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Abstract

We present a rigorous framework, based on optimization, for evaluating data mining
operations such as associations and clustering, in terms of their utility in decision-
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1 Introduction

Data mining is about extracting interesting patterns from raw data. There is some agreement
in the literature on what qualifies as a “pattern” (association rules and correlations [1, 2, 3, 5,
6, 12, 20, 21] as well as clustering of the data points [9], are some common classes of patterns
sought), but only disjointed discussion of what “interesting” means. Most work on data
mining studies how patterns are to be extracted automatically, presumably for subsequent
human evaluation of the extent in which they are interesting. Automatically focusing on the
“interesting” patterns has received very limited formal treatment. Patterns are often deemed
“Interesting” on the basis of their confidence and support [1], information content [19], and
unexpectedness [14, 18]. The more promising concept of actionability —the ability of the
pattern to suggest concrete and profitable action by the decision-makers [15, 17, 18], and on
the sound of it very close to our concerns in this paper— has not been defined rigorously or
elaborated on in the data mining literature.

We want to develop a theory of the value of extracted patterns. We believe that the
question can only be addressed in a microeconomic framework. A pattern in the data is
interesting only to the extent in which it can be used in the decision-making process of the
enterprise to increase utility.! Any enterprise faces an optimization problem, which can
generally be stated as

max f(z),

where D is the domain of all possible decisions (production plans, marketing strategies, etc.),
and f(x) is the utility or value of decision z € D. Such optimization problems are the object
of study in mathematical programming and microeconomics.?

The feasible region D and the objective f(z) are both comparably complex components
of the problem —and classical optimization theory often treats them in a unified way via
Lagrange multipliers and penalty functions [7]. However, from our point of view there is
a major difference between the two: We assume that the feasible region D is basically
endogenous to the enterprise, while the objective function f(z) is a function that reflects the

To quote [8], “merely finding the patterns is not enough. You must be able to respond to the patterns, to
act on them, ultimately turning the data into information, the information into action, and the action into
value.”

2There is such an optimization problem associated with virtually every enterprise; however in real life
such problems are so involved and complex, that often mobody knows exactly their detailed formulation.
The decision-makers of the enterprise base their decisions on a very rough, approximate, and heuristic
understanding of the nature and behavior of the underlying optimization problem.The fact that the details
of the optimization problem being solved are nebulous and unknown to the decision-makers does not make
the problem less real —or its mathematical study less useful. In fact, economic theory during this century
has flourished on models such as these, in which the precise nature of the functions involved is essentially
unknowable; the mathematical insights derived from the abstract problem are still valuable as heuristic
guides in decision-making.



enterprise’s interaction with a multitude of other agents in the market (customers, suppliers,
employees, competitors, the rest of the world). That is, at a first approximation the objective
function can be rewritten as
flz)=3_ fi),
ieC

where C is a set of agents or other factors influencing the utility of the enterprise. We shall be
calling elements of C “customers.” We shall be deliberately vague on what they are. There
are two different possible views here: On a concrete level, we can think of them as profiles of
customers and other relevant agents, about whom we have gathered relevant information by
a first stage of data mining; it is this first stage that our point of view seeks to influence and
direct. A more abstract, but potentially equally useful, point of view is that, alternatively,
we can also think of the elements of C as rows of the raw table being mined —customers,
transactions, shipments, and so on.

What makes this relevant to data mining is the following crucial assumption: We assume
that the contribution of customer i to the utility of the enterprise under decision z, f;(x), is
in fact a complicated function of the data we have on customer ¢. Let y; denote the data we
have on customer ¢ (the ith row of the table); then f;(x) is just g(x,y;), some fixed function
of the decision and the data. Hence, our problem is to

rgealgcgg(% vi)-

The conventional practice in studying such problems is to replace > ;cc g(z,v;) by g(z, 9),
where 7 is some aggregate value® of the customers’ data (aggregate demand of a product,
aggregate consumer utility function, etc.). Such aggregation is well-known to be inaccurate,
resulting in suboptimal decisions, because of non-linearities (non-zero second partial deriva-
tives) in the function g(z,y;). Aggregation had been tolerated in traditional microeconomics
because (1) the computational requirements otherwise would be enormous, and (2) it is dif-
ficult to obtain the data y;. The point in data mining, in our view, is that we now have the
computational power and wealth of data necessary to attack the unaggregated optimization
problem, to study the intricate ways in which correlations and clusters in the data affect the
enterprise’s optimal decisions.

Our goal in this paper is to study certain aspects of data mining from these perspectives
— data mining in the context of economically motivated optimization problems, with a
large volume of unaggregated data. The framework and models that we develop from these
perspectives touch on a range of fundamental issues in combinatorial optimization, linear
programming, and game theory; we feel that they suggest some of the first steps in a research
agenda aimed at assessing quantitatively the utility of data mining operations.

3We use “aggregate” in its microeconomics usage — summary of a parameter over a large population —
which is related but not identical to its technical meaning in databases.



Structure of the rest of the paper

In Section 2 we present three examples which illustrate our point of view, and identify and
explore its various aspects: We show by a simple example how nonlinearity is an essential
aspect of interestingness; we point out that the important operations of clustering and market
segmentation are affected (and in fact defined) by microeconomic considerations; and we
indicate ways in which such considerations can affect the relational semantics of the mined
database. Motivated by the second of these examples, in Section 3 we introduce a novel and
interesting genre of problems, called segmentation problems, which capture in a crisp and
stylized form the clustering aspect of data mining. One can define a segmentation problem
(in fact, several versions) for any conventional optimization problem; we focus on a few
natural ones with obvious data-mining flavor and interest. We show that even some of the
simplest possible segmentation problems are NP-complete; however, they can be solved in
time linear in the number of customers. In the Section 4 we show how optimization theory
(in particular, linear programming sensitivity analysis) can be employed to develop tangible
criteria of “interestingness” for data mining operations.

Up to this point in the paper, we consider a single enterprise interested in mining its
data to derive value. In Section 5, we turn to the problem of two competing enterprises each
trying to segment a common market, adopting a set of policies to the segments they target.
Building on the classical setting of game theory, we develop a notion of segmented matriz
games to model this setting. This quickly leads to a number of novel (and largely unsolved)
issues in computational game theory.

In related work [13] in the area of discrete algorithms and complexity theory 4, we have
studied approximation algorithms for some of the most basic segmentation problems that
arise from our framework. This leads to interesting connections with classical problems of
combinatorial optimization — such as facility location and the maximization of submodular
functions — and to settings in which one can concretely analyze the power of methods such
as random sampling and greedy iterative-improvement algorithms. We refer the reader to
[13] for further details.

2 Three examples

We pointed out above that aggregation is especially unsatisfactory and inaccurate when the
cost function g(x,y;) is nonlinear in y;. The next two anecdote-based examples illustrate
certain interesting and common kinds of nonlinearities. The third example, based on the
first, illustrates some of the more subtle ways in which the semantics of the underlying
database can affect our objective in searching for correlations and nonlinearities.

40r, as we might say, targeted at the complexity segment of the readership!



Example 1: Beer and Diapers.® Suppose that a retailer stocks two products in quantities
x1 and xo; the amounts (1, z2) to be stocked are the only decision variables, bounded above
by capacity: x1 4+ xo < ¢. The profit margins in the two products are m; and my. We have
a table with 0-1 values (y14,y;2) for each customer i € C, indicating whether the customer
will buy a unit of each of the products. That is, in this toy example demand is known
deterministically.

In the first scenario, customers arrive in random order, and buy whatever part of their
desired basket is available. The revenue of the enterprise is in this case a function of xq, xa,
my, me, and the aggregate demands Y, = > ,ccv1,; and Yo = 3,0 -¥i0. Aggregation would
not distort the optimal decision, and data mining is moot.

But suppose that the customers arrive in random order, and buy their desired basket
in an all-or-nothing fashion; if not all items are available, the customer buys nothing. The
expected profit for the enterprise from customer ¢ is now of the form By -y1,; + Ba - ¥;2+ B3 -
Y1 - Yi2. Because of the nonlinear term, associations between the y;; and the y; 5 columns
are now important, and the optimum decision by the enterprise depends critically on them.
Aggregation will no longer do the trick, and data mining is desirable, even necessary.

We propose that associations and correlations between attributes in a table are interest-
ing if they cgrrespond to nonlinear terms in the objective function of the enterprise, that is,
azigyj
esting and novel light on data mining activities, and begs the development of a quantitative

whenever # 0 for the cost function g and some attributes y;,y;. This sheds an inter-
mathematical theory of “interestingness”, based on mathematical programming. We start
on this path in Section 4.

Example 2: Market Segmentation. Telephone companies in the U.S.A. have divided
their customers into two clusters: residence and business customers; they offer different terms
and prices to the two. How good is this segmentation? And are there automatic ways to
discover such profitable segmentations of a market?

Suppose that an enterprise has decided to subdivide its market into two segments, and
apply a different marketing strategy to each segment.® For the purpose of the present
discussion, it is not necessary to determine in detail what such a strategy consists of — the
enterprise may offer different terms and prices to each segment, or send a different catalog
to each segment. Thus, the decision space of the enterprise is now D?, where D is the set of
all possible strategies. For each customer ¢ and decision € D, the enterprise reaps a profit
of ¢; - x; i.e. for simplicity, we are assuming the profit is linear. For each pair (1, xs) € D? of
strategies adopted, the enterprise subdivides the set C of its customers into those ¢ for which

>The correlation between the amount of beer and the amount of diapers bought by consumers is one of

the delightful nuggets of data mining lore.
6This can of course generalized to k segments, or to an undetermined number of segments but with a

fixed cost associated with the introduction of each segment; see Section 3.



¢i - 1 > ¢; - To (to whom the enterprise will apply strategy x7), and the rest. That is, the
function f;(x) is now
fi(z) = max{c; - z1,¢; - T2},

which is an interesting form of non-linearity. The enterprise adopts the pair of policies
(21, z2) which achieves

max Zmax{ci STy, Cpc Tt
(z1,22)€D? iec

Instead of experimenting with arbitrary plausible clusterings of the data to determine if
any of them are interesting and profitable, the enterprise’s data miners arrive at the opti-
mum clustering of C into two sets — those presented with strategy x; and those presented
with x9 — in a principled and systematic way, based on their understanding of the enter-
prise’s microeconomic situation, and the data available on the customers. We further explore
segmentation, and the computational complexity of the novel problems that it suggests in
Section 3, and from the standpoint of approximability in [13].

Example 3: Beer and Diapers, Revisited.” Let us now formulate a more elaborate
data-mining situation related to that of Example 1. Suppose that a retailer has a database
of past transactions over a period of time and over many outlets, involving the sales of several
items. Suppose further that the database is organized as a relation with these attributes:
transaction(location, dd, mm, yy, tt, iteml, item2, ..., itemn). Here location
is the particular outlet where the sale occurred, dd, mm, yy, tt records the day and time
the sale occurred, and item: is the amount of item ¢ in the transaction. We wish to data
mine this relation with an eye towards discovering correlations that will allow us to jointly
promote items. Analyzing correlations between columns over the whole table is a central
current problem in data mining (see, for example, [12]). However, in this example we focus
on a more subtle issue: Correlations in horizontal partitions of the table (i.e., restrictions of
the relation, subsets of the rows).

In a certain rigorous sense, mining correlations in subsets of the rows is ill-advised: there
are so many subsets of rows that it is very likely that we can find a subset exhibiting strong
correlations between any two items we choose! Obviously, we need to restrict the subsets
of rows for which correlations are meaningful. We posit that defining the right restric-
tions must take explicitly into account the ways in which we plan to generate revenue by
exploiting the mined correlations. For example, suppose that the actions we contemplate
are joint promotions of items at particular stores. Then the only restrictions that are le-
gitimate are unions of ones of the form transaction[location = ‘Palo Alto’]. If, in
addition, it is possible to make to target promotions at particular times of the day, then

"This example and the research issues it suggests are the subject of on-going joint work with Rakesh
Agrawal.



restrictions of the form transaction[location = ‘Palo Alto’ and 12 <tt] are legiti-
mate. If we can target promotions by day of the week, then even more complex restric-
tions such as transaction[location= ‘Palo Alto’ and day-of-the-week(dd,mm,yy) =
‘Monday’] may be allowed. The point is that the sets of rows on which it is meaningful
to mine correlations —the targetable restrictions of the relation— depend very explicitly on
actionability considerations.

Furthermore, the actions necessary for exploiting such correlations may conflict with each
other. For example, it may be impossible to jointly promote two overlapping pairs of items, or
we may have a realistic upper bound on the number of joint promotions we can have in each
store. Or we may have a measure of the expected revenue associated with each correlation
we discover, and these estimates may in fact interact in complex ways if multiple actions
on correlations are discovered. We wish to find a set of actions that generates maximum
revenue. This point of view leads to interesting and novel optimization problems worthy of
further study in both complexity and data mining.

3 Market Segmentation

Consider any optimization problem with linear objective function

maxc-xT.
zeD

Almost all combinatorial optimization problems, such as the minimum spanning tree prob-
lem, the traveling salesman problem, linear programming, knapsack, etc., can be formulated
in this way. Suppose that we have a very large set C of customers, each with his/her own
version ¢; of the objective vector. We wish to partition C into k parts Cq, ..., Cg, so that we
maximize the sum of the optima

k
> [max > G- x] : (3)
ieC;

Problem (3) captures the situation in which an enterprise wishes to segment its customers into
k clusters, so that it can target a different marketing strategy — e.g. a different advertising
campaign, or a different price scheme — on each cluster. It seems a very hard problem, since
it requires optimization over all partitions of C, and therefore computation exponential in n.

Consider now the problem in which we wish to come up with k solutions zy,...,z;, € D
so as to maximize the quantity
> max{c¢;-z;:j=1,....k}. (4)
ieC

In contrast to problem (3), problem (4) can be solved exhaustively in time O(nm*), where
m is the number of solutions; despite its exponential dependence on k, and its dependence



on m which is presumably substantial, it is linear in n, which is assumed here to be the
truly large quantity. As we shall see in Section 3.2 the exponential dependence on k£ and
the dependence on m seems inherent, even when the underlying optimization problem is
extremely simple.

It is easy to see that problems (3) and (4) are equivalent. The intuitive reason is that
they are max-max problems, and therefore the maximization operators commute. That is, in
order to divide the customers in £ segments, all we have to do is come up with k solutions, and
then classify each customer to one of k segments, depending on which solution is maximum
for this customer. The computational implications of this observation are very favorable,
since O(m*n), the time naively needed for (4), is much better than O(m2"*).

There is another variant of the general segmentation problem, arguably more realistic, in

which we are seeking to choose k solutions x1,...,zr € D for some integer k of our choice,
to minimize
> max{c;-x;:j=1,...,k} — -k, (5)
ieC

where v is the cost of adding another solution and segment. Like problem (4), problem (5)
can be solved exhaustively in time that is linear in n, with a larger dependence on m and k.

Problems (3) (or (4)) and (5) constitute a novel genre of problems, which we call segmen-
tation problems. These problems are extremely diverse (we can define one for each classical
optimization problem). We believe that they are interesting because they capture the value
of clustering as a data mining operation. Clustering is an important problem area of al-
gorithmic research that is also of significant interest to data mining —which it predates.
One of the main motivations of clustering has been the hope that, by clustering the data in
meaningfully distinct clusters, we can then proceed to make independent decisions for each
cluster. To our knowledge, this is the first formalism of clustering that explicitly embodies
this motivation.

3.1 Specific problems

There is no end to the problems we can define in this way: The MINIMUM SPANNING TREE
SEGMENTATION PROBLEM, the TSP SEGMENTATION PROBLEM, the LINEAR PROGRAM-
MING SEGMENTATION PROBLEM, and so on —and at least three variants of each. There are
a few of these problems, however, that seem especially natural and compelling, in view of
the data-mining motivation (we only give the fixed k version of each):

HYPERCUBE SEGMENTATION: Given n vectors in ci,...,¢, € {—1,1}¢, and an integer k,
find a set of k vectors zy,..., 7, € {—1,1}% to maximize the sum



This problem captures the situation in which we know the preferences of n customers on
d components of a product, for which there is a binary choice for each component. We wish
to develop k semi-customized versions of the product, so as to maximize the total number
of customer-component pairs for which the customer likes the component of the variant he
or she chooses.

Another interesting segmentation problem is

CATALOG SEGMENTATION: Given n vectorsin ¢y, ..., c, € {0,1}%, and integers k and r, find
a set of k vectors zy,..., 1 € {0,1}¢ each with exactly r ones, to maximize the sum

In this case, we know the interests of each customer, and we wish to mail k customized
catalogs, each with r pages, to maximize total hit (i.e. the total number of pages of interest
to customers).

3.2 Complexity

Even the most trivial optimization problems (e.g., maximizing a linear function over the d-
dimensional ball, whose ordinary version can be solved by aligning the solution with the cost
vector) become NP-complete in their segmentation versions. We summarize the complexity
results below:

Theorem 3.1 The segmentation problems (all three versions) corresponding to the following
feasible sets D are NP-complete: (1) The d-dimensional unit ball, even with k = 2; (2) the
d-dimensional unit Ly ball; (3) the r-slice of the d-dimensional hypercube (the CATALOG
SEGMENTATION PROBLEM ), even with k = 2; (4) the d-dimensional hypercube, even with
k =2; (5) the set of all spanning trees of a graph G, even with k = 2.

Sketch. Notice that the optimization problems underlying these problems are extremely
easy: The one underlying (1) can be solved by aligning the solution with the cost vector, the
one for (2) has only 2d vertices, the one for (3) can be solved by choosing the r most popular
elements, and the one for (4) by simply picking the vertex that coordinate-wise agrees in
sign with the cost vector. Since (2) has 2d vertices it can be solved in O((2d)*n) time, which
is polynomial when k is bounded.

The NP-completeness reductions are surprisingly diverse: (1) is proved by a reduction
from MAX cUT, (2) from HITTING SET, (3) from BIPARTITE CLIQUE, and (4) from MAXIMUM
SATISFIABILITY with clauses that are equations modulo two. Finally, for SPANNING TREE



SEGMENTATION we use a reduction from HYPERCUBE SEGMENTATION (the latter problem is
essentially a special case of the former, in which the graph is a path with two parallel edges
between each pair of consecutive nodes).

Here we sketch only the proof of (1). Suppose that we have a graph G = (V, E); direct its
edges arbitrarily, and consider the node-edge incidence matrix of G (the |V| x| E| matrix with
the (i, 7)™
node, and 0 otherwise). Let the |V| rows of this matrix define the cost vectors {vy,...,v,}

entry equal to 1 if the j'" edge enters the i*" node, —1 if the j* edge leaves the i*®

of the segmentation problem. Thus, we seek to divide these |V| vectors into two sets, S; and
S,, and choose an optimal solution for each set. Let o; denote the sum of the vectors in the
set S;, for © = 1,2. Since D is the unit ball, an optimal solution for .S; is simply the unit
vector in the direction of o;, and hence the value of the solution associated with (57, S) is
simply the sum of the Euclidean norms, ||o1|| + ||o2||. However, it is easy to see that for any
partition (Sy, Sa) of the vertices, ||oy ||+ ||oz| is twice the square root of the number of edges
in the cut (Sy,S2) (because in the two sums the only entries that do not cancel out are the
ones that correspond to edges in the cut); hence, solving the segmentation problem is the
same as finding the maximum cut of the graph. m

When the problem dimension is fixed, most of these problems be solved in polynomial
time:

Theorem 3.2 Segmentation problems (2-5) in the previous theorem can be solved in linear
time when the number of dimensions is fixed. Problem (1) (the unit ball) can be solved in
time O(n%k) in two dimensions, and is NP-complete (for variable k) in three dimensions.

Sketch. When the number of dimensions is a fixed constant d, the number of extreme
solutions in each problem (2-5) is constant (2d, (f), 24, and d?2, respectively). Thus the
number of all possible sets of k solutions is also a bounded constant, call it ¢; obviously, such
problems can be solved in time proportional to ckn. For (1), the 2-dimensional algorithm is
based on dynamic programming, while the NP-completeness proof for d = 3 is by a reduction
from a facility location problem. m

4 Data Mining as Sensitivity Analysis

The field of sensitivity analysis in optimization seeks to develop principles and methodologies
for determining how the optimum decision changes as the data change. In this section we give
an extensive example suggesting that many common data mining activities can be fruitfully
analyzed within this framework.

To fix ideas, we shall consider the case in which the optimization problem facing the
enterprise is a linear program [10, 16], that is, we have an m x n matrix A (the constraint



matriz, m < n), an m-vector b (the resource bounds), and an n-row vector ¢ (the objective
function coefficients), and we seek to

P @
The columns of A —the components of x— are called activities, and the rows of A are
called constraints. Extensions to non-linear inequalities and objectives are possible, with the
Kuhn-Tucker conditions [7] replacing the sensitivity analysis below.

We assume, as postulated in the introduction, that the entries of A and b are fixed and
given (they represent the endogenous constraints of the enterprise), while the coefficients
of ¢ depend in complex ways on a relation, which we denote by C (we make no distinction
between the relation C, and its set of rows, called customers). The ith tuple of C —the ith
customer— is denoted y;, and we assume that ¢; is just Y ;e f;(vi), where f; is a function
mapping the product of the domains of C to the reals. We noted in the introduction that the
desirability of data mining depends on whether the functions f; are “non-linear;” we shall
next formalize what exactly we mean by that.

Suppose that the function f;(y',...,y") satisfies 3y ka 527 = 0 for all k and ¢. Then f; is
linear, and thus appropriate single-attribute aggregates (1n particular, averages) of the table
{y;} will accurately capture the true value of ¢;. For example, if f;(y1,y2) = y1 + 3 - y2, then
all we need in order to compute c¢; is the average values of the first two columns of C. If
agkayf # 0 for some k and £, then we say that f; is nonlinear.

Assume that all attributes of the relation C are real numbers in the range [0, 1], and
that f; depends on two attributes, call them k; and ¢; (extending to more general situations
is straightforward, but would make our notation and development less concrete and more
cumbersome). We also assume that we have an estimate D; > 0 on the absolute value of the
% D; > 0 means that f; is nonlinear. We investigate under what circum-
stances it is Worthwhlle to measure the correlations of the pair of attributes corresponding
to the coefficient ¢; —that is to say, to data mine the two attributes related to the jth

derivative

activity. Without data mining, the coefficient ¢; will be approximated by the function f; of
the aggregate values of the attributes k; and ¢;.

Suppose that we have solved the linear program (1) of the enterprise, based on the
aggregate estimation of the ¢;’s. This means that we have chosen a subset of m out the n
activities, set all other activities at zero level, and selected as the optimum level of the kth
chosen activity the kth component of the vector B~'b > 0, where ¢ = ¢ — cgB™'A > 0;
here by B we denote the square nonsingular submatrix of A corresponding to the m chosen
activities, and by cp the vector c restricted to the m chosen activities. It is the fundamental
result in the theory of linear programming that, if a square submatrix B is nonsingular and
satisfies these two inequalities, and only then, B~!b is the optimum. Matrix B~'A = X is
the simpler tableau, a matrix maintained by the simplex algorithm. The important question

10



for us is the following: Under what changes in the c;’s will the chosen level of activities
continue to be optimal?

The theory of sensitivity analysis of linear programming [10, 16] answers this question
precisely: If the ¢;’s are changed to new values c;», then the optimal solution remains the same
if and only if the condition ¢ —cy X > 0 is preserved, where X = B~ A is the simplex tableau.
That is, if each coefficient ¢; is changed from its value c;, calculated based on aggregated
data, to its true value ¢; based on raw data, the optimum decision of the enterprise remains
the same under the above conditions. This suggests the following quantitative measure of
“interestingness” wvis a vis data mining of the jth activity:

Definition 4.1 For each activity j, define its interestingness I; as follows:

1 Xij
Ij:Dj-(:—i-,max —
Cj 1,Xi;>0 ¢

); (2)

where the ¢;’s are defined as above. Notice that both terms in I; may be infinite; our conven-
tion s that, if D; = 0, then I; is zero.

The larger [; is, the more likely it is that mining correlations in the attributes k; and ¢;
will reveal that the true optimum decision of the enterprise is different from the one arrived
at by aggregation. To put it qualitatively:

An activity j is interesting if the function f; has a highly non-linear cross-term, and either
c¢; 1is small, or the jth row of the tableau has large positive coefficients at columns with small
Ci’s.

As the above analysis suggests, our point of view, combined with classical linear pro-
gramming sensitivity analysis, can be the basis of a quantitative theory for determining
when data mining can affect decisions, ultimately a theory for predicting the value of data
mining operations.

5 Segmentation in a Model of Competition

So far we have considered the data mining problems faced by a single enterprise trying to
optimize its utility. But it is also natural to consider data mining in a setting that involves
competition among several enterprises; to indicate some of the issues that arise, we consider
the classical framework of two-player games. Recall that in classical game theory, such a
game involves two players: I with m strategies and II with n strategies. The game is defined
in terms of two m X n matrices A, B, where A;; € R is the revenue of Player I in the case
that I chooses strategy ¢ and II chooses strategy j; the matrix B is defined similarly in terms

11



of Player II. Such games have been studied and analyzed in tremendous depth in the area
of game theory [4].

To add a data mining twist to the situation, suppose that two corporations I and II each
have a fixed set of m and n marketing strategies, respectively, for attracting consumers.
Each combination of these strategies has a different effect on each consumer, and we assume
that both corporations know this effect. Thus, the set C of customers can be thought of as a
set of N = |C| pairs of m x n matrices A',..., AN and B',..., BN, where the (i,7)™ entry
of AF is the amount won by I if I chooses strategy i and II chooses strategy j with respect to
customer k; similarly for B* and II.

The two corporations are going to come up with segmented strategies. Player I partitions
the set of customers C into k sets, and chooses a row-strategy for each set; similarly, Player II
partitions C into ¢ sets, and chooses a column-strategy for each set. Thus, the strategy space
of the players is the set of all partitions of the N customers into k& and ¢ sets, respectively.
The classical theory of games tells us that there is in general a mized equilibrium, in which
each player selects a linear combination (which can be viewed as a probability distribution)
over all possible segmentations of the market. Under these choices, each player is doing “the
best he can”: neither has an incentive to alter the mix of strategies he has adopted. This can
be viewed as an existential result, a definition of rational behavior, rather than a concrete
and efficient computational procedure for determining what each player should do.

Example 4: Catalog Wars. Suppose that the strategy space of Player I consists of all
possible catalogs with p pages to be mailed, and similarly for Player II, where each corporation
has a different set of alternatives for each page of the catalog. Fach corporation knows which
alternatives each given customer is going to like, and a corporation attracts a customer if the
corporation’s catalog contains more pages the customer likes than the competitor’s catalog
For each customer, we will say that the corporation that attracts the customer has a payoff
of +1, while the competitor has a payoff of —1; the payoff will be zero in the case of a tie.
Thus, in this hypothetical case, each individual customer is a zero-sum game between the
corporations.

Each corporation is going to mail out a fixed number k of versions of the catalog, with
each customer getting one version from each. The overall zero sum game has as strategy
space for each player the set of all possible k-tuples of catalogs. The payoff for Player I of
each pair of k-tuples, in the set-up above, is the number of customers who like more pages
from some of the k catalogs of Player I than from any of the catalogs of Player II, minus the
corresponding number with the roles of Players I and II interchanged.

There are many game-theoretic and computational issues suggested by such market seg-
mentation games. Under what conditions is the existence of a pure Nash equilibrium guar-
anteed? What is the computational complexity of finding a mixed equilibrium?
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6 Conclusions and Open Problems

We are interested in a rigorous framework for the automatic evaluation of data mining
operations. To this end, we have proposed a set of principles and ideas, and developed
frameworks of four distinct styles. Our framework of optimization problems with coefficients
depending nonlinearly on data, and our definition of interestingness within this framework
(Section 4), should be seen as an example of the kinds of theories, methodologies, and tools
that can be developed; we have refrained from stating and proving actual results in that
section exactly because the potential range of interesting theorems that are straightforward
applications of these ideas is too broad. The segmentation problems we study in Section 3
are also meant as stylized and abstract versions of the kinds of computational tasks that
emerge in the wake of our point of view. The more database-theoretic concept of targetable
restrictions of databases introduced in Example 3 needs further exploration. Finally, we
have only pointed out the interesting models and problems that arise if segmentation is seen
in a context involving competition.

The technical and model-building open problems suggested by this work are too many
to list exhaustively here. For example: What interesting theorems can be stated and proved
within the sensitivity analysis framework of Section 47 Are there interesting and realistic
segmentation problems that are tractable, or for which fast and effective heuristics can
be developed? How does one model temporal issues within this framework (we can view
problem faced by the enterprise as a Markov Decision Process [11]), and what insights result?
More importantly, what new ideas are needed in order to apply our framework in realistic
situations, in which the precise nature of the enterprise’s decision problem is murky, and the
data on customers incomplete, unreliable, and only very implicitly containing information on
the parameters of interest (such as revenue resulting from each possible marketing strategy)?

Finally, we have focused on data mining as an activity by a revenue-maximizing enterprise
examining ways to exploit information it has on its customers. There are of course many
important applications of data mining — for example, in scientific and engineering contexts
— to which our framework does not seem to apply directly. However, even in these applica-
tions it is possible that insight can be gained by identifying, articulating quantitatively, and
taking into account the goals and objectives of the data mining activity.
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References

[1] R. Agrawal, T. Imielinski, A. Swami. “Mining association rules between sets of items
in a large database.” Proc. ACM SIGMOD Intl. Conference on Management of Data,
pp. 207-216, 1993.

13



2]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

R. Agrawal, H. Mannila, R. Srikant, H. Toivonen, A. I. Verkamo. “Fast discovery of
association rules.” Advances in Knowledge discovery and data mining, pp. 307-328,
AAAI/MIT Press, 1996.

R. Agrawal, R. Srikant. Fast algorithms for mining association rules. Proc. 20th
Intl. Conference on Very Large Databases, 487-499, 1994.

R. Aumann, S. Hart, editors. Handbook of Game Theory, volume I, Elsevier, 1992.

S. Brin, R. Motwani, J.D. Ullman, S. Tsur. “Dynamic itemset counting and implication
rules for market basket data”. Proc. ACM SIGMOD Intl. Conference on Management
of Data, 1997.

S. Brin, R. Motwani, C. Silverstein. “Beyond Market Baskets: Generalizing Association
Rules to Correlations.” Proc. ACM SIGMOD Intl. Conference on Management of Data,
1997.

M. Avriel. Nonlinear Programming: Analysis and Methods. Prentice-Hall, 1976.
M. J. Berry, G. Linoff. Data Mining Techniques. John-Wiley, 1997.

M. S. Chen, J. Han, P. S. Yu. “Data mining: An overview from a database perspective.”
IEEE Trans. on Knowledge and Data Eng., 8, 6, pp. 866—-884, 1996.

G. B. Dantzig Linear programming and Extensions. Princeton Univ. Press, 1963.
C. Derman. Finite State Markov Decision Processes. Academic Press, New York, 1970.

D. Gunopoulos, R. Khardon, H. Mannila, H. Toivonen. “Data mining, hypergraph
transversals, and machine learning”. Proc. ACM SIGACT-SIGMOD Symposium on
Principles of Database Systems, pp. 209-217, 1997.

J. Kleinberg, C. H. Papadimitriou, P. Raghavan. “Segmentation problems,” Proc. ACM
Symposium on Theory of Computing, 1998.

B. Liu and W. Hsu. “Post-analysis of learned rules.” Proc. National Conference on
Artificial Intelligence, pp. 828-834, 1996.

B.M. Masand and G. Piatetsky-Shapiro. “A comparison of approaches for maximizing
business payoff of prediction models”. Proc. Intl. Conference on Knowledge Discovery
and Data Mining, 1996.

C. H. Papadimitriou, K. Steiglitz. Combinatorial Optimization: Algorithms and Com-
plexity (second edition). Dover, 1997.

14



[17] G. Piatetsky-Shapiro, C. J. Matheus. “The interestingness of deviations.” Proc.
Intl. Conference on Knowledge Discovery and Data Mining, 25-36, 1994.

[18] A. Silberschatz and A. Tuzhilin. “What makes patterns interesting in knowledge dis-
covery systems .” IEEE Trans. on Knowledge and Data Eng., 8, 6, 1996.

[19] P. Smyth, R. M. Goodman. “Rule induction using information theory.” Proc. Intl. Con-
ference on Knowledge Discovery and Data Mining, 159-176, 1991.

[20] R. Srikant and R. Agrawal. Mining generalized association rules. Proc. Intl. Conference
on Very Large Databases, 1995.

[21] H. Toivonen. Sampling large databases for finding association rules. Proc. Intl. Confer-
ence on Very Large Databases, 1996.

15



