a clique on k + 1 nodes. There is a transmission probability p on the edges from i∗ to
each node in its clique, as there is on all other edges. In this view, a node i fails if it is in the same

12



live-edge component as i∗; in other words, the probability i fails is the probability it belongs to the
same component as a given fixed node i∗ in G(k + 1, r). By (3.1) we know this is

1
k + 1

·E [|Ci|]−
1

k + 1
,

where Ci denotes the live-edge component of i.
With p = q, we define σ to be the ratio a/bp = a/bq; by assumption P(δ), we have σ < δ, and

we assume as usual that δ and p are sufficiently small. We let the number of nodes k in each clique
be (1 + γ)/p for a small value γ > 0 that we determine below.

First, (3.3)(iii) implies that the probability φi that i fails satisfies

(1− ε0)θ(1 + γ)2 ≤ φi ≤ (1 + ε0)θ(1 + γ)2

for a constant ε0 that goes to 0 with p. Thus, the payoff to a node i is

πi ≥
a(1 + γ)

p
−
(
b+

a(1 + γ)
p

)
(1 + ε0)θ(1 + γ)2

=
a(1 + γ)

p
− b(1 + σ(1 + γ))(1 + ε0)θ(1 + γ)2

≥ a(1 + γ)
p

− 2bθ(1 + γ)2

=
σbp(1 + γ)

p
− 2bθ(1 + γ)2

= b(σ(1 + γ)− 2θ(1 + γ)2).

Now, let
h0(x) = σx− 2θ(x)2,

so that
πi ≥ bh0(1 + γ).

We have
h′0(x) = σ − 4θ(x)θ′(x).

Since θ(1) = 0 and θ′(1) is a positive real number, we have h′0(1) = σ, and hence the function
h0(x) is strictly increasing over the interval x ∈ [1, w0] for a constant w0 depending on σ. Since
h0(1) = σ, we have h0(w0) = σ(1 + σ0) for a constant σ0 > 0 depending on σ.

Returning to the lower bound on πi, we choose γ = w0 − 1, and so

πi ≥ bh0(w0) =
a

σp
· σ(1 + σ0) =

a(1 + σ0)
p

.

Consequently, the payoff to each node exceeds
a

p
by a multiplicative factor greater than 1 that

depends on σ.

13



Comparison to an Anonymous Structure. The construction above achieves super-critical
payoffs by allowing nodes to cluster into communities of an appropriate size, and thus to insulate
themselves from failures originating in other communities. Drawing on a market motivation, it is
interesting to ask whether super-critical payoffs can be achieved through structures that are based
instead on anonymous interaction, where nodes can specify the number of partners they want to
connect to, but have no control over who these partners are — the partners are chosen uniformly
at random from the population. As we now show, in fact, anonymous interaction structures are
not able to yield super-critical payoffs.

To define these anonymous structures precisely, we use the configuration model for random
graphs [9, 10, 22]. Each of the n nodes is assigned k “half-edges”; these half-edges are then
matched up uniformly at random into pairs, with each matching pair of half-edges forming an edge
in the resulting random graph. Note that the pairing may cause two edges to go between the same
pair of nodes, or for a node to form an edge that loops to itself; we remove these parallel edges and
self-loops to obtain the final graph. Failures then propagate in this graph according to our model,
spreading from root failures along live-edge paths.

With high probability, the local neighborhood of a node in this random graph will have a
particularly simple structure, as follows. For node i, define B(i, `) to be the ball of radius `

centered at i, i.e. the induced subgraph of G on the set of all nodes reachable from i in ` or fewer
hops. For fixed integers k, ` and any node i, the probability that B(i, `) is a tree of depth ` and
degree k (i.e. one whose internal nodes all have degree k and whose leaves are all at distance ` from
the root) tends to 1 as n→∞.

For our analysis, we will therefore connect the propagation of failures in the configuration model
to a related, simpler model based on an infinite k-regular tree. In particular, let B(k, r) denote the
distribution over trees obtained by starting with an infinite k-regular tree and including each edge
in the random tree with probability r. We now have a pair of results analogous to (3.2) and (3.3).

(3.4) Let x < 1, and consider a tree generated from B(k, r) where kr = x.

(i) The probability that the tree’s size exceeds size c decreases exponentially in c.

(ii) The expected size of the tree is bounded by a constant c = c(x).

(3.5) There is an increasing function τ : [1,∞] → [0, 1] that is continuously differentiable on
(1,∞) and continuously differentiable from the right at x = 1, with τ(1) = 0 and τ ′(1) a positive
real number, such that the following holds. Consider a tree generated from B(k, r), and let ψr(k)
be the probability that it has an infinite node set.

(i) If kr > 1, then ψr(k) > τ(kr).

(ii) For all integers c0, c1 > 1 and k ≥ c0c1/r, we have

ψr(k) ≥ 1− (1− ψr (c0/r))
c1 > 1− (1− τ(c0))c1 .
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(iii) Conditioned on not having an infinite node set, the probability that the tree’s size exceeds c
decreases exponentially in c. Its expected size is thus bounded by a constant c = c(x).

Proof. Part (iii) of the claim is a standard result; parts (i) and (ii) are formulated in ways that
are adaped to our present purposes, and we give proofs of them here.

First we prove (i). The probability that the tree is infinite is the unique solution to z =
1− (1−pz)k in the interval (0, 1). Define τ to be the unique solution to τ = 1−e−xτ in the interval
(0, 1). Writing f0(v) = (1− pv)k and f1(v) = e−xv, we have

f0(v) = (1− pv)k = (1− pv)x/p < e−xv = f1(v).

Thus, the curve y = 1 − f0(v) lies above the curve y = 1 − f1(v) on the interval (0, 1), and so
y = 1 − f0(v) intersects the line y = v to the right of where y = 1 − f1(v) intersects it. It follows
that z > τ , and hence we can take τ = τ(x) as our function.

To prove (ii), consider k′ =
c0c1

r
subtrees of the root in the complete k-ary tree (before edges

are randomly included), and group them into c1 blocks of
c0

r
subtrees each. For any block, if we

consider just the root and the subtrees in a single block, the probability that the resulting random
tree is infinite is at least ψr(c0/r) (since the root has this degree in the restricted tree, and the
nodes in the subtrees have degree k ≥ c0/r). The tree is infinite if it is infinite in any of the blocks,
and so the probability it is infinite is at least

1− (1− ψr (c0/r))
c1 > 1− (1− τ(c0))c1

where the latter inequality follows directly from (i).

We now want to show that when each node forms k links in the anonymous structure, for any

k =
1 + β

p
, the node payoffs can be at most a/p as n → ∞. Clearly this is true for β ≤ 0, so we

consider the case of an arbitrary β > 0.
When the random graph G is sampled using the configuration model, for any node i the prob-

ability that the ball B(i, `) is a tree of degree k and depth ` is 1− o(1) as n→∞. Applying 3.5(i),
the probability that i belongs to a live path of length ` is at least τ(1 + β)− o(1); for n sufficiently
large, this probability is at least τ(1 + β/2). In the event that i belongs to a live path of length
`, it fails with probability at least 1 − (1 − q)`. By taking ` large enough, we may assume that
τ(1 + β/2)(1− (1− q)`) ≥ τ(1 + β/3) and thus node i fails with probability at least τ(1 + β/3).

Thus, if n is sufficiently large then we have

πi ≤
(
a(1 + β)

p

)(
1− τ

(
1 +

β

3

))
− bτ

(
1 +

β

3

)
= bσ(1 + β)

(
1− τ

(
1 +

β

3

))
− bτ

(
1 +

β

3

)
.

Let
h1(x) = σ(1 + 3x) (1− τ (1 + x))− τ (1 + x) ,
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so that πi ≤ bh1(β/3). By (3.5)(ii), we know that for y ≥ 4, we have

τ(y) ≥ 1− (1− τ(2))by/2c ≥ 1− (1− τ(2))y/4.

We can thus choose w1 ≥ 4 such that

τ(y) ≥ 1− 1
1 + y

for all y ≥ w1. If 1 + x ≥ w1, we have

h1(x) ≤ σ(1 + 3x)
(

1
2 + x

)
− 1 + x

2 + x
< 0,

provided σ <
1
3

. Now, if σ ≤ 1
3

supy∈[1,w1] τ
′(y), then we have the following for all x ∈ [0, w1 − 1]:

h′1(x) = 3σ(1− τ(1 + x))− (σ + 3σx+ 1)τ ′(1 + x)

≤ 3σ − τ ′(1 + x) ≤ 0.

Thus, for all x ∈ [0, w1−1], we have h1(x) ≤ h1(0) = σ. Since we also have h1(x) < 0 for x ≥ w1−1,
it follows that h1(x) ≤ σ for all x ≥ 0.

Thus, for any β > 0, we have πi ≤ bσ =
a

p
when each node forms k =

1 + β

p
links. Since πi ≤

a

p

when nodes form at most k ≤ 1
p

links, it follows that for any constant c, if nodes form
c

p
links then

πi ≤
a

p
provided n is sufficiently large as a function of c.

Clustered vs. Anonymous Markets. It is instructive to consider why a union of disjoint
cliques was able to achieve qualitatively higher payoffs than an anonymous interaction pattern.
In particular, the nodes in the cliques we constructed are linking at a degree beyond the phase
transition point, whereas attempting to do this in the anonymous structure has negative effects on
the payoff.

A quantitative way to think about the contrast is to observe that in the union of cliques,
the failure probability of a node i was approximately controlled by a conjunction of two events: i
belonging to the giant component of the clique, and the “failure node” i∗ also belonging to the giant
component of the clique. As a result, the failure probability involves a term of the form θ(x)2, and
this has a derivative of 0 at x = 1 — hence, it is safe to increase x a bit past 1 without blowing up
the failure probability. On the other hand, in the anonymous structure, once i belongs to the giant
component, it fails with overwhelming probability; thus, i’s failure probability involves a term of
the form τ(x), which has a strictly positive derivative at x = 1, and this makes it unprofitable to
increase x even arbitrarily little past 1. This is the fundamental difference between the behavior of
the two kinds of structures in the region just past the phase transition.
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4 An Upper Bound on the Min-Welfare of Any Stable Network

We now show that any stable graph must have small min-welfare. (We defer the proof that stable
graphs exist to the next section.) To upper-bound the min-welfare, we proceed as follows. First
we show, in (4.1) , that if two nodes i and j are not connected by an edge, and neither is at the
maximum degree ∆, then at least one of them must have a large failure probability — this is what
dissuades the other from forming the link.

It follows that in a stable network, all low-degree nodes of low failure probability must form a
clique, since any unlinked pair of them would have an incentive to connect. If the number of nodes
n is sufficiently large, we can then find a node i that is far from this clique. Hence node i, and every
node within a large number of steps of i, must have large degrees; we can thus apply an analogue
of (2.1) to show i has a large failure probability, and this will conclude the proof.

(4.1) Suppose Assumption P(δ) holds. Let G be a stable graph, and let i and j be two nodes
of G such that (i, j) is not an edge of G, and the degrees of i and j are each strictly less than ∆.

Then we have max(φi, φj) ≥
(1− δ)a

(1 + δc∗)bp
.

Proof. Since the degrees of i and j are each strictly less than ∆, at least one of i or j does not
have a strictly higher payoff if the edge (i, j) is included; let us assume it is node i. Thus, if G′

denotes the graph G with the edge (i, j) included, then we have πi(G′) ≤ πi(G).
We imagine evaluating failure in G′ by first making all random root failure decisions and all

random live/blocked decisions in G, then determining which additional nodes fail, and finally
deciding whether the edge (i, j) is live or blocked and determining further failures. Let Φi(G) be
the event that i fails in G before (i, j) is examined, and let Fij(G) be the event that (i, j) is live
and j fails in G. Then Φi(G′) = Φi(G) ∪ Fij(G), so

Pr
[
Φ(G′)

]
≤ Pr [Φi(G)] + Pr [Fij(G)] .

Since Pr [Fij(G)] = pφj , we have

φi(G′)− φi(G) ≤ pφj(G).

Now,
πi(G′) = a(di + 1)− (adi + a+ b)φi(G′),

so the fact that πi(G′) ≤ πi(G) implies that

a(di + 1)− (adi + a+ b)φi(G′) ≤ adi − (adi + b)φi(G)

and hence

a ≤ (adi + a+ b)(φi(G′)− φi(G)) + aφi(G)

≤ (adi + a+ b)pφj(G) + aφi(G)

≤ (1 + δc∗)bpφj(G) + δbpφi(G),
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where the last line follows from the fact that a < δbp and di + 1 ≤ c∗p−1.
Now, if φi(G) ≥ a

bp
, we are done. Otherwise, we have

a ≤ (1 + δc∗)bpφj(G) + δa,

so
(1− δ)a ≤ (1 + δc∗)bpφj(G),

and hence
φj(G) ≥ (1− δ)a

(1 + δc∗)bp
.

Following our informal plan above, we note that a stable graph might have some low-degree
nodes, so we require the following direct adaptation of (2.1) , which applies to nodes that are far
from all low-degree nodes.

(4.2) For all ε > 0 there exist constants α, β > 0 such that the following holds. Let H be a

graph, and let A be the set of nodes of degree less than
1 + ε

p
. Let i be a node of distance greater than

1
p

from A. Construct a random subgraph of H by declaring each edge to be “live” with probability

p. Then the number of nodes reachable from i on live-edge paths is at least αp−1 with probability
at least β.

Proof. Consider the node-discovery process described in the proof of (2.1) , starting from the
node i, and recall that we declare it to succeed if it adds at least

α

p
nodes to the queue before it

ever becomes empty, for the small constant α < 1 used there. The event that the process succeeds
depends only on the live/blocked decisions for nodes within distance

α

p
of i, and all such nodes

have degrees at least
1 + ε

p
; hence, for this whole time we can apply the argument used in (2.1).

Finally, we conclude the proof strategy outlined at the beginning of the section, resulting in our
upper bound.

(4.3) Let n > ∆∆+2. For all ε > 0 there exist α, δ > 0 such that when p, q ≤ α and Assumption
P(δ) holds, no stable graph can have min-welfare greater than

εa

p
.

Proof. Suppose by way of contradiction that G = (V,E) is a stable graph in which πi ≥
εa

p
for all

i ∈ V .

Let A ⊆ V denote the set of all nodes i of G for which di < ∆ and φi <
(1− δ)a

(1 + δc∗)bp
. Since any

node in A is able to form an additional edge, (4.1) implies that there must be an edge between
each pair of nodes in A — in other words, A induces a clique in G.
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Let B ⊆ V denote the set of all nodes in G of degree equal to ∆. For any i ∈ V − (A ∪B), we

have φi ≥
(1− δ)a

(1 + δc∗)bp
. Since πi ≥

εa

p
by assumption, we have

εa

p
≤ adi − bφi ≤ adi −

(1− δ)a
(1 + δc∗)p

and hence
di ≥

ε

p
+

1− δ
(1 + δc∗)p

.

For δ sufficiently small, the right-hand side of this inequality is at least
1 + ε1

p
for a constant ε1 > 0

Choosing ε2 = min(ε1, c
∗ − 1), it follows that all nodes i ∈ V −A have degree at least

1 + ε2

p
.

Now, for any j ∈ A, there are at most 1 + ∆ + ∆2 + · · · + ∆∆+1 < ∆∆+2 < n nodes within
distance ∆ + 1 of j, and hence within distance ∆ of some node in A. Hence there is some node
i ∈ V at distance greater than ∆ > p−1 from A. For this node i, (4.2) implies that ri ≥

γ1

p
with

probability at least γ0, for constants γ0, γ1 > 0. By (2.3) , it follows that πi < −bq, contradicting
the assumption that the min-welfare of G is greater than

εa

p
.

5 The Existence of Stable Networks

Finally, we show that there exist arbitrarily large stable networks. As with our constructions in

Section 3, we will consider graphs that consist of disjoint cliques — graphs Fs (k + 1) with k =
1 + γ

p
for an appropriately chosen γ > 0.

The challenge is to find a k where the union of cliques is stable, and this requires some care for
the following reason. Stability requires that no unlinked pair of nodes wants to form an edge —
this can be achieved by making k sufficiently large that creating a link between two cliques brings
about too large an increase in failure probability to the nodes forming the link. Unfortunately,
making k large also raises the failure probability of each node i based simply on its current set of
edges — so we must not raise k so high that a node i wants to drop all its existing links. The crux
of the problem is thus the following: is there a k that is large enough to discourage the formation
of cross-clique links, but not so large that nodes will drop their current links? The main part of
our analysis will be to show that such a k exists.

As in Section 3, we will consider the case in which p = q; defining σ to be the ratio a/bp = a/bq,
we have σ < δ, and we assume δ and p are sufficiently small.

(5.1) Given a, b, p, q as above, there exists γ > 0 such that with k =
1 + γ

p
, the union of cliques

Fs (k + 1) is stable.

Proof. For the analysis of the construction, we will work with the function θ(x) defined in (3.3) ,
as well as the related function λ(x) = x(1− θ(x)2). Observe that λ(1) = 1, since θ(1) = 0. Taking
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derivatives, we have
λ′(x) = (1− θ(x)2)− 2xθ(x)θ′(x),

and hence λ′(1) = 1. Thus we have

(5.2) For some constant w > 1, the function λ(x) is strictly increasing on the closed interval
[1, w].

As in Section 3, we analyze the failure process by attaching a single “failure node” i∗ to each
clique. The probability φi that node i fails is the probability that i belongs to the same live-edge
component as i∗ in the (k + 2)-node clique where i∗ is added to i’s clique. The payoff to node i is

πi = ak − (ak + b)φi.

If i drops all its edges, it receives a payoff of −bq < 0. If i forms an edge to a node j in another
clique, it receives an added benefit of a, and incurs an increased expected loss of at least

(ak + b)pφi(1− φi).

There are four terms here; the second and third represent the chance that j’s failure (which is
φj = φi by symmetry) spreads to i, and the fourth term represents the fact that this only matters
if i had not already failed in its own clique. In more detail: the payoff to node i before the addition
of this edge is ak − (ak + b)φi, and afterward it is

a(k + 1)− (ak + a+ b)(φi + pφi − pφ2
i ),

so the change in payoff is less than a− (ak + b)pφi(1− φi).
Now, what is φi? By (3.1) and (3.3) , we have

(1− ε1)2θ(p(k + 2))2 ≤ φi ≤ (1 + ε1)2θ(p(k + 2))2 + c1p

for a constant ε1 that goes to zero as p does. By choosing a slightly larger ε2, and using the fact
that θ(·) has a bounded first derivative, we have

(1− ε2)θ(1 + γ)2 ≤ φi ≤ (1 + ε2)θ(1 + γ)2,

with ε2 going to zero as p does.
In the expression φi(1− φi), provided the upper bound (1 + ε2)θ(1 + γ)2 ≤ 1

2 , we have

φi(1− φi) ≥ (1− ε2)θ(1 + γ)2(1− (1− ε2)θ(1 + γ)2)

≥ (1− ε2)θ(1 + γ)2(1− θ(1 + γ)2).
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Since a = σbp and k = (1 + γ)/p, if we write σ1 = σ(1 + γ), then we have ak = σ(1 + γ)b = σ1b.
Now we have

(ak + b)pkφi(1− φi)

= b(1 + σ1)(1 + γ)φi(1− φi)

≥ b(1 + σ1)(1 + γ)(1− ε2)θ(1 + γ)2(1− θ(1 + γ)2)

= b(1 + σ1)(1− ε2)λ(1 + γ)θ(1 + γ)2

∆= f1(γ),

where the last line is taken as the definition of f1(γ). Observe that f1(0) = 0, and by (5.2) , there
is an x1 < 1 such that the function f1(x) is strictly increasing for x in a closed interval [0, x1].

We also have

(ak + b)φi ≤ b(1 + σ1)(1 + ε2)θ(1 + γ)2

∆= f0(γ),

where once again the last line is taken as the definition of f0(γ). We see that f0(x) is also strictly
increasing in [0, x1] (and beyond this interval as well).

Now, since λ(1) = 1 and λ(·) is monotone increasing on [0, x1], for any small enough ε2 > 0,
there is a unique x0 < x1 such that

λ(1 + x0) =
1 + ε2

1− ε2
.

Moreover, f1(x) > f0(x) for all x ∈ (x0, x1], and the value of x0 goes to 0 as ε2 goes to 0. Also, we
observe that for γ ∈ (x0, x1], we have

f1(γ) > f0(γ) ≥ bθ(1 + γ)2.

Now, we choose σ small enough that 2σ < θ(1 + x1)2. We then choose ε2 small enough (by
choosing p small enough) so that f1(x0) = f0(x0) < bσ. Finally, let g(γ) = ak = (1 + γ)bσ. Since
bσ < g(γ) < 2bσ for all γ ∈ (x0, x1], it follows that f0(x0) < g(x0) but g(x1) < f1(x1). Therefore,
since f0(·) and f1(·) are continuous functions, there exist γ∗, γ∗∗ ∈ (x0, x1] for which g(γ∗) = f1(γ∗)
and g(γ∗∗) ≥ f0(γ∗∗), with γ∗ < γ∗∗.

We choose any γ ∈ [γ∗, γ∗∗] as the value of γ we use to define k. With this value of k, the payoff
i receives from keeping all its edges is

πi = ak − (ak + b)φi ≥ g(γ)− f0(γ) ≥ 0,

and hence i prefers to keep its edges rather than deleting all of them. The change in payoff i

receives from linking to a node j in a different clique is less than

k−1 (ak − (ak + b)pkφi(1− φi))

≤ k−1
(
ak − b(1 + σ1)(1− ε2)λ(1 + γ)θ(1 + γ)2

)
= k−1 (g(γ)− f1(γ))

≤ 0,
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and hence i will not form this link. Thus, the graph Fs (k + 1) is stable.

A Stable Graph with Unequal Clique Sizes. We observe that starting with a set of disjoint
cliques Fs (k + 1), we can create a different stable graph by adding one additional clique Γ of size
` < k + 1 on a disjoint set of nodes. The size ` can be chosen in any way such that the payoffs
of nodes in the clique Γ each exceed −bq. In this way, nodes in Γ will not want to drop their
incident edges. Moreover, there is still no edge that can form so as to improve the payoffs of both
its endpoints, since any edge involving a node i in Γ must have its other end at a node j in one of
the cliques of size k+ 1, in which case the argument for (5.1) shows that i would not want to form
the link.

In particular, this means that we can take ` to be a clique yielding the maximum possible node
payoff over all clique sizes, as in Section 3; this shows how certain nodes in a stable graph can have
higher payoffs than others.
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