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Rohit and I go back a long way. We started talking about Dynamic Logic
back when I was a graduate student, when we would meet at seminars at MIT
(my advisor Albert Meyer was at MIT, although I was at Harvard, and Rohit
was then at Boston University). Right from the beginning I appreciated
Rohit’s breadth, his quick insights, his wit, and his welcoming and gracious
style. Rohit has been interested in the interplay between logic, philosophy,
and language ever since I’ve known him. Over the years, both of us have
gotten interested in game theory. I would like to dedicate this short note,
which discusses issues at the intersection of all these areas, to him.1

1 Introduction

When economists represent and reason about knowledge, they typically do
so at a semantic (or set-theoretic) level. Events correspond to sets and the
knowledge operator maps sets to sets. On the other hand, in the literature
on reasoning about knowledge in philosophy or logic, there is an extra layer

∗Supported in part by NSF grants IIS-0812045, IIS-0911036, and CCF-1214844,
AFOSR grants FA9550-08-1-0266 and FA9550-12-1-0040, and ARO grant W911NF-09-
1-0281.

1Some material in this note appears in [Halpern 2003, Section 7.2.4].
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of what may be viewed as unnecessary overhead: syntax. There have been
papers in the economics literature that have argued for the importance of
syntax. For example, Feinberg [2000, p. 128] says “The syntactic formalism
is the more fundamental and—intuitively—the more descriptive way to model
economic situations that involve knowledge and belief . . . It is fine to use the
semantic formalism, as long as what we say semantically has a fairly clear
intuitive meaning—that it can be said in words. This amounts to saying that
it can be stated syntactically.”

In this brief note, I point out some technical advantages of using syntax.
Roughly speaking, they are the following:

1. Syntax allows us to make finer distinctions than semantics; a set may
be represented by the two different expressions, and an agent may not
react to these expressions in the same way. Moreover, different agents
may react differently to the same expression, that is, the expression
may represent different sets according to different agents.

2. Syntax allows us to describe in a model-independent way notions such
as “rationality”. This enables us to identify corresponding events (such
as “agent 1 is rational”) in two different systems.

3. The structure of the syntax provides ways to reason and carry out
proofs. For example, many technical results proceed by induction on
the structure of formulas. Similarly, formal axiomatic reasoning typi-
cally takes advantage of the syntactic structure of formulas.

In the rest of this note, I briefly review the semantic and syntactic ap-
proaches, explain the advantages listed above in more detail, and point out
ways in which the economics literature has not exploited the full power of
the syntactic approach thus far. In another paper [Halpern 1999], I have
made essentially the opposite argument, namely, that computer scientists
and logicians have not exploited the full power of the semantic approach,
pointing out that we can often dispense with the overhead of syntax and the
need to define a |= relation by working directly with the semantics. I believe
both arguments! This just goes to show that each community can learn from
the approaches used by the other community. I return to this point in the
concluding section of this paper.
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2 Semantics vs. Syntax: A Review

The standard approach in the economic literature on knowledge starts with
what is called in [Fagin, Halpern, Moses, and Vardi 1995] an Aumann struc-
ture A = (Ω,P1, . . . ,Pn), where Ω is a set of states of the world and Pi,
i = 1, . . . , n are partitions, one corresponding to each agent. Intuitively,
worlds in the same cell of partition i are indistinguishable to agent i. Given
a world ω ∈ Ω, let Pi(ω) be the cell of Pi that contains ω.

Knowledge operators Ki, i = 1, . . . , n mapping events in (subsets of) Ω
to events are defined as follows:

Ki(A) = {ω : Pi(ω) ⊆ A}.

We read Ki(A) as “agent i knows A”. Intuitively, it includes precisely those
worlds ω such that A holds at all the worlds that agent i cannot distinguish
from ω.

The logical/philosophical approach adds an extra level of indirection to
the set-theoretic approach. The first step is to define a language for reasoning
about knowledge, that is, a set of well-formed formulas. We then associate
an event with each formula. We proceed as follows.

We start with a set Φ of primitive propositions p1, p2, . . . representing
propositions of interest. For example, p1 might represent “agent 1 is rational”
and p2 might represent “agent 2 is following the strategy of always defecting
(in a game of repeated Prisoner’s Dilemma)”. We then close off this set under
conjunction, negation, and the modal operators K1, . . . , Kn. Thus, if ϕ and
ψ are formulas, then so are ϕ∧ψ, ¬ϕ, and Kiϕ, for i = 1, . . . , n. We typically
write ϕ∨ψ as an abbreviation for ¬(¬ϕ∧¬ψ) and ϕ⇒ ψ as an abbreviation
for ¬ϕ∨ ψ. Thus, we can write formulas such as K1K2p1 ∧¬K2K1p2, which
could be read as “agent 1 knows that agent 2 knows that agent 1 is rational
and agent 2 does not know that agent 1 knows that agent 2 is following
the strategy of always defecting”. It should be stressed that a formula like
K1K2p1 ∧ ¬K2K1p2 is just a string of symbols, not a set.

A Kripke structure is a tupleM = (Ω,P1, . . . ,Pn, π), where (Ω,P1, . . . ,Pn)
is an Aumann structure, and π is an interpretation, that associates with each
primitive proposition an event in Ω.2 We can then extend π inductively to
associate with each formula an event as follows:

2In the literature, π is often taken to associate a truth value with each primitive propo-
sition at each world; that is, π : Φ×Ω→ {true, false}. Using this approach, we can then
associate with each primitive proposition p the event {ω : π(p, ω) = true}. Conversely,
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• π(ϕ ∧ ψ) = π(ϕ) ∩ π(ψ)

• π(¬ϕ) = π(ϕ) (where E denotes the complement of E)

• π(Kiϕ) = Ki(π(ϕ)).3

Notice that not every subset of Ω is necessarily definable by a formula (even
if Ω is finite). That is, for a given subset E ⊆ Ω, there may be no formula ϕ
such that π(ϕ) = E. The set of events definable by formulas form an algebra.

If all that is done with a formula is to translate it to an event, why bother
with the overhead of formulas? Would it not just be simpler to dispense with
formulas and interpretations, and work directly with events? It is true that
often there is no particular advantage in working with syntax. However,
sometimes it does come in handy. Here I discuss the three advantages men-
tioned above in some more detail:

1. The two events E and (E∩F )∪(E∩F ) denote the same set. Hence, so
do Ki(E) and Ki((E ∩F )∪ (E ∩F )). Using the set-theoretic approach,
there is no way to distinguish these events. Even if we modify the
definition of K, and move to non-partitional definitions of knowledge
[Bacharach 1985; Fagin, Halpern, Moses, and Vardi 1995; Geanakop-
los 1989; Samet 1990], we still cannot distinguish these formulas. In
propositional logic, the formula p is equivalent to (p∧q)∨ (p∧¬q). (Of
course, these formulas were obtained from the events by substituting
p for E, q for F , and replacing ∩, ∪, and by ∧, ∨, and ¬, respec-
tively.) In the standard semantics defined above, the formulas Kip and
Ki((p∧q)∨(p∧¬q)) are also equivalent. However, an agent may not rec-
ognize that the formulas p and (p∧q)∨(p∧¬q) are equivalent, and may
react differently to them. There are approaches to giving semantics to
knowledge formulas that allow us to distinguish these formulas [Fagin,
Halpern, Moses, and Vardi 1995, Chapter 9]. This issue becomes impor-
tant if we are trying to model resource-bounded notions of knowledge.
We may, for example, want to restrict the agent’s knowledge to formu-
las that are particularly simple, according to some notion of simplicity;

given a mapping from primitive propositions to events, we can construct a mapping from
Φ× Ω to truth values. Thus, the two approaches are equivalent.

3In the literature, one often sees the notation (M,ω) |= ϕ, which is read as “the formula
ϕ is true at world ω in Kripke structure M”. The definition of |= recapitulates that just
given for π, so that ω ∈ π(ϕ) iff (M,w) |= ϕ.
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thus, it may be the case that Kip holds, while Ki((p ∧ q) ∨ (p ∧ ¬q))
does not. Syntactic approaches to dealing with awareness [Fagin and
Halpern 1988; Halpern and Rêgo 2013] can capture this intuition by
allowing agent i to be aware of p but not of (p ∧ q) ∨ (p ∧ ¬q). This
issue also figures prominently in a recent approach to decision theory
[Blume, Easley, and Halpern 2006] that takes an agent’s object of choice
to be a syntactic program, which involves tests (which are formulas).
Again, an agent’s decision can, in principle, depend on the form of the
test. A yet more general approach, where an agent’s utility function is
explicitly defined on formulas in the agent’s language, is considered in
[Bjorndahl, Halpern, and Pass 2013].

A slightly more general notion of Kripke structure allows us to deal
with (at least one form of) ambiguity. The standard definition of Kripke
structure has a single interpretation π. But, in practice, agents often
interpret the same statement differently. What one agent calls “red”
might not be “red” to another agent. It is easy to deal with this; we
simply have a different interpretation πi for each agent i (see [Halpern
and Kets 2012] for the implications of allowing such ambiguity for game
theory).

2. Language allows us to describe notions in a model-independent way.
For example, the typical approach to defining rationality is to define
the event that agent i is rational in a particular Aumann structure.
But suppose we are interested in reasoning about two related Aumann
structures, A1 and A2, at the same time. Perhaps each of them has
the same set Ω of possible worlds, but different partitions. We then
want to discuss “corresponding” events in each structure, for example,
events such as “agent 1 is rational” or “agent 2 is following the strategy
of always defecting”. This is not so easy to do if we simply use the
events. The event “agent 1 is rational” corresponds to different sets in
A1 and A2. In the set-based approach, there is no way of relating them.
Using syntax, an event such as “agent 1 is rational” would be described
by a formula (the exact formula depends, of course, on the definition
of rational, a matter of some controversy; see, for example, [Binmore
2009; Blume and Easley 2008; Gilboa 2010]). The same formula may
well correspond to different events in the two structures. For example,
if the formula involves K1, then if different partitions characterize agent
1’s knowledge in A1 and A2, the formula would correspond to different
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subsets of Ω. Although the formula describing a notion like “agent 1 is
rational” would correspond to different events in different structures,
we may well be able to prove general properties of the formula that are
true of all events corresponding to the formula. For example, if ϕ is the
formula that says that agent 1 is rational, we may be able to show that
ϕ⇒ Kiϕ is valid (true in every state of every Aumann structure); this
says that if agent 1 is rational, then agent 1 knows that he is rational.

3. There are standard examples of when the use of formulas can be useful
in proofs. For one thing, it allows us to prove results by induction on
the structure of formulas. Examples of such proofs can be found in
[Fagin, Geanakoplos, Halpern, and Vardi 1992; Fagin, Halpern, Moses,
and Vardi 1995]. Secondly, the syntactic structure of a formula we
would like to prove can suggest a proof technique. For example, a
disjunction can often be proved by cases. Thirdly, when proving that
certain axioms completely characterize knowledge, the standard proof
involves building a canonical model, whose worlds can be identified
with sets of formulas [Aumann 1999; Fagin, Halpern, Moses, and Vardi
1995]. This approach is also implicitly taken by Heifetz and Samet
[1998]. They construct a universal type space, a space that contains
all possible types of agents (where a type, roughly speaking, is a com-
plete description of an agent’s beliefs about the world and about other
agents’ types). Their construction involves certain events that they call
expressions ; these expressions are perhaps best thought of as syntactic
expressions in a language of belief.

At some level, the economics community is already aware of the advan-
tages of syntax, and syntactic expressions are used with varying levels of
formality in a number of papers. To cite one example, in [Balkenborg and
Winter 1997] the notion of an epistemic expression is defined, that is, a func-
tion from Aumann spaces to events in that Aumann space. An epistemic
expression such as Ri, which can be thought of as representing the proposi-
tion “agent i is rational” then becomes a mapping from an Aumann structure
to the event consisting of all worlds where i is rational.4 More complicated
epistemic expressions are then allowed, such as K1K2(R3). Perhaps not sur-
prisingly, some proofs then proceed by induction on the structure of event

4Not all papers are so careful. For example, Aumann [1995] calls Ri an event. Of
course, his intention is quite clear.

6



expressions. It should be clear that event expressions are in fact syntactic ex-
pressions, with some overloading of notation. Epistemic expressions are just
strings of symbols. The Ki in a syntactic expression is not acting as a func-
tion from events to events. It is precisely because they are strings of symbols
that we can do induction on their length. Indeed, in [Fagin, Geanakoplos,
Halpern, and Vardi 1992], epistemic expressions are introduced in the middle
of a proof (under the perhaps more appropriate name (event) descriptions,
since in fact they are used even to describe non-epistemic events), precisely
to allow a proof by induction.

3 Discussion

Expressive power: In the semantic approach, we can apply the knowledge
operator to an arbitrary subset of possible worlds. In the syntactic approach,
we apply the knowledge operator to formulas. While formulas are associated
with events, it is not necessarily the case that every event is definable by
a formula. Indeed, one of the major issues of concern to logicians when
considering a particular syntactic formalism is its expressive power, that is,
what events are describable by formulas in the language.

Using a more expressive formalism has both advantages and disadvan-
tages. The advantages are well illustrated by considering Feinberg’s [2000]
work on characterizing the common prior assumption (CPA) syntactically.
Feinberg considers a language that has knowledge operators and, in addi-
tion, belief operators of the form pαi (f), which is interpreted as “according to
agent i, the probability of f is at least α”. Feinberg does not have common
knowledge in his language, nor does his syntax allow expressions of the form
1/2pi(f) + 2/3pi(f

′) ≥ 1, which can be interpreted as “according to agent
i, 1/2 of the probability of f plus 2/3 of the probability of f ′ is at least
1” or, more generally, expressions of the form α1pi(f1) + · · ·αkpi(fk) ≥ β.
Expressions of the latter form are allowed, for example, in [Fagin, Halpern,
and Megiddo 1990; Fagin and Halpern 1994]. The fact that he does not allow
common knowledge causes some technical problems for Feinberg (which he
circumvents in an elegant way). Linear combinations of probability terms
allow us to make certain statements about expectations of random variables
(at least, in the case of a finite state space). Feinberg has an elegant semantic
characterization of CPA in the finite case: Roughly speaking, he shows that
CPA holds if and only if it is not the case that there is a random variable
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X whose expectation agent 1 judges to be positive and agent 2 judges to
be negative. Since Feinberg cannot express expectations in his language, he
has to work hard to find a syntactic characterization of CPA. With a richer
language, it would be straightforward.

This is not meant to be a criticism of Feinberg’s results. Rather, it points
out one of the features of the syntactic approach: the issue of the exact
choice of syntax plays an important role. There is nothing intrinsic in the
syntactic approach that prevents us from expressing notions like common
knowledge and expectation. Rather, just as in the semantic approach, where
the modeler must decide exactly what the state space should be, in the
syntactic approach, the modeler must decide on the choice of language. By
choosing a weaker language, certain notions become inexpressible.

Why would we want to choose a weaker language? There are three ob-
vious reasons. One is aesthetic: Just as researchers judge theories on their
elegance, we have a notion of elegance for languages. We expect the syntax
to be natural (although admittedly “naturalness”, like “elegance”, is in the
eye of the beholder) and to avoid awkward expressions. A second is more
practical: to the extent that we are interested in doing inference, simpler
languages typically admit simpler inferences procedures. This intuition can
be made formal. There are numerous results characterizing the difficulty of
determining whether a formula in a given language is valid (that is, true
in every state in every structure) [Fagin, Halpern, Moses, and Vardi 1995,
Chapter 3]. These results demonstrate that more complicated languages do
in fact often lead to more complex decision procedures. However, there are
also results showing that, in this sense, there is no cost to adding certain
constructs to the language. For example, results of [Fagin, Halpern, and
Megiddo 1990; Fagin and Halpern 1994] show that allowing linear combina-
tions of probability terms does not increase the complexity over just allowing
operators such as pαi . The third reason is that a weaker language might give
us a more appropriate level at which to study what we are most interested in.
For example, if we are interested only in qualitative beliefs (A is more likely
than B), we may not want to “clutter up” the language with quantitative
beliefs; that is, we may not want to be able to talk about the exact proba-
bility of A and B. A simpler language lets us focus on the key issues being
examined. Indeed, roughly speaking, we can think of different languages as
providing us with different notions of “sameness”; in other words, “isomor-
phism” is language-dependent, so any result that holds “up to isomorphism”
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is really a language-dependent result.5

One other issue: the focus in the semantic approach has been on finding
operators that act on events. Not all syntactic expressions correspond in a
natural way to operators. For example, recall that in [Fagin, Halpern, and
Megiddo 1990], expressions such as α1pi(f1)+· · ·αkpi(fk) ≥ β are considered.
This could be viewed as corresponding to a k-ary operator Bα1,...,αk,β such
that ω ∈ Bα1,...,αk,β(E1, . . . , Ek) if α1pi(E1) + · · ·+ pk(Ek) ≥ β, however, this
is not such a natural operator. It seems more natural to associate an event
with this syntactic expression directly in terms of a probability distribution
on worlds, without bothering to introduce such operators.

Models One of the advantages of the syntactic approach is that it allows
us to talk about properties without specifying a model. This is particularly
important both if we do not have a fixed model in mind (for example, when
discussing rationality, we may be interested in general properties of rational-
ity, independent of a particular model) or when we do have a model in mind,
but we do not wish to (or cannot) specify it completely. In general, a formula
may be true in many models, not just one.

To the extent that models for formulas have been considered in the eco-
nomics literature, the focus has been on one special model, the so-called
canonical model [Aumann 1989]. This canonical model has the property that
if a (possibly infinite) collection of formulas is true at some world in some
model, then it is true at some world of the canonical model. Thus, in a sense,
the canonical model can be thought of as including all possible models.

While the canonical model is useful for various constructions, it also has
certain disadvantages. For one thing, it is uncountable. A related problem
is that it is far too complicated to be useful as a tool for specifying simple
situations. We can think of a formula ϕ as specifying a collection of structure-
world pairs, namely, all the pairs (M,w) such that (M,w) |= ϕ. It is well
known that, at least in the case of epistemic logic, if a formula ϕ is satisfiable
at all (that is, if (M,w) |= ϕ for some (M,w)), then there is a finite structure
M and a world w in M such that (M,w) |= ϕ. Instead of focusing on an
uncountable canonical structure, it is often much easier to focus on a finite
structure.

Thinking in terms of the set of models that satisfy a formula (rather than
just one canonical model) leads us to consider a number of different issues.

5Thanks to Adam Bjorndahl for stressing this point.
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In many cases we do not want to construct a model at all. Instead, we
are interested in the logical consequences of some properties of a model. A
formula ϕ is a logical consequence of a collection Ψ of formulas if, whenever
(M,w) |= ψ for every formula ψ ∈ Ψ, then (M,w) |= ϕ. For example, we
may want to know if some properties of rationality are logical consequences of
other properties of rationality; again, this is something that is best expressed
syntactically.

4 Conclusion

The point of this short note should be obvious: there are times when syn-
tax is useful, despite its overhead. Moreover, like Molière’s M. Jourdain,
who discovers he has been speaking prose all his life [Molière 2013], game
theorists have often used syntax without realizing it (or, at least, without
acknowledging its use explicitly). However, they have not always taken full
advantage of it.

That said, as I have pointed in [Halpern 1999], there are times when
semantics is useful, and the overhead of syntax is not worth it. Semantic
proofs of validity are typically far easier to carry out than their syntactic
counterparts (as anyone who has tried to prove the validity of even a simple
formula like K(ϕ ∧ ψ) ≡ Kϕ ∧Kψ from the axioms knows). I believe that
the finer expressive power of syntax is particularly useful when dealing with
notions of awareness, and trying to capture how agents react differently to two
different representations of the same event. This is something that arguably
cannot be done by a semantic approach without essentially incorporating
the syntax in the semantics. But when considering an approach where these
issues do not arise, a semantic approach may be the way to go. The bottom
line here is that it is useful to have both syntactic and semantic approaches
in one’s toolkit!

Acknowledgments: Thanks to Adam Bjorndahl for and the two reviewers
of this paper for very useful comments.
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