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In the last few decades, numerous experiments have shown that humans do not always behave so as to
maximize their material payoff. Cooperative behavior when non-cooperation is a dominant strategy
(with respect to the material payoffs) is particularly puzzling. Here we propose a novel approach
to explain cooperation, assuming what Halpern and Pass [27] call translucent players. Typically,
players are assumed to be opaque, in the sense that a deviation by one player in a normal-form game
does not affect the strategies used by other players. But a player may believe that if he switches
from one strategy to another, the fact that he chooses to switch may be visible to the other players.
For example, if he chooses to defect in Prisoner’s Dilemma, the other player may sense his guilt.
We show that by assuming translucent players, we can recover many of the regularities observed in
human behavior in well-studied games such as Prisoner’s Dilemma, Traveler’s Dilemma, Bertrand
Competition, and the Public Goods game.

1 Introduction

In the last few decades, numerous experiments have shown that humans do not always behave so as to
maximize their material payoff. Many alternative models have consequently been proposed to explain
deviations from the money-maximization paradigm. Some of them assume that players are boundedly
rational and/or make mistakes in the computation of the expected utility of a strategy [7, [15) 28] [35]
46); yet others assume that players have other-regarding preferences [3 [14, 23]); others define radically
different solution concepts, assuming that players do not try to maximize their payoff, but rather try to
minimize their regret [26) 41]], or maximize the forecasts associated to coalition structures [9} [13]], or
maximize the total welfare [1,42]. (These references only scratch the surface; a complete bibliography
would be longer than this paper!)

Cooperative behavior in one-shot anonymous games is particularly puzzling, especially in games
where non-cooperation is a dominant strategy (with respect to the material payoffs): why should you pay
a cost to help a stranger, when no clear direct or indirect reward seems to be at stake? Nevertheless, the
secret of success of our societies is largely due to our ability to cooperate. We do not cooperate only with
family members, friends, and co-workers. A great deal of cooperation can be observed also in one-shot
anonymous interactions [[6], where none of the five rules of cooperation proposed by Nowak [36] seems
to be at play.

Here we propose a novel approach to explain cooperation, based on work of Halpern and Pass [27]
and Salcedo [43], assuming what Halpern and Pass call translucent players. Typically, players are as-
sumed to be opaque, in the sense that a deviation by one player in a normal-form game does not affect
the strategies used by other players. But a player may believe that if he switches from one strategy to
another, the fact that he chooses to switch may be visible to the other players. For example, if he chooses
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2 Translucent Players

to defect in Prisoner’s Dilemma, the other player may sense his guilt. (Indeed, it is well known that
there are facial and bodily clues, such as increased pupil size, associated with deception; see, e.g., [21]].
Professional poker players are also very sensitive to tells—betting patterns and physical demeanor that
reveal something about a player’s hand and strategy.ﬂ

We use the idea of translucency to explain cooperation. This may at first seem somewhat strange.
Typical lab experiments of social dilemmas consider anonymous players, who play each other over com-
puters. In this setting, there are no tells. However, as Rand and his colleagues have argued (see, e.g.,
[38L139])), behavior of subjects in lab experiments is strongly influenced by their experience in everyday
interactions. People internalize strategies that are more successful in everyday interactions and use them
as default strategies in the lab. We would argue that people do not just internalize strategies; they also
internalize beliefs. In everyday interactions, changing strategies certainly affects how other players react
in the future. Through tells and possible leaks about changes in plans, it also may affect how other play-
ers react in current play. Thus, we would argue that, in everyday interactions, people assume a certain
amount of transparency, both because it is a way of taking the future into account in real-world situations
that are repeated and because it is a realistic assumption in one-shot games that are played in settings
where players have a great deal of social interaction. We claim that players then apply these beliefs in
lab settings where they are arguably inappropriate.

There is experimental evidence that can be viewed as providing support for players believing that
they are transparent. Gilovich et al. [24] show that people tend to overestimate the extent to which others
can discern their internal states. For instance, they showed that liars overestimate the detectability of
their lies and that people believe that their feelings of disgust are more apparent than they actually are.
There is also growing evidence that showing people simple images of watching eyes has a marked effect
on behavior, ranging from giving more in Public Goods games to littering less (see [4] for a discussion
of some of this work and an extensive list of references). One way of understanding these results is that
the eyes are making people feel more transparent.

We apply the idea of translucency to a particular class of games that we call social dilemmas
(cf. [18]). A social dilemma is a normal-form game with two aproperties:

1. there is a unique Nash equilibrium s", which is a pure strategy profile;

2. there is a unique welfare-maximizing profile sV, again a pure strategy profile, such that each
player’s utility if sV is played is higher than his utility if s/ is played.

These uniqueness assumptions are not necessary, but they make definitions and computations easier.
Although these restrictions are nontrivial, many of the best-studied games in the game-theory literature
satisfy them, including Prisoner’s Dilemma, Traveler’s Dilemma [3]], Bertrand Competition, and the
Public Goods game. (See Section [3|for more discussion of these games.)

There are (at least) two reasons why an agent may be concerned about translucency in a social
dilemma: (1) his opponents may discover that he is planning to defect and punish him by defecting
as well, (2) many other people in his social group (which may or may not include his opponent) may
discover that he is planning to defect (or has defected, despite the fact that the game is anonymous) and
think worse of him.

IThe idea of translucency is motivated by some of the same concerns as Solan and Yariv’s [43] games with espionage, but
the technical details are quite different. A game with espionage is a two-player extensive-form game that extends an underlying
normal-form game by adding a step where player 1 can purchase some noisy information about player 2’s planned move. Here,
the information is free and all players may be translucent. Moreover, the effect of the translucency is modeled by the players’
counterfactual beliefs rather than by adding a move to the game.



V. Capraro & J. Y. Halpern 3

For definiteness, we focus here on the first point and assume that, in social dilemmas, players have a
degree of belief « that they are transparent, so that if they intend to cooperate (by playing their component
of the welfare-maximizing strategy) and decide to deviate, there is a probability o that another player will
detect this, and play her component of the Nash equilibrium strategy. (The assumption that cooperation
acts as a default strategy is supported by experiments showing that people forced to make a decision
under time pressure are, on average, more cooperative than those forced to made a decision under time
delay 38} 39]. Rand and his colleagues suggest that this is due to the internalization of strategies that
are successful in everyday interactions.)  We assume that these detections are independent, so that
the probability of, for example, exactly two players other than i detecting a deviation by i is a?(1 —
o)V =3, where N is the total number of players. Of course, if o = 0, then we are back at the standard
game-theoretic framework. We show that, with this assumption, we can already explain a number of
experimental regularities observed in social dilemmas (see Section [3)). We can model the second point
regarding concerns about transparency in much the same way, and would get qualitatively similar results
(see Section [6)).

The rest of the paper is as follows. In Section [2| we formalize the notion of translucency in a game-
theoretic setting. In Section [3] we define the social dilemmas that we focus on in this paper; in Section
Ml we show that by assuming translucency, we can obtain as predictions of the framework a number of
regularities that have been observed in the experimental literature. We discuss related work in Section[5]
Section [6] concludes. Proofs are deferred to the full paper, where we also discuss a solution concept
that we call translucent equilibrium, based on translucency, closely related to the notion of individual
rationality discussed by Halpern and Pass [27]], and show how it can be applied in social dilemmas.

2 Rationality with translucent players

In this section, we briefly define rationality in the presence of translucency, motivated by the ideas in
Halpern and Pass [27].

Formally, a (finite) normal-form game ¢ is a tuple (P,Sy,...,Sn, u1,...,uy), where P={1,...,N}
is the set of players, S; is the set of strategies for player i, and u; is player i’s utility function. Let
§=81x--xSyandS_; =]];4S;. We assume that S is finite and that N > 2.

In standard game theory, it is assumed that a player i has beliefs about the strategies being used by
other players; i is rational if his strategy is a best response to these beliefs. The standard definition of
best response is the following.

Definition 2.1. A strategy s; € S; is a best response to a probability y; on S_; if, for all strategies s} for
player i,
Yol uilsisty) > Y (s uilst,sty).-

s/ €8 s €8

Definition [2.T] implicitly assumes that i’s beliefs about what other agents are doing do not change if
i switches from s;, the strategy he was intending to play, to a different strategy. (In general, we assume
that i always has an intended strategy, for otherwise it does not make sense to talk about i switching to a

different strategy.) So what we really have are beliefs ,ufi & for i indexed by a pair of strategies s; and s/;

!

we interpret ,uis " as i’s beliefs if he intends to play s; but instead deviates to ;. Thus, i;"" represents i’s
beliefs if he plays s; and does not deviate. We modify the standard definition of best response by defining

8iySh
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best response with respect to a family of beliefs pt



4 Translucent Players

Definition 2.2. Strategy s; € S; is a best response for i with respect to the beliefs { ,u;"’s" 2 st € S} if, for
all strategies s € S,

Y i uilsist) > Y w” $irs"i)-

s eS8 s eS8
O
We are interested in players who are making best responses to their beliefs, but we define best re-
sponse in terms of Definition [2.2] not Definition Of course, the standard notion of best response is

just the special case of the notion above where p;"" = p’* for all s: a player’s beliefs about what other
players are doing does not change if he switches strategies.

Definition 2.3. A player is translucently rational if he best responds to his beliefs in the sense of Defi-
nition2.2l O

Our assumptions about translucency will be used to determine ,ul-s "’Sﬁ. For example, suppose that I" is a
2-player game, player 1 believes that, if he were to switch from s; to s’, this would be detected by player

2 with probability ¢, and if player 2 did detect the switch, then player 2 would switch to s Then ,Ll

is (1 —o)p** + ap’, where p’ assigns probability 1 to s;, that is, player 1 believes that w1th probablhty
1 — o, player 2 continues to do what he would have done all along (as described by p**) and, with
probability o, player 2 switches to s}.

3 Social dilemmas

Social dilemmas are situations in which there is a tension between the collective interest and individual
interests: every individual has an incentive to deviate from the common good and act selfishly, but
if everyone deviates, then they are all worse off. Many personal and professional relationships, the
depletion of natural resources, climate protection, the security of energy supply, and price competition
in markets can all be viewed as instances of social dilemmas.

As we said in the introduction, we formally define a social dilemma as a normal-form game with a
unique Nash equilibrium and a unique welfare-maximizing profile, both pure strategy profiles, such that
each player’s utility if sV is played is higher than his utility if s" is played. While this is a quite restricted
set of games, it includes many that have been quite well studied. Here, we focus on the following games:
Prisoner’s Dilemma. Two players can either cooperate (C) or defect (D). To relate our results to exper-

imental results on Prisoner’s Dilemma, we think of cooperation as meaning that a player pays a
cost ¢ > 0 to give a benefit b > ¢ to the other player. If a player defects, he pays nothing and gives
nothing. Thus, the payoff of (D, D) is (0,0), the payoff of (C,C) is (b —c,b— c), and the payoffs
of (D,C) and (C,D) are (b,—c) and (—c,b), respectively. The condition b > ¢ implies that (D, D)
is the unique Nash equilibrium and (C,C) is the unique welfare-maximizing profile.

Traveler’s Dilemma. Two travelers have identical luggage, which is damaged (in an identical way) by
an airline. The airline offers to recompense them for their luggage. They may ask for any dollar
amount between L and H (where L and H are both positive integers). There is only one catch. If
they ask for the same amount, then that is what they will both receive. However, if they ask for
different amounts—say one asks for m and the other for m’, with m < m'—then whoever asks for
m (the lower amount) will get m+ b (m and a bonus of b), while the other player gets m — b: the
lower amount and a penalty of b. It is easy to see that (L, L) is the unique Nash equilibrium, while
(H,H) maximizes social welfare, independent of b.



V. Capraro & J. Y. Halpern 5

Public Goods game. N > 2 contributors are endowed with 1 dollar each; they must simultaneously
decide how much, if anything, to contribute to a public pool. (The contributions must be in
whole cent amounts.) The total contribution pot is then multiplied by a constant strictly be-
tween 1 and N, and then evenly redistributed among all playersE] So the payoff of player i is
ui(xy,...,xy) = 1—x;+p(x; +...+xy), where x; denotes i’s contribution, and p € (%, 1) is the
marginal return. (Thus, the pool is multiplied by pN before being split evenly among all play-
ers.) Everyone contributing nothing to the pool is the unique Nash equilibrium, and everyone
contributing their whole endowment to the pool is the unique welfare-maximizing profile.

Bertrand Competition. N > 2 firms compete to sell their identical product at a price between the “price
floor” L > 2 and the “reservation value” H. (Again, we assume that H and L are integers, and all
prices must be integers.) The firm that chooses the lowest price, say s, sells the product at that
price, getting a payoff of s, while all other firms get a payoff of 0. If there are ties, then the sales
are split equally among all firms that choose the lowest price. Now everyone choosing L is the
unique Nash equilibrium, and everyone choosing H is the unique welfare-maximizing proﬁleﬂ

From here on, we say that a player cooperates if he plays his part of the welfare-maximizing strategy
profile and defects if he plays his part of the Nash equilibrium strategy profile.

While Nash equilibrium predicts that people should always defect in social dilemmas, in practice, we
see a great deal of cooperative behavior; that is, people often play (their part of) the welfare-maximizing
profile rather than (their part of) the Nash equilibrium profile. Of course, there have been many attempts
to explain this. Evolutionary theories may explain cooperative behavior among genetically related indi-
viduals [30] or when future interactions among the same subjects are likely [37,147]; see [36]] for a review
of the five rules of cooperation. However, we often observe cooperation even in one-shot anonymous ex-
periments among unrelated players [40].

Although we do see a great deal of cooperation in these games, we do not always see it. Here are
some of the regularities that have been observed:

e The degree of cooperation in the Prisoner’s dilemma depends positively on the benefit of mutual
cooperation and negatively on the cost of cooperation [[11} 22} 40].

e The degree of cooperation in the Traveler’s Dilemma depends negatively on the bonus/penalty [8]].

e The degree of cooperation in the Public Goods game depends positively on the constant marginal
return [25} [31]].

e The degree of cooperation in the Public Goods game depends positively on the number of players
(2132, 148].

e The degree of cooperation in the Bertrand Competition depends negatively on the number of play-
ers [19].

e The degree of cooperation in the Bertrand Competition depends negatively on the price floor [20].

2We thus consider only linear Public Goods games. This choice is motivated by the fact that our purpose is to compare the
predictions of our model with experimental data. Most experiments have adopted linear Public Goods games, since they have
much easier instructions and thus they minimize noise due to participants not understanding the rules of the game.

3We require that L > 2 for otherwise we would not have a unique Nash equilibrium, a condition we imposed on Social
Dilemmas. If L =1 and N = 2, we get two Nash equilibria: (2,2) and (1,1); similarly, for L = 0, we also get multiple Nash
equilibria, for all values of N > 2.
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4 Explaining social dilemmas using translucency

As we suggested in the introduction, we hope to use translucency to explain cooperation in social dilem-
mas even when players cannot see each other. We expect that people get so used to assuming some
degree of transparency in their everyday interactions, which are typically face-to-face, that they bring
these strategies and beliefs in the lab setting, even though they are arguably inappropriate.

To do this, we have to make assumptions about an agent’s beliefs. Say that an agent i has type
(a,B,C) if i intends to cooperate (the parameter C stands for cooperate) and believes that (a) if he
deviates from that, then each other agent will independently realize this with probability o; (b) if an
agent j realizes that i is not going to cooperate, then j will defect; and (c) all other players will either
cooperate or defect, and they will cooperate with probability 3.

The standard assumption, of course, is that &« = 0. Our results are only of interest if & > 0. The
assumption that i believes that agent j will defect if she realizes that i is going to deviate from cooperation
seems reasonable; defection is the “safe” strategy. We stress that, for our results, it does not matter what
Jj actually does. All that matters are i’s beliefs about what j will do. The assumption that players will
either cooperate or defect is trivially true in Prisoner’s Dilemma, but is a highly nontrivial assumption in
the other games we consider. While cooperation and defection are arguably the most salient strategies,
we do in practice see players using other strategies. For instance, the distribution of strategies in the
Public Goods game is typically tri-modal, concentrated on contributing nothing, contributing everything,
and contributing half [11]. We made this assumption mainly for technical convenience: it makes the
calculations much easier. We believe that results qualitatively similar to ours will hold under a much
weaker assumption, namely, that a type (a, ,C) player believes that other players will cooperate with
probability B (without assuming that they will defect with probability 1 — 3).

Similarly, the assumptions that a social dilemma has a unique Nash equilibrium and a unique social-
welfare maximizing strategy were made largely for technical reasons. We can drop these assumptions,
although that would require more complicated assumptions about players’ beliefs.

Our assumptions ensure that the type of player i determines the distributions ,uliY"’S;. In a social
dilemma with N agents, the distribution 1" assigns probability S"(1 — )N ~1"" to a strategy profile
s_; for the players other than i if exactly r players cooperate in s_; and the remaining N — 1 — r players
defect; it assigns probability O to all other strategy profiles. The distributions ,uis i for si # s; all have
the form }.;c 1 i-1,i41,..5) Ocm(l - OC)N_I_MM[J, where uiJ is the distribution that assigns probability
B*(1— B)N-VI=k to a profile where k < N — 1 —|J| players not in J cooperate, and the remaining players
(which includes all the players in J) defect. Thus, ul-] is the distribution that describes what player i’s
beliefs would be if he knew that exactly the players in J had noticed his deviation (which happens with
probability a’/(1 — a)¥=1=VI). In the remainder of this section, when we talk about best response, it is
with respect to these beliefs.

For our purposes, it does not matter where the beliefs o and 8 that make up a player’s type come
from. We do not assume, for example, that other players are (translucently) rational. For example, i
may believe that some players cooperate because they are altruistic, while others may cooperate because
they have mistaken beliefs. We can think of B as summarizing i’s previous experience of cooperation
when playing social dilemmas. Here we are interested in the impact of the parameters of the game on
the reasonableness of cooperation, given a player’s type.

The following four propositions analyze the four social dilemmas in turn; the proofs can be found in
the full paper. We start with Prisoner’s Dilemma. Recall that b is the benefit of cooperation and c is its
cost.
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Proposition 4.1. In Prisoner’s Dilemma, it is translucently rational for a player of type (o, f3,C) to
cooperate if and only if b > ¢. O

As we would expect, if @ = 0, then cooperation is not a best response in Prisoner’s Dilemma; this is
just the standard argument that defection dominates cooperation. But if & > 0, then cooperation can be
rational. Moreover, if we fix «, the greater the benefit of cooperation and the smaller the cost, then the
smaller the value of f3 that still allows cooperation to be a best response.

We next consider Traveler’s Dilemma. Recall that b is the reward/punishment, H is the high payoff,
and L is the low payoff,

Proposition 4.2. In Traveler’s Dilemma, it is translucently rational for a player of (o, B,C) to cooperate
if and only if
(H-L)B : 1
h< 1-afB ifoa> 2
> . H—L I .
mm<(17(x[)3ﬁ’Hlflial) lfOt< %

a

Proposition shows that as b, the punishment/reward, increases, a player must have greater belief
that his opponent is cooperative and/or a greater belief that the opponent will learn about his devia-
tion and/or a greater difference between the high and low payoffs in order to make cooperation a best
response. (The fact that increasing 8 increases (1;1:52!3 follows from straightforward calculus.)
We next consider the Public Goods game. Recall the p is the marginal return of cooperating.

Proposition 4.3. In the Public Goods game with N players, it is translucently rational for a player of
type (o, B,C) to cooperate if and only if afp(N—1) > 1—p. O

Proposition shows that if p = 1, then cooperation is certainly a best response (you always get
out at least as much as you contribute). For fixed o and B, there is guaranteed to be an Ny such that
cooperation is a best response for all N > Ny; moreover, for fixed a, as N gets larger, smaller and smaller
Bs are needed for cooperation to be a best response.

Finally we consider the Bertrand competition. Recall that H is the reservation value and L is the
price floor.

Proposition 4.4. In Bertrand Competition, it is translucently rational for a player of type (a.,f
to cooperate iff BN~1 > max(yV"'N(H — 1)/H, f(y,N)LN/H), where v = (1 — a)B and f(y,N
Lo (D= k1), 0

Note that f(¥,N) = 530 (V) (L= A" 1 ke 1) > 550 (V) (L= /N = 1/N, so
Proposition shows cooperation is irrational if BV~ < L/H. Thus, while cooperation may be achieved
for reasonable values of o and 3 if N is small, a player must be more and more certain of cooperation in
order to cooperate in Bertrand Competition as the number of players increases. Indeed, for a fixed type
(a,B,C), there exists Ny such that cooperation is not a best response for all N > Ny. Moreover, if we fix
the number N of players, more values of @ and f3 allow cooperation as L/H gets smaller. In particular,
if we fix H and raise the floor L, fewer values of o and 8 allow cooperation.

While Propositions 4.1H4.4] are suggestive, we need to make extra assumptions to use these propo-
sitions to make predictions. A simple assumption that suffices is that there are a substantial number of
translucently rational players whose types have the form (¢, 3,C). Formally, assume that for each pair
(u,v) and («/,v') of open intervals in [0,1], there is a positive probability of finding someone of type
(a, B,C) with ¢ € (u,v) and B € («/,v'). With this assumption, it is easy to see that all the regularities
discussed in Section 3 hold.

7C)
) =
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5 Comparison to other approaches

Here we show that approaches (that we are aware of) other than that of Charness and Rabin and possibly
that of Bolton and Ockenfels are not able to obtain all the regularities that we mentioned in Section
We consider a number of approaches in turn.

e The Fehr and Schmidt [23]] inequity-aversion model assumes that subjects play a Nash equilibrium
of a modified game, in which players do not only care about their monetary payoff, but also
they care about equity. Specifically, player i’s utility when strategy s is played is assumed to be
Ui(s) = ui(s) — 20 ¥ imax(u(s) — ui(s),0) — 2o ¥ max (ui(s) — u;(s),0), where u(s) is the
material payoff of player i, and 0 < bF $ < af 5 are individual parameters, where af 5 represents the

extent to which player i is averse to inequity in favor of others, and bf 5 represents his aversion

to inequity in his favor. Consider the Public Goods game with N players. The strategy profile

(x,...,x), where all players contribute x gives player i a utility of (1 —x)+ pNx. If x > 0 and

player i contributes X’ < x, then his payoff is (1 —x') + p((N — 1)x+x') — bISp(x —x'). Thus,

(x,...,x) is an equilibrium if 6¥5p (x —x') > (1 — p)(x — '), that is, if b5 > (1 —p)/p. Thus, if

bFS > (1—p)/p for all players i, then (x,...,x) is an equilibrium for all choices of x and all values

of N. While there may be other pure and mixed strategy equilibria, it is not hard to show that if
bFS < (1—p)/p, then player i will play 0 in every equilibrium (i.., not contribute anything). As

a consequence, assuming, as in our model, that players believe that there is a probability  that

other agents will cooperate and that the other agents either cooperate or defect, Fehr and Schmidt

[23]] model does not make any clear prediction of a group-size effect on cooperation in the public

goods game.

e McKelvey and Palfrey’s [35] quantal response equilibrium (QRE) is defined as followsf_fl Taking
oi(s) to be the probability that mixed strategy o; assigns to the pure strategy s, given A > 0, a

e)LEUl»(s,o;l-)

mixed strategy profile o is a QRE if, for each player i, 0;(s) = S
siES; !
To see that QRE does not describe human behaviour well in social dilemmas, observe that in the
Prisoner’s Dilemma, for all choices of parameters b and ¢ in the game, all choices of the parameter
A, all players i, and all (mixed) strategies s_; of player —i, we have EU;(C,s_;) < EU;(D,s_;).
Consequently, whatever the QRE o is, we must have 6;(C) < 3 < 6;(D), that is, QRE predicts
that the degree of cooperation can never be larger than 50%. However, experiments show that we
can increase the benefit-to-cost ratio so as to reach arbitrarily large degrees of cooperation (close

to 80% in [11] with b/c = 10).

o [terated regret minimization [26] does not make appropriate predictions in Prisoner’s Dilemma
and the Public Goods game, because it predicts that if there is a dominant strategy then it will be
played, and in these two games, playing the Nash equilibrium is the unique dominant strategy.

e Capraro’s [9] notion of cooperative equilibrium, while correctly predicting the effects of the size
of the group on cooperation in the Bertrand Competition and the Public Goods game [2]], fails to
predict the negative effect of the price floor on cooperation in the Bertrand Competition.

e Rong and Halpern’s [29} 42] notion of cooperative equilibrium (which is different from that of
Capraro [9]) focuses on 2-player games. However, the definition for games with greater than 2
players does not predict the decrease in cooperation as N increases in Bertrand Competition, nor
the increase as N increases in the Public Goods Game.

4We actually define here a particular instance of QRE called the logir QRE; A is a free parameter of this model.
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e Bolton and Ockenfels’ [S] inequity-aversion model assumes that a player i aims at maximiz-
ing his or her motivational function v; = v;(x;,0;), where x; is i’s monetary payoff and o; =
Ci(x1,Xj=1,..N%j) = Xi/ X j=1.. n%j. The motivational function is assumed to be twice differ-
entiable, weakly increasing in the first argument, and concave in the second argument with a
maximum at o; = %, but otherwise is unconstrained. For each of the social dilemmas that we
have considered, it is not hard to define a motivational function that will obtain the regularities
observed. However, we have not been able to find a single motivational function that gives the
observed regularities for all four social dilemmas that we have considered. In any case, just as
with the Charness and Rabin model, once we consider the interaction between social groups and
translucency, we can distinguish our approach from this inequity-aversion model. Specifically,
consider a situation where people are given a choice between giving $1 to an anonymous stranger,
rather than burning it. In such a situation, inequity aversion would predict that people would burn
the dollar to maintain equity (i.e., a situation where no one gets $1). However, perhaps not surpris-
ingly, Capraro et al. [12]] found that over 90% people prefer giving away the dollar to burning it.
Of course, translucency (and a number of other approaches) would have no difficulty in explaining
this phenomenon.

The one approach besides ours that we are aware of that obtains all the regularities discussed above
is that of Charness and Rabin [14]. Charness and Rabin, like Fehr and Schmidt [23]], assume that agents
play a Nash equilibrium of a modified game, where players care not only about their personal material
payoff, but also about the social welfare and the outcome of the least fortunate person. Specifically, player
i’s utility is assumed to be (1 —aS®)u;(s) +aSR (bR minj—; _ yu;(s)+ (1 —b5F) ley:l uj(s)). Assuming,
as in our model, that agents believe that other players either cooperate or defect and that they cooperate
with probability 3, then it is not hard to see that Charness and Rabin [[14]] also predict all the regularities
that we have been considering.

Although it seems difficult to distinguish our model from that of Charness and Rabin [[14] if we
consider only social dilemmas, the models are distinguishable if we look at other settings and take into
account the other reason we mentioned for translucency: that other people in their social group might
discover how they acted. We can easily capture this in the framework we have been considering by
doubling the number of agents; for each player i, we add another player i* that represent’s i’s social
network. Player i* can play only two actions: n (for “did not observe player i’s action) and o (for
“observed player i’s action”)E] The payoffs of these new players are irrelevant. Player i’s payoff depends
on the action of player i*, but not on the actions of player j* for j* = i*. Now player i must have a
prior probability 7; about whether his action will be observed; in a social dilemma, this probability might
increase to ¥/ > ¥ if he intends to cooperate but instead deviates and defects. It should be clear that,
even if 7/ = ¥, if we assume that player i’s utilities are significantly lower if his non-cooperative action is
observed, with this framework we would get qualitatively similar results for social dilemmas to the ones
that we have already obtained. Again, a player has beliefs about the extent to which he is transparent,
and we can set the payoffs so that the effects of transparency are the same if a player’s social network
learns about his actions and if other players learn about his action.

The advantage of taking into account what your social group thinks is that it allows us to apply ideas
of translucency even to single-player games like the Dictator Game [33]]. To do so, we need to make
assumptions about what a player’s utility would be if his social group knew the extent to which he shared
the pot. But it should be clear that reasonable assumptions here would lead to some degree of sharing.

3 Alternatively, we could take player i’s payoff to depend on the state of the world, where the state would model whether or
not player i’s action was observed.
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While this would still not distinguish our predictions from those of the Charness-Rabin model, there is
a variant of the Dictator Game that has recently been considered to show existence of hyper-altruism in
conflict situations [[16}10]. In the simplest version of this game, there are only two possible allocations
of money: either the agent gets x and the other player gets —x, or the other player gets x and the agent
gets —x. In this game, the Charness-Rabin approach would predict that the agent will either keep x or be
indifferent between keeping x and giving it away. But assuming translucency allows for the possibility
that some types of agents would think that their social group would approve of them giving away x, so if
the action were observed by their social group, they would get high utility by giving away x. However,
recent results by Capraro [10] show that a significant fraction (1/6) of people are hyper-altruistic: they
strictly prefer giving away x to keeping it [[10].

Just to be clear, we do not mean to imply that translucency is the unique “right” explanation for
cooperation in social dilemmas and all the other explanations that we discussed above are “wrong”.
There are probably a number of factors that contribute to cooperation. We hope in future work to tease
these apart.

6 Discussion

We have presented an approach that explains a number of well-known observations regarding the extent
of cooperation in social dilemmas. In addition, our approach can also be applied to explain the apparent
contradiction that people cooperate more in a one-shot Prisoner’s dilemma when they do not know the
other player’s choice than when they do. In the latter case, Shafir and Tversky [44] found that most
people (90%) defect, while in the former case, only 63% of people defect. Our model of translucent
players predicts this behavior: if player 1 knows player 2’s choices then there is no translucency, so our
model predicts that player 1 defects for sure. On the other hand, if player 1 does not know player 2’s
choice and believes that he is to some extent translucent, then, as shown in Proposition 4.1 he may be
willing to cooperate. Seen in this light, our model can also be interpreted as an attempt to formalize
quasi-magical thinking [44], the kind of reasoning that is supposed to motivate those people who believe
that the others’ reasoning is somehow influenced by their own thinking, even though they know that there
is no causal relation between the two. Quasi-magical thinking

has also been formalized by Masel [34] in the context of the Public Goods game and by Daley and
Sadowski [17] in the context of symmetric 2 X 2 games. The notion of translucency goes beyond these
models, since it may be applied to a much larger set of games.

Besides a retrospective explanation, our model makes new predictions for social dilemmas which, to
the best of our knowledge, have never been tested in the lab. In particular, it predicts that

e the degree of cooperation in Traveler’s dilemma increases as the difference H — L increases;

o for fixed L and N, the degree of cooperation in Bertrand Competition increases as H increases, and
what really matters is the ratio L/H.

Clearly much more experimental work needs to be done to validate the approach. For one thing,
it is important to understand the predictions it makes for other social dilemmas and for games that are
not social dilemmas. Perhaps even more important would be to see if we can experimentally verify that
people believe that they are to some extent translucent, and, if so, to get a sense of what the value of o
is. In light of the work on watching eyes mentioned in the introduction, it would also be interesting to
know what could be done to manipulate the value of a.

One feature of our approach is that, at least if we take the concern with translucency to be due
to an opponent discovering what you are going to do (rather than other members of your social group
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discovering what you are going to do), then, unlike many other approaches to explaining social dilemmas,
our approach does not involve modifying the utility function; that is, we can apply translucency while
still identifying utility with the material payoff. While this make it an arguably simpler explanation, that
does not necessarily make it “right”, of course. We do not in fact believe that there is a unique “right”
explanation for cooperation in social dilemmas and all the other explanations that we discussed above
are “wrong”. There are probably a number of factors that contribute to cooperation. We hope in future
work to tease these apart.

Of course, we do not have to assume & > 0 to get cooperation in social dilemmas such as Traveler’s
Dilemma or Bertrand Competition. But we do if we want to consider what we believe is the appropriate
equilibrium notion. Suppose that rational players are chosen at random from a population and play a
social dilemma. Players will, of course, then update their beliefs about the likelihood of seeing cooper-
ation, and perhaps change their strategy as a consequence. Will these beliefs stabilize and the strategies
played stabilize? By stability here, we mean that (1) players are all best responding to their beliefs, and
(2) players’ beliefs about the strategies played by others are correct: if player i ascribes probability p
to player j playing a strategy s;, then in fact a proportion p of players in the population play s;. We
have deliberately been fuzzy here about whether we mean best response in the sense of Definition |2.1
or Definition [2.2] If we use Definition [2.1] (or, equivalently use Definition 2.2] and take ¢t = 0), then it
is easy to see (and well known) that the only way that this can happen is if the distribution of strategies
played by the players represents a mixed strategy Nash equilibrium. On the other hand, if & > 0 and we
use Definition [2.2] then we can have stable beliefs that accurately reflect the strategies used and have co-
operation (in all the other social dilemmas that we have studied). We make this precise in the full paper,
using the framework of Halpern and Pass [27]], by defining a notion of translucent equilibrium. Roughly
speaking, we construct a model where, at all states, players are translucently rational (so we have com-
mon belief of translucent rationality), the strategies used are common knowledge, and we nevertheless
have cooperation at some states. Propositions d.IH4.4]play a key role in this construction; indeed, as long
as the strategies used satisfy the constraints imposed by these results, we get a translucent equilibrium.

In the full paper, we also characterize those profiles of strategies that can be translucent equilibria,
using ideas similar in spirit to those of Halpern and Pass [27]. While allowing people to believe that
they are to a certain extent transparent means that the set of translucent equilibria is a superset of the
set of Nash equilibria, not all strategy profiles can be translucent equilibria. For example, (C,D) is not
a translucent equilibrium in Prisoner’s dilemma. We have not focused on translucent equilibrium in the
main text, because it makes strong assumptions about players’ rationality and beliefs (e.g., it implicitly
assumes common belief of translucent rationality). We do not need such strong assumptions for our
results.
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