
Rational Secret Sharing and Multiparty Computation:
Extended Abstract

Joseph Halpern
∗

Department of Computer Science
Cornell University
Ithaca, NY 14853

halpern@cs.cornell.edu

Vanessa Teague
†

Department of Computer Science
Stanford University

Stanford, CA 94305-9025

vteague@cs.stanford.edu

ABSTRACT
We consider the problems of secret sharing and multiparty
computation, assuming that agents prefer to get the secret
(resp., function value) to not getting it, and secondarily, pre-
fer that as few as possible of the other agents get it. We show
that, under these assumptions, neither secret sharing nor
multiparty function computation is possible using a mech-
anism that has a fixed running time. However, we show
that both are possible using randomized mechanisms with
constant expected running time.

Categories and Subject Descriptors
F.1.1 [Computation by Abstract Devices]: Models of
Computation; F.m [Theory of Computation, Miscella-

neous]

General Terms
Economics, Theory

Keywords
Game Theory, secret sharing, multiparty computation, iter-
ated deletion of weakly dominated strategies, non-cooperative
computing

1. INTRODUCTION
Secret sharing is one of the main building blocks in the

modern cryptographic literature. Shamir’s secret-sharing

∗Work supported in part by NSF under grant CTC-0208535,
by ONR under grants N00014-00-1-03-41 and N00014-01-
10-511, by the DoD Multidisciplinary University Research
Initiative (MURI) program administered by the ONR un-
der grant N00014-01-1-0795, and by AFOSR under grant
F49620-02-1-0101.
†Supported by OSD/ONR CIP/SW URI “Software Qual-
ity and Infrastructure Protection for Diffuse Computing”
through ONR grant N00014-01-1-0795.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
STOC’04 June 13–15, 2004, Chicago, Illinois, USA
Copyright 2004 ACM 1-58113-852-0/04/0006 ...$5.00.

scheme [18] allows someone to share a secret s (a natural
number) among n other agents, so that any m of them may
reconstruct it. The idea is simple: agent 0, who wants to
share the secret, chooses an m−1 degree polynomial f such
that f(0) = s, and tells agent i f(i), for i = 1, . . . , n; f(i) is
agent i’s “share” of the secret. Any m of agents 1, . . . , n can
recover the secret by reconstructing the polynomial (using
Lagrange interpolation). However, any subset of size less
than m has no idea what the secret is.

The story underlying this protocol is that, of the n agents,
at most n − m are “bad”. While the bad agents might not
cooperate, the good agents will follow the protocol and pool
their shares of the secret. The protocol guarantees that the
bad agents cannot stop the good agents from reconstructing
the secret. While for some applications it makes sense to
consider “good” agents and “bad” agents, for other appli-
cations it may make more sense to view the agents, not as
good or bad, but as rational individuals trying to maximize
their own utility. The agents have certain preferences over
outcomes and can be expected to follow the protocol if and
only if doing so increases their expected utility.

As we show, if we make rather minimal assumptions about
the preferences of the agents, and further assume that the
way agents pool their shares of the secret is by (simultane-
ously) broadcasting a message with their share, then there
is a problem with Shamir’s secret-sharing scheme: rational
agents will simply not broadcast their shares. Suppose that
each of the agents would prefer getting the secret to not
getting it; a secondary preference is that the fewer of the
other agents that get it, the better. It is then not hard
to see that no agent has any incentive to broadcast his or
her share of the secret. Consider agent 1’s situation: either
m− 1 other agents broadcast their share, or they do not. If
they do, then agent 1 can reconstruct the secret; if not, she
cannot. Whether or not she sends her share does not affect
whether others send theirs (since all the broadcasts are sup-
posed to happen simultaneously). Moreover, if only m − 1
other agents broadcast their shares, then sending her share
will enable others to figure out the secret. So if she does not
send her share in this circumstance, then she will be able
to figure out the secret (her share combined with the m− 1
others will suffice), while no one who sent their share will.
Thus, in game-theoretic terminology, not sending her share
weakly dominates sending her share. Intuitively, there is no
good reason for her to send her share. Thus, rational agents
running Shamir’s protocol will not send any messages.

Our first result shows that this problem is not confined

to Shamir’s protocol. Roughly speaking, we show that,
for any mechanism1 for shared-secret reconstruction with
a commonly known upper bound on the running time, re-
peatedly deleting all weakly-dominated strategies results in
a strategy that is equivalent to each agent doing nothing.
Roughly speaking, we argue that no agents will send a mes-
sage in the last round, since they have no incentive to do so.
Then we proceed by backward induction to show that no
agents will send a message k rounds before the end, for each
k. (The actual backward induction process is more subtle,
since we have to argue that, at each step in the deletion
process, enough strategies have not been deleted to show
that a strategy we would like to delete is in fact dominated
by another strategy.) Readers familiar with repeated pris-
oners’ dilemma will recognize that the argument is similar
in spirit to the argument that shows that rational agents
will always defect in repeated prisoners’ dilemma where the
number of repetitions is commonly known. In contrast to
this impossibility result, we show that there is a random-
ized secret-sharing mechanism for rational agents, where the
recommended strategy is a Nash equilibrium that survives
iterated deletion of weakly-dominated strategies.

We next consider multiparty computation. In the tra-
ditional multiparty computation problem, there is a set of
participants, each of whom has a secret input. The aim of
the protocol is to compute some function of these inputs
without revealing any information other than the function’s
output, just as if a trusted party had performed the com-
putations on the agents’ behalf. For example, the secrets
could be each person’s net worth and the function would
return who is richest. The protocol should compute this
without revealing any other information about the partici-
pants’ wealth. (This example is known as the millionaire’s
problem, and was first discussed by Yao [20].) Again, it is
assumed that some of the parties may be “bad”, usually less
than 1/3 or 1/2 of the total participants, depending on as-
sumptions [1, 5, 6, 12, 13, 20]. Everyone else is assumed to
be good and to execute the protocol exactly as instructed.

As in the case of secret sharing, we would like to consider
what happens if the parties are all trying to maximize their
utility, rather than being “bad” and “good”. A number of
new subtleties arise in multiparty computation. As is well
known [12, Section 7.2.3], there is no way to force parties
to participate in a protocol. We deal with this problem
by assuming that the parties’ utilities are such that it is in
their interest to participate if the protocol is run correctly.
A more serious problem is that there is no way to force a
party to the protocol to use their “true” input. A party can
correctly run the protocol using an arbitrary input, which
may not necessarily be the same as its true input. For ex-
ample, suppose that each agent has a private bit and the
goal is to compute the exclusive or of the bits. If agent
1 lies about her bit and everyone else tells the truth, then
agent 1 will be able to compute the true exclusive or from
the information provided by the trusted party, while no one
else will. In some cases, if there is a trusted party, it may
make sense to assume that everyone will truthfully reveal
private information. For example, suppose that there is a
vote, where the candidate with the most votes wins. In this
case, almost by definition, what someone says her vote is
is her actual vote. By way of contrast, consider a senator

1A mechanism can be thought of as a recommended protocol
for agents to follow, from which they may defect.

trying to determine whether a bill will pass by asking other
senators how they intend to vote. Then there clearly may
be a difference between how senators say they will vote and
how they actually vote.

Shoham and Tennenholtz [19] characterize which Boolean
functions can be computed by rational agents with a trusted
party. In their model, each agent has a secret input, and
everyone is trying to compute some function of the inputs.
There is a trusted party who waits to be told each player’s
input, then computes the value of the function and tells
all players. Every agent’s first priority is to learn the true
value of the function; the second priority is to prevent the
others from doing so. Agents may refuse to participate, or
they may lie to the trusted party about their value. They
call functions for which it is an equilibrium to tell the truth
non-cooperatively computable (NCC).

Our interest here is in which functions can be computed
without a trusted party. We show that there is no mecha-
nism with a commonly-known upper bound on running time
for the multiparty computation of any nonconstant function.
This result is of particular interest since all the standard
multiparty computation protocols do have a commonly-known
upper bound on running time [1, 5, 6, 12, 13, 20]. The re-
sult also applies to protocols for the fair exchange of secrets,
which is a particularly appropriate case for assuming the
parties are both selfish. Again all the protocols we could find
have a commonly-known upper bound on the running time
[2, 3, 7, 8, 9, 14]. As in the case of secret sharing, we also
have a positive result for multiparty computation. There
are multiparty computation protocols (e.g., [13]) that use
secret sharing as a building block. By essentially replacing
their use of deterministic secret-sharing by our randomized
secret-sharing protocol, we show that for all NCC functions,
we can find a multiparty computation mechanism where the
recommended strategy is a Nash equilibrium that survives
iterated deletion of weakly-dominated strategies. These re-
sults can be viewed as steps in the program advocated in [11]
of unifying the strategic model and computational model in
distributed algorithmic mechanism design. Our work is re-
lated to [15], but uses a different solution concept.

The rest of this paper is organized as follows. In Section 2
we give the relevant background on Nash equilibrium, iter-
ated deletion of weakly dominated strategies, and mecha-
nisms. In Section 3 we consider secret sharing, sketch the
proof of the impossibility result, and give the randomized
secret-sharing mechanism. In Section 4, we consider mul-
tiparty computation. We conclude in Section 5 with some
open problems.

2. NASH EQUILIBRIUM, ITERATED DELE-
TION, AND MECHANISMS

We adapt the standard definition of game trees from the
game theory literature slightly for our purposes. A game Γ
for n players is described by a (possibly infinite) forest of
nodes. Intuitively, the root nodes of the forest describe the
possible initial situations in the game, and the later nodes
describe the results of the players’ moves. We assume that
there is a probability distribution over the root nodes; this
can be thought of as a distribution over possible initial sit-
uations. We assume that at each step, a player receives all
the messages that were sent to it by other players at the
previous step, performs some computation, then sends some

messages (possibly none). Thus, we are implicitly assum-
ing that the system is synchronous (players know the time
and must decide what messages to send in each round before
receiving any messages sent to them in that round), commu-
nication is guaranteed, and messages take exactly one round
to arrive. These assumptions are critical to the correctness
of the algorithms we present; we believe that rational secret
sharing and multiparty computation are impossible in an
asynchronous setting, or a setting where there is no upper
bound on message delivery time. At each node, each player
has a local state that describes its history, that is, the se-
quence of computations performed, messages sent, and mes-
sages received, and when each of these events happened and
encodes its utility function. Associated with each run (i.e.,
path in the forest that starts at a root and is either infinite
or ends in a leaf) is a tuple (u1, . . . , un) of real-valued utili-
ties; intuitively, ui is player i’s utility if that path is played.
Typically utilities are associated with leaves of game trees.
For finite trees, we can identify the utility of a run with the
utility of its leaf. Note that we need to consider infinite runs
since a randomized mechanism may not terminate.

Although it is standard in game theory to assume that ex-
actly one player moves at each node, we implicitly assume
that at each step all the players move. In game theory, for
each player i, the nodes are partitioned into information
sets. The nodes in an information set of player i are, intu-
itively, nodes that player i cannot tell apart. Although we
do not explicitly use information sets here, they are easy to
define: player i’s information set at a node v consists of all
the nodes v′ where she has the same local state. With this
choice of information sets, it follows that each player i has
perfect recall, since she remembers all her previous informa-
tion sets and her actions.

A strategy or protocol for player i is a (possibly random-
ized) function from player i’s local states to actions. (In
the game theory literature, a strategy is a function from
information sets to actions. Since we are identifying local
states with information sets, our usage of the term strategy
is equivalent to the standard game theory usage.) A joint
strategy ~σ = (σ1, . . . , σn) is a tuple of strategies, one for
each player. Note that a joint strategy determines a dis-
tribution over runs, which in turn determines an expected
utility for each player. Let Ui(~σ) denote player i’s expected
utility if ~σ is played.

We use the notation ~σ−i to denote a tuple consisting of
each player’s strategy in ~σ other than player i’s. We then
sometimes abuse notation slightly and write (~σ−i, σi) for ~σ.
A joint strategy ~σ is a Nash equilibrium if no player has
any incentive to do anything different, given what the other
players are doing. More formally, ~σ is a Nash equilibrium if,
for all players i and strategies σ′

i of player i, Ui(~σ−i, σi) ≥
Ui(~σ−i, σ

′

i).
Although Nash equilibrium is a useful concept, there are

many Nash equilibria that, in some sense, are unreasonable.
As a consequence, many refinements of Nash equilibrium
have been considered in the game theory literature; these are
attempts to identify the “good” Nash equilibria of a game
(see, e.g., [17]). We focus here on one particular refinement
of Nash equilibrium that is determined by iterated deletion
of weakly-dominated strategies. Intuitively, we do not want
a Nash equilibrium where some player uses a strategy that is
weakly dominated. This intuition is well illustrated with m
out of n secret sharing, with m < n. It is a Nash equilibrium

for each player to send its share. Nevertheless, although a
player does not do better by not sending her share if all
other players send their share (since everyone will still know
the secret), a player does no worse by not sending her share,
and there are situations where she might do better.

Formally, if Sj is a set of strategies for player j, j =
1, . . . , n, we say that a strategy σ ∈ Si is weakly dominated
by τ ∈ Si with respect to S−i if, for some strategy ~σ−i ∈
S−i, we have Ui(~σ−i, σ) < Ui(~σ−i, τ) and, for all strategies
~σ′

−i ∈ S−i, we have Ui(~σ
′

−i, σ) ≤ Ui(~σ
′

−i, τ). Thus, if σ is
weakly dominated by τ with respect to S−i then player i
should intuitively always prefer τ to σ, since i always does
at least as well with τ as with σ, and sometimes does better
(given that we restrict to strategies in S−i). Strategy σ ∈ Si

is weakly dominated with respect to S1 × · · ·×Sn if there is
some strategy τ ∈ Si that weakly dominates σ with respect
to S−i.

Let DOM i(S1×. . .×Sn) consist of all strategies for player
i that are weakly dominated with respect to S1 × . . . × Sn.
Given a game Γ, let S0

i consist of all strategies for player
i in Γ. Assume that we have defined Sk

i , for i = 1, . . . , n,
where Sk

i consists of those strategies for player i that survive
k rounds of iterated deletion. Let Sk+1

i = Sk
i −DOM i(S

k
1 ×

. . . × Sk
n). Let S∞

i = ∩kS
k
i . Thus, S∞

i consists of all those
strategies for i that survive (an arbitrary number of rounds
of) iterated deletion of weakly-dominated strategies.

Note that we are requiring that all weakly-dominated strate-
gies are deleted at each step. If we allow an arbitrary subset
of weakly-dominated strategies to be deleted at each step,
then which strategies survive iterated deletion is quite sen-
sitive to exactly which strategies are deleted at each step.
Deleting all possible strategies at each step is not only the
most natural approach, but the only one consistent with the
intuitions underlying iterated deletion [4].

We take a mechanism to be a pair (Γ, ~σ) consisting of
a game and a joint strategy for that game. Intuitively, a
mechanism designer designs the game Γ and recommends
that player i follow σi in that game. The expectation is
that a “good” outcome will arise if all the players play the
recommended strategy in the game. Designing a mecha-
nism essentially amounts to designing a protocol; the rec-
ommended strategy is the protocol, and the game is defined
by all possible deviations from the protocol. (Γ, ~σ) is a prac-
tical mechanism if ~σ is a Nash equilibrium of the game Γ that
survives iterated deletion of weakly-dominated strategies.

3. SECRET SHARING
In this section, we prove that there is no practical mecha-

nism for secret sharing with a commonly-known bound on its
running time, provided we make some reasonable assump-
tions about the preferences of players, and then show that,
under the same assumptions, there is a randomized practi-
cal mechanism for secret sharing that has constant expected
running time.

3.1 The Impossibility Result
In this section, we assume for simplicity that there is a

share “issuer” that can issue secret shares that are atomic
and cannot be subdivided. The issuer authenticates the
shares, so a player cannot substitute a false share for its
true one. We assume that the utility of a run of a mecha-
nism depends only on which players can compute the secret.
Formally, given a run r in the game tree, let info(r) be a tu-

ple (s0, . . . , sn), where si is 1 if player i learns the secret
in r, and is 0 otherwise; let infoi(r) = si. The following
assumption says that player i’s utility depends just on the
information that each of the players get:

U1. ui(r) = ui(r
′) if info(r) = info(r′).

The atomicity assumption implicit in U1 is dropped in Sec-
tion 4.1, where the utility of a run is allowed to depend on
whatever partial information the players have. Note that
even in this section we allow the issuer to issue a sequence
of shares. That is, player i receives shares hi1, . . . , hiN ,
and if i has m of the shares of the form hjN′ for some
N ′ ∈ {1, . . . , N}, then i can compute the secret. If, for
all N ′ ∈ {1, . . . , N}, i has fewer than m shares of this form,
then i cannot compute the secret.

The next two requirements encode the assumption that
each player prefers getting the secret to not getting it, and
prefers that fewer of the others get it.

U2. If infoi(r) = 1 and infoi(r
′) = 0, then ui(r) > ui(r

′).

U3. If infoi(r) = infoi(r
′), infoj(r) ≤ infoj(r

′) for all j 6= i,

and there is some j such that infoj(r) < infoj(r
′), then

ui(r) > ui(r
′).

Suppose that in run r the players in P learn the secret,
while in run r′ the players in P ′ learn the secret, where
either i ∈ P ∩ P ′ or i /∈ P ∪ P ′. While it follows from
U3 that ui(r) ≥ ui(r

′) if P ⊆ P ′, we make no assumptions
about the relative utility to i of r and r′ if |P | ≥ |P ′|. It
could be, for example, that there is some particular player j
such that i particularly does not want j to learn the secret.

Theorem 3.1. If players’ utilities satisfy U1–U3, then
there is no practical mechanism (Γ, ~σ∗) for m out of n se-
cret sharing such that Γ is finite and, using ~σ∗, some player
learns the secret.

The basic idea of the proof is just the backward induc-
tion suggested in the introduction. Given a mechanism
M = (Γ, ~σ∗) for m out of n secret sharing, say that a strat-
egy σi for player i reveals useful information at a node v in
the game tree for Γ if (a) v is reachable with σi (that is, there
is some strategy ~σ−i for the other players such that (~σ−i, σi)
reaches v with positive probability), and (b) according to
strategy σi, at v, with positive probability player i sends
some other player j such that i does not know j already has
m shares a share of the secret that i does not know that j
already has. Note that here and elsewhere, when describing
the strategies, we often use phrases such as “player i knows
P” for some proposition P . Player i knows P at a node v
in a game tree if at all nodes v′ in the game tree where i
has the same local state, P is true. (This usage is consistent
with the standard usage of knowledge in distributed systems
[10].) Typically, these statements about knowledge reduce
to concrete statements about messages being sent and re-
ceived. For example, i 6= j knows that j has k’s share of the
secret if and only if

• j = k, or

• i has sent k’s share to j, or

• i has received k’s share from j, or

• i has received a message containing k’s share signed
with j’s unforgeable signature.

With regard to the last point, note that we allow the possi-
bility of protocols that make use of unforgeable signatures.
(It would actually considerably improve the argument if we
did not allow them.) Given a node v in the game tree of
Γ, define round(v) = h if there is a path of length h from v
to a leaf in the game tree and there are no paths of length
h + 1 from v to a leaf in the game tree. Thus, round(v) = 0
if v is a leaf, and round(v) = ∞ if there is an infinite path
starting at v.

Let Bh
i consist of all strategies for player i in game Γ that

reveal useful information at a node v such that round(v) =
h. (Note that if Γ has no finite paths, then Bh

i = ∅.) Recall
from Section 2 that Sh

i consists of the strategies for player i
that survive h rounds of iterated deletion (so that S0

i consists
of all strategies for player i). Let R0

i = S0
i , and let Rh

i =
R0

i − ∪h−1
i=0 (Bh

i). The backward induction argument would
suggest that, if the game tree for Γ is finite, then Sh

i =
Rh

i . That is, the strategies that survive h rounds of iterated
deletion in finite games are precisely those in which no useful
information is revealed in the last h rounds. While this is
essentially true, it is not as obvious as it might first appear.

For one thing, while it is easy to see that all strategies in
B1

i are weakly dominated—i cannot be better off by reveal-
ing information in the last round—these are not the only
weakly-dominated strategies. Characterizing the weakly-
dominated strategies is nontrivial. Even ignoring this prob-
lem, consider how the argument that all strategies in Bh

i are
weakly dominated with respect to the strategies that remain
after h rounds of iterated deletion might go. Let σi ∈ Bh

i ,
so that, with positive probability, i reaches a node v in Γ
that is no more than h rounds from the end of the game
where i reveals useful information. Since σi has not been
deleted earlier, we would expect that i does not reveal use-
ful information at later rounds, nor do any of the undeleted
strategies for the other players. We would further expect
that σi would be weakly dominated by the strategy σ′

i that
is identical to σi except that at the node v and all nodes be-
low v, according to σ′

i, i sends no message (and thus reveals
no useful information). It is easy to see that i is no worse
off using σ′

i than σi—there is no advantage to i in revealing
useful information when no other player will reveal useful
information as a result of getting i’s information. However,
to show that σ′

i weakly dominates σi, we must show that σ′

i

is not itself deleted earlier, and that there is some strategy
~σ−i for the other players that was not deleted earlier such
that Ui(σi, ~σ−i) < Ui(σ

′

i, ~σ−i). Intuitively, ~σ−i should be
such that m− 2 other players send their shares at the same
time as i, so that with i’s share, everyone can figure out the
secret but without it, they cannot. While this intuition is in-
deed correct, showing that all the relevant strategies survive
h rounds of iterated deletion turns out to be surprisingly
difficult. In fact, it seems that we need an almost complete
characterization of which strategies are deleted and when
they are deleted in order to prove the result. We now pro-
vide that characterization.

Besides “player i knows P”, the strategy descriptions in-
volve phrases such as “player i considers P possible”, “player
i tells j that he knows m shares”, “player i can prove to j
that he (player i) knows m shares”, and “player i can prove
to j that k knows m shares”. Possibility is the dual of knowl-
edge, so that player i considers P possible if player i does

not know ¬P . Player i tells j P or proves P to j at node v
if i sends j messages that guarantee that, at the node after
v, j knows P . For example, player i can prove to j that k
knows m shares if i can send to j messages signed with k’s
unforgeable signature containing m−1 shares other than k’s
share.

Consider the following families of strategies for player i.
Intuitively, these are families of strategies that are deleted in
the iterated deletion procedure. To simplify the description
of these strategies, we write “[. . .]” as an abbreviation of
“there is a strategy for the other players such that a node
v is reached with positive probability and, at v,”. We also
assume for ease of exposition that secrets are shared just
once. This is relevant because in the mechanism we present
in Section 3.2, secrets may be shared multiple times. If
we consider a sequence of secret sharings, then rather than
saying something like “player i does not know that player j
has m − 1 shares”, we would have to say “player i does not
know that player j has m − 1 shares of a particular sharing
of the secret”.

• Let A1
i consist of all strategies for player i such that [

. . .] i has m shares, i does not know that all the other
players have all m shares, and, with positive proba-
bility, i sends each of the other players enough shares
so that, after sending, i will know that they all have
m shares. (Intuitively, if i already knows the secret,
there is no advantage in i making sure that everyone
knows the secret.)

• If m = n, let (A1
i)

′ consist of all strategies for player
i such that [. . .] i has all m shares and, with posi-
tive probability, i sends out its share to some player,
although i has never previously sent out its share to
any player; if m 6= n, then (A1

i)
′ = ∅. (Intuitively, if i

knows the secret, and it has information—namely, its
own share—which it has not revealed that is critical
to everyone else learning the secret, then i should not
send out this information. Note that i’s share is not
critical to others learning the secret if m 6= n, so this
condition is vacuous if m 6= n.)

• If m = n = 2, let A2
i consist of all strategies for player

i such that [...] i sends its share to the other player.

If m = n = 3, let A2
i consist of all strategies for player

i such that [. . .] i has all three shares, i considers
it possible that some other player j has only its own
share, i knows that the third player k has all three
shares, and, with positive probability, either

(a) i sends j either i’s share or k’s share, or

(b) i does not know that k knows that i has all three
shares and does not tell k that it has all three
shares.

(Intuitively, if i knows that the only player missing
the secret is j, then it should try to do what it can
to stop j from getting the secret. This includes not
sending j information and making sure that that the
third player k knows the situation, so that k will not
send j information.)

If m = 3 and n = 4, let A2
i consist of all strategies

for player i such that [. . .] there exist players j, k, l
such that the utility to i if i, j, and k learn the secret

is no higher than the utility to i if i, j, and l learn
the secret, i knows that everyone knows that everyone
has k’s share and l’s share, i considers it possible that
k and l lack both i’s share and j’s share, and, with
positive probability, i sends its share or j’s share to
player k. (Intuitively, if i has the secret and knows that
j knows the secret, but considers it possible that both
k and l are missing shares, it should not guarantee that
k learns the secret if k learning the secret is at least
as bad as l learning the secret. While this intuition
seems very reasonable, note that it applies only if i
knows that k and l are missing at most one share.)

If m = n = 4, let A2
i consist of all strategies for player

i such that [. . .] there exist players j, k, l such that
the utility to i if i, j, and k learn the secret is no higher
than the utility to i if i, j, and l learn the secret, i has
all four shares, i knows that j has all four shares, and
that everyone knows that everyone has all the shares
other than possibly i’s, i considers it possible that k
and l both lack i’s share, and, with positive probability,
i sends its share to player k. (The intuition here is the
same as in the m = 3, n = 4 case, but again, note that
it applies only in quite restricted circumstances.)

Otherwise, A2
i = ∅.

• Let (A2
i)

′ consist of all strategies for player i such that
[. . .] i has m shares, i considers it possible that j does
not have all m shares, i knows that j has m− 1 shares
and i can prove this to all the other players, i knows
that all players k 6= j have m shares and can prove
this to each player k′ /∈ {i, j, k}, and, with positive
probability, i does not prove to each player k 6= j that
each player k′ /∈ {j, k} has m shares and that j has
m − 1 shares. (The intuition here is much as that for
A2

i in the case m = n = 3: if i knows that all but
one player has the secret, it should do what it can
to prevent that player from getting the secret, which
includes making sure that the other players know the
situation.)

• If m = n = 3, let A3
i consist of all strategies for player

i such that [. . .] i has all three shares, i considers
it possible that some player j does not have all three
shares, and, with positive probability, reaches a node
v′ at the next step such that i knows at v′ that the
third player k will eventually know all three shares,
and either

(a) in getting from v to v′, i sends j a share that i
does not know at v that j has;

(b) i does not know at v′ that k has all three shares;
or

(c) i does not know at v′ that k knows that i has all
three shares.

(The situation here is similar to that in the m = n = 3
case of A2

i , except that now, rather than i knowing at
v that k has all three shares, i knows only that, with
positive probability, k will have all three shares. If i
knows that k will eventually have all three shares, then
i might as well tell k all three shares right away, and
also tell k that i has all three shares. This will prevent
k from sending j information.)

If m = 3 and n = 4, let A3
i consist of two sets of

strategies:

(1) All strategies for player i such that [. . .] there exist
players j, k, l such that i knows that j is indifferent as
to whether i, j, and k or i j, and l learn the secret, i
knows that j has k’s share and l’s share, i knows that
everyone (except possibly j) knows that everyone has
k and l’s shares and can prove this to j, i considers it
possible that k and l lack both i’s share and j’s share,
and, with positive probability, i either

(a) sends its share or j’s share to k or l, or

(b) does not prove to j that everyone knows that ev-
eryone has k and l’s shares.

(The situation here is the same as that in the m = 3,
n = 4 case of A2

i , except that i does not necessarily
know that j knows that everyone has k and l’s shares.
By sending the messages, i can ensure that the an-
tecedent of A2

j holds, so that j will not send messages
to k.)

(2) All strategies for player i such that [. . .] there
exist players j, k, l such that i knows that the utility
to j if i, j, and k learn the secret is no greater than
the utility to j if i, j, and l learn the secret, i knows
that j knows that everyone knows that everyone has
k and l’s shares, i considers it possible that k and l
lack both i’s share and j’s share, and, with positive
probability, i sends its share or j’s share to l. (Here,
i knows that j will not send useful information to k,
because that would be in A2

j . Hence sending a third
share to l produces the worst possible outcome for i.)

If m = n = 4, let A3
i consist of all strategies for player

i such that [. . .] there exist players j, k, l such that
the utility to i if i, j, and k learn the secret is no
higher than the utility to i if i, j, and l learn the
secret, i has all four shares, i considers it possible that
k and l both lack j’s share, with positive probability,
i reaches a node v′ at the next step such that, at v′, i
knows that eventually j will both know all four shares
and that everyone knows that everyone has all shares
except possibly j’s, but either

(a) at v′, i does not ensure that j knows these facts,
or

(b) in getting from v to v′, i sends j’s share to k.

(The situation here is much like the antecedent of the
m = n = 4 case of A2

i , except that i does not know
at v that j has all four shares or that j knows that
everyone has the two shares other than j’s; however,
i does know that, with positive probability, this will
eventually be the case. Intuitively, if it eventually is
going to be the case, then i should make it happen as
quickly as possible, since then the antecedent to A2

j

will hold, and j will not send messages to k.)

If m = 2 or n > 4, then A3
i = ∅.

• Let (A3
i)

′′ consist of all strategies for player i such
that [. . .] i has m shares, i considers it possible that
some player j does not have all m shares, i knows that
j has m − 1 shares and i can prove this to all the
other players, i knows that all players k 6= j have m

shares and there is a player k′ /∈ {i, j} such that for all
k /∈ {i, j, k′}, i can prove to each player k′′ /∈ {i, j, k}
that k has m shares, i considers it possible that there is
at least one player who does not know that all players
except j have m shares and that j has m − 1 shares,
and, with positive probability, i does not provide k′

with evidence that it can use to prove to everyone else
that it (k′) knows that each player k /∈ {j, k′} has m
shares and that j has m − 1 shares or there exists a
player l′ /∈ {i, j, k′} such that i can prove to l′ that
all players have m shares, except possibly j who has
m − 1, i considers it possible that l′ does not already
know this fact, and i does not prove it to l′. (The
situation here is that i knows that everyone has the
secret but j, and j only needs one share to get the
secret. In that case, i should make everyone else aware
of the situation, as quickly as possible.)

• If m = n = 3, let (A3
i)

′′′ consist of all strategies for
player i such that [. . .] i has j’s share but not k’s,
j has i’s share, i does not know both that k has all
three shares and that k knows that j has i’s share,
and i sends messages to k that ensure that k has all
three shares and that k knows that j has i’s share.
(Intuitively, i should not send information to k that
might prevent k from later sending useful information
to i.)

If n > 3 or m 6= n, then (A3
i)

′′′ = ∅.

• Let Ch
i , consist of all strategies for i such that [...] (a)

round(v) = h, (b) i knows m shares, (c) if m = n,
i has sent out its share earlier, and (d) with positive
probability, i reaches a node v′ at the next step such
that there exists a player j such that i knows at v′ that
all the players but j know m shares, in going from v
to v′, i sends j a share that i does not know at v that
j has, and i sends no useful information at any node
v′′ with round(v′′) > h.

• Let Dh
i consist of all strategies for i such that [...] (a)

round(v) = h, (b) i knows all the shares, (c) i has sent
out its share earlier, (c) i reveals no useful information
at a node v′ with round(v′) > h + 1, and (d) there
exist players j and k such that, at v, i knows that all
the other players but j and k have m shares and can
prove this to j but does not, i knows that at the step
immediately after v, j will have all m shares, and i
considers it possible that, after v, k will not have all
m shares and that j will not know that everyone other
than j and k has m shares.

• If m = 3, let (Dh)′i consist of all strategies for player
i satisfying (a), (b) and (c) from the definition of Dh

i ,
and also (d′) there exist j and k such that, at v, all
players know j and k’s shares, and i can prove to j
that all players besides j and k know j and k’s shares,
and either i considers it possible that j does not know
that all players but j and k have m shares, and does
not prove this to j, or i considers it possible that j has
only two shares, and sends j a third share.

If m = n = 4, let (Dh)′i, consist of all strategies for
player i satisfying (a), (b) and (c) from the definition
of Dh

i , and also (d′′) there exist players j, k, and l such
that i can prove to j that i has all four shares, i knows

that l has all four shares and can prove to j that l
has j and k’s shares, i knows that j and k have each
other’s shares and that k has l’s share, and either (i)
i knows that j knows l’s share or i sends l’s share to
j but does not prove to j that i knows all four shares
and that l knows j and k’s shares or (ii) i sends j i’s
share if it does not already know that j has i’s share.

Otherwise, (Dh)′i = ∅.

Recall that Bh
i consists of all strategies for player i that

reveal useful information at a node v with round(v) = h. Let
A1 = ∪n

i=1A
1
i ; (A1)′, A2, (A2)′, A3, (A3)′, (A3)′′, (A3)′′′,

Bh, Ch, Dh, and (Dh)′, h = 1, 2, . . . are defined similarly.
Let Ej = Aj ∪(Aj)′∪Bj ∪Cj+1∪Dj+1∪(Dj+1)′ for j = 1, 2;
let E3 = A3 ∪ (A3)′ ∪ (A3)′′ ∪ (A3)′′′ ∪B3 ∪ C4 ∪D4 ∪ (D4)′;
let E4 = A4∪B4 ∪C5 ∪D5 ∪(D5)′; let Ej = Bj ∪Cj+1∪Dj+1

for j ≥ 5.

Proposition 3.1. Let M be a mechanism for secret shar-
ing. After k steps of iterated deletion, all the strategies in Ek

have been deleted; moreover, no deterministic strategy not in
E1 ∪ E2 ∪ . . . ∪ Ek has been deleted.

Note that Proposition 3.1 provides a complete characteri-
zation of when deterministic strategies are deleted, but does
not do so for randomized strategies. Knowing when deter-
ministic strategies are deleted turns out to suffice to prove
the result by induction. It immediately follows from Propo-
sition 3.1 that there is no practical mechanism for secret
sharing with a finite game tree: no strategy where any player
sends her share survives more than N steps of iterated dele-
tion, where N is a bound on the depth of the game tree.

If m = n = 2, all strategies where a player sends its share
to another player must be in A2. Thus, the following is an
immediate corollary to Proposition 3.1.

Corollary 3.1. There is no practical mechanism for 2
out of 2 secret sharing (even with an infinite game tree).

3.2 A Randomized Practical Mechanism for
Secret Sharing

In light of Theorem 3.1, the only hope of getting a prac-
tical mechanism for secret sharing lies in using uncertainty
about when the game will end to induce cooperation. We
now present a randomized protocol for 3 out of 3 secret shar-
ing, and then show how to extend it to m out of n secret
sharing.

Suppose that players can toss coins in a way that every-
one is forced to reveal their coin tosses after a round is over.
Consider the mechanism whose suggested strategy is as fol-
lows: everyone tosses their coin, and is supposed to send
their secret if their coin lands heads. In the next step, ev-
eryone reveals their coin. If everyone learns the secret, or if
someone cheats (fails to send their share even though their
coin was heads), then the game ends. Otherwise the issuer
issues new shares of the secret (that is, uses a completely
different polynomial and sends shares of that polynomial),
and the process repeats.

Consider the incentives of a player that has tossed heads
and is supposed to send its share. If it withholds its share
in the last step it might be lucky, because it might hap-
pen that the other two players are also about to send their
shares. Then it will learn the secret when the others do

not, which it considers the best possible outcome. How-
ever, if the others do not both send their shares but de-
tect that the first player has cheated, they will stop the
protocol and nobody will learn the secret. This is a worse
outcome than the honest one for the cheater. This mech-
anism ensures that when a player is considering withhold-
ing its share when it ought to send it, the probability of
getting caught but not learning the secret is high (3/4),
while the probability of learning the secret when no one else
does is only 1/4. As long as 1

4
ui(only i learns the secret) +

3
4
ui(no one learns the secret) < ui(everyone learns the secret),

then player i will not be tempted to cheat. If player i’s util-
ities do not satisfy this inequality, the probability of heads
can be modified appropriately.

Unfortunately, this mechanism still has a problem: even if
everyone is honest, there is a chance that one of the players
might learn the secret when the others do not. If exactly
two of the coins land heads, then the player who tossed tails
will be able to reconstruct the secret, but the other two will
not. The one who already knows the secret will certainly
have no incentive to continue the game at that point! We
solve this problem by tossing the coins in such a way that if
exactly two players get heads, then no one learns the secret.
We proceed as follows.

Call the players 1, 2, and 3.2 For i ∈ {1, 2, 3}, let i+

denote i + 1 except that 3+ is 1; similarly i− is i− 1 except
that 1− is 3. Consider the following protocol:

0. The issuer sends each player a signed share of the se-
cret, using 3 out of 3 secret sharing.

1. Each player i chooses a bit ci such that ci = 1 has
probability α and ci = 0 has probability 1−α, and a bit
c(i,+) at random (so that 0 and 1 both have probability
1/2). Let c(i,−) = ci ⊕ c(i,+). Player i sends c(i,+) to

i+ and c(i,−) to i−. Note that this means that i should

receive c(i+,−) from i+ and c(i−,+) from i−.

2. Each player i sends c(i+,−) ⊕ ci to i−. Thus, i should

receive c((i+)+,−) ⊕ ci+ = c(i−,−) ⊕ ci+ from i+.

3. Each player i computes p = c(i−,+)⊕c(i−,−)⊕ci+⊕ci =
ci− ⊕ ci+ ⊕ ci = c1 ⊕ c2 ⊕ c3. If p = ci = 1 then player
i sends its signed share to the others.

4. If p = 0 and i received no secret shares, or if p = 1
and i received exactly one share (possibly from itself;
that is, we allow the case that i did not receive any
shares from other players but sent its own), the issuer
is asked to restart the protocol; otherwise, i stops the
protocol (either because it has all three shares or be-
cause someone must have been cheating).

If, at any stage, player i does not receive a bit from a player
from whom it is supposed to receive a bit, it also stops the
protocol.

Given a set of possible messages that each player can send
at each point, this protocol determines a mechanism: there is
an infinite game tree where, at each point, players send some
messages that they are able to send; the recommended joint
strategy is the protocol above. Call this mechanism M(α),
where α is the probability of ci = 1 at step 1 above.

2Note that the secret issuer, player 0, is taken to be honest
and is not part of the game.

Theorem 3.2. For all utility functions satisfying U1–U3,
if n ≥ 3, there exists an α∗ such that M(α) is a practical
mechanism for m out of n secret sharing for all α < α∗.
Moreover, the expected running time of the recommended
strategy in M(α) is 5/α3.

Proof. (Sketch:) First consider the m = n = 3 case.
Consider what happens if all the players follow the protocol.
Player i sends its secret iff ci ⊕ ci− ⊕ ci+ = 1 and ci = 1.
This can happen only if c1 = c2 = c3 = 1 or if ci = 1 and
ci− = ci+ = 0. Thus, all the players send their shares (and
learn the secret) iff c1 = c2 = c3 = 1, which happens with
probability α3. If ci = 1 and ci− = ci+ = 0 (which happens
with probability α(1 − α)2), player i sends its share of the
secret but the other two players do not, so no one learns the
secret. If c1 ⊕ c2 ⊕ c3 = 0, then no player sends its share.
Thus, either all players learn the secret, or no player does.
Moreover, the protocol clearly has an expected running time
of 5/α3 rounds.

Does player i have an incentive to cheat at step 3, given
that all the other players follow the protocol? The most
obvious way that player i can cheat is by not sending its
share when it should, that is, if ci = c1 ⊕ c2 ⊕ c3 = 1.
Player i gains in this case if ci+ = ci− = 1, which happens
with conditional probability α2/(α2 + (1−α)2), and loses if
ci+ = ci− = 0, which happens with conditional probability
(1 − α)2/(α2 + (1 − α)2). Note that nothing that player i
can do can influence these probabilities, since each player j
chooses its bit cj independently. Thus, a rational player i
will cheat only if

α2

α2+(1−α)2
ui(only i learns the secret)

+ (1−α)2

α2+(1−α)2
ui(no one learns the secret)

> ui(everyone learns the secret).

(1)

It follows from U1–U3 that

ui(only i learns the secret)
> ui(everyone learns the secret)
> ui(no one learns the secret).

(2)

It is immediate from (2) that there exists some α∗ such that,
for all i and all α < α∗, (1) does not hold. Thus, if α < α∗,
then no player has any incentive to cheat at step 3.

It is easy to check that each player has no incentive not
to send bits as required in step 1 and 2, assuming that the
other players are following the recommended strategy; this
will simply cause the other players to stop playing. Suppose
that the bits c(i,+) and c(i,−) that player i actually sends at
step 1 are not the ones that it was supposed to send. This
is easily seen to be equivalent to player i changing the dis-
tribution with which ci and c(i,+) are chosen. Although this
changes the probability that messages will be sent in step
3, it is easy to show that it does not affect the probabilities
in (1). Thus, player i’s expected utility does not change if
player i changes the probabilities in step 1, so player i has
no incentive to cheat at step 1 if all other players follow
the recommended strategy. Finally, it is easy to show that
player i will not cheat at step 2, since this just means that
i− may incorrectly compute c1 ⊕ c2 ⊕ c3, which may cause
the protocol to terminate with no one learning the secret,
and will certainly not cause i to learn the secret, since at
most one of the others will send its share. This argument

shows that the recommended protocol in M(α) is a Nash
equilibrium for α < α∗.

To show that the recommended protocol survives iterated
deletion of weakly-dominated strategies, consider strategies
for player i that the following property:

(*) if there is nontrivial randomization at node v, then
player i does not have all m shares and does not send
out any shares.

Note that the protocol above satisfies (*), so it suffices to
show that strategies satisfying (*) are not deleted. This
is relatively straightforward, using the observation that, by
Proposition 3.1, all deterministic strategies not in E1∪. . .∪E4

survive iterated deletion. (Note that, since the game here is
infinite, Bh Ch, Dh, and (Dh)′ are all empty in this case.)
We leave details to the full paper.

This completes the argument for 3 out of 3 secret sharing.
To do m out of n secret sharing for m ≥ 3, n > 3, we
simply partition the players into three groups, and designate
m players such that each group has at least one of the m
designated players. One of the designated players in each
group is taken to be the leader. Each of the m designated
players sends its share to its group leader. The three leaders
then essentially use the mechanism sketched above, except
that when they are supposed to send out their share, they
send all the shares of their group to everyone. Finally, to
do 2 out of n secret sharing for n ≥ 3, the two players with
shares partition their shares into n − 1 subshares, and send
the subshares to the other n − 1 players, along with a zero
knowledge proof that they have constructed the subshares
honestly. Thus, the two players with the original shares will
each have one subshare, while the other players will have two
subshares. The players then do n out of n secret sharing,
with the subshares being the secrets.

There is an important caveat to this result. The mech-
anism requires that each player (or the system designer)
knows the other players’ utility functions. This is neces-
sary in order to choose the probability α appropriately. It
actually is not critical that the players know the other play-
ers’ utility function exactly. They just need to know enough
about the utility function so as to choose an α sufficiently
small so as to guarantee that (1) does not hold. In practice,
this does not seem unreasonable.

4. MULTIPARTY FUNCTION COMPUTA-
TION

As suggested in the introduction, the results for multi-
party computation are similar in spirit to those for secret
sharing. However, some new subtleties arise both in the
impossibility result and the possibility result.

4.1 The Impossibility Result
The impossibility result for multiparty function computa-

tion is essentially a generalization of Theorem 3.1. However,
we now no longer want to assume that there is an atomic
secret such that a player’s utility depends only on who gets
the secret. Rather, we consider a class of problems where
the players have some initial pieces of “information” and
the mechanism itself defines a number of other pieces of in-
formation of interest. A player’s utility again depends on
which pieces of information it and all the other players have

at the end of the execution. Our impossibility result applies
in particular to the special case of multiparty computation
where the functionality required is the fair exchange of se-
crets; as far as we are aware, all available protocols for this
problem have an upper bound on their running time, and
therefore are not appropriate for selfish parties [2, 3, 7, 8, 9,
14].

More formally, assume that there are some pieces of infor-
mation of interest, say I1, . . . , IM . In the case of secret shar-
ing, there is only one piece of information of interest, namely,
the secret. In the case of multiparty function computation,
the pieces of information of interest are each player’s pri-
vate information and the value of the function. A mecha-
nism may define further pieces of information IM+1, . . . , IN

of interest. For example, if the secret has b bits, one piece
of information may be the first b/2 bits of the secret.

Given a path r in the game tree, we generalize the notation
of Section 3.1 by letting info(r) be the tuple (I1, . . . , In),
where Ii is the set of pieces of information that player i
obtains in run r. Let infoi(r) = Ii; thus, infoi(r) is the
information that i gets in r.

We assume that a player’s utility function satisfies the
following analogues of U1–U3:

V1. ui(r) = ui(r
′) if info(r) = info(r′).

V2. If infoi(r) ⊇ infoi(r
′), and infoj(r) ⊆ infoj(r

′) for j 6=

i, then ui(r) ≥ ui(r
′).

V3. If i 6= j, infoj(r) ⊂ infoj(r
′), infoj′(r) = infoj′(r

′) for

j′ 6= j, and uj(r) < uj(r
′), then ui(r) > ui(r

′).

V4. If infoi(r1) = infoi(r
′

1), infoi(r2) = infoi(r
′

2), infoj(r1) =

infoj(r2) for j 6= i, infoj(r
′

1) = infoj(r
′

2) for j 6= i, and

ui(r1) < ui(r2), then ui(r
′

1) < ui(r
′

2).

V1 is the obvious generalization of U1; it says that a player’s
utility depends only on the information that each of the
players get. V2 says that player i is no worse off if he gets
more information and the other players get less. V3 says
that if getting more information makes j strictly better off,
then j getting that information makes i worse off. Finally,
V4 is an independence assumption. It says that whether or
not i is better off with certain information is independent
of what the other players have. In more detail, since all the
players other than i have the same information in r1 and
r2 and ui(r1) < ui(r2), then i must be better off with the
information he has in r2 than the information he has in r1.
Since i has the same information in r′2 as in r2, and the same
information in r′1 as in r1, and all other players have the same
information in r′1 and r′2 (although that information may be
different from what they had in r1 and r2), V4 says that i
should also be better off in r′2 than in r′1. It is easy to check
that if U1–U3 are satisfied for secret sharing (where the only
piece of information of interest is the secret), then V1–V4 are
too. We remark that when a player “has” a certain piece of
information, there may actually be a small probability that
this information is incorrect. Nevertheless, as long as the
probability is low enough, V1–V4 seem reasonable.

With these assumptions, we can prove an analogue to The-
orem 3.1 for secret sharing.

Theorem 4.1. If players’ utilities satisfy V1–V4, then
there is no practical mechanism (Γ, ~σ∗) for multiparty func-
tion computation such that Γ is finite, and using ~σ∗, some
player learns the function value.

4.2 A Randomized Practical Mechanism for
Multiparty Computation

In this section we focus on the special case of the frame-
work in the previous section where the only pieces of infor-
mation are I0, . . . , In, where I0 is the value of the function
and Ii is player i’s private value, for i = 1, . . . , n. For sim-
plicity, we restrict attention to multiparty computation of
Boolean functions.3 We say that a run r is admissible if no
player learns any other player’s private information in r, and
let infoi0(r) be 0 or 1 depending on whether or not i learns
the value of the function in r. We assume that the players’
utility functions satisfy the following analogue of U2:

V5. If r and r′ are admissible, infoi0(r) = 1 and infoi0(r
′) =

0, then ui(r) > ui(r
′).

As we said in the introduction, it follows from Shoham and
Tennenholtz’s results [19] that only certain functions, which
they call non-cooperatively computable (NCC), can be com-
puted, even with a trusted party, because only for NCC
functions do the players have an incentive to reveal their
private inputs truthfully, if players’ preferences satisfy V1–
V5. Clearly if a function f is not NCC, then we cannot hope
to compute its value with revealing private information in
the absence of a trusted party. We now show that if it is in
NCC, then we can compute its value.

Theorem 4.2. Assuming the existence of one-way 1-1 func-
tions, if f is non-cooperatively computable, n ≥ 3, and play-
ers’ utilities satisfy V1–V5, then there is a (randomized)
practical mechanism for computing f that runs in constant
expected time.

Proof. The mechanism for multiparty computation com-
bines ideas of the secret sharing mechanism in Section 3.2
and the multiparty function protocol of Goldreich, Micali,
and Wigderson [13]. Goldreich [12, Section 7.3] provides a
careful proof of the correctness of the protocol, against what
he calls semi-honest or passive adversaries. In our context,
this means that players are allowed to lie about their initial
values, and are allowed to abort the protocol for any reason
(including getting the value of the function, in the hopes
that other players have not gotten the value), but all mes-
sages they send must be the ones that the protocol says they
should send, given their claimed initial values. The key idea
is to simulate the computation of a circuit for computing f ,
such that, at each stage of the protocol, the value of a node
in the circuit is viewed as a secret, and all players have a
share of that secret. Our protocol also uses this circuit sim-
ulation, but replaces the last step of secret sharing (where
the players actually learn the value of the function) by the
secret-sharing protocol from the practical mechanism given
in Section 3.2. Goldreich then shows how to force semi-
honest behavior, using zero-knowledge and bit-commitment
protocols. We can employ the same techniques in our proto-
col to force semi-honest behavior; this is where we need the
assumption that one-way 1-1 functions exist, just as Goldre-
ich does.4 While, as Goldreich points out, in his setting, we

3We do this because the results we refer to, in particular [12,
19], consider only Boolean functions. We believe that we can
extend to arbitrary functions with no difficulty, although we
have not worked out the details.
4As we show in the full paper, we can actually simplify Gol-
dreich’s arguments given our assumption of rationality.

cannot force players to reveal their true input values, if f is
NCC, then, by V5, it is to a player’s benefit to reveal the
true input value. Similarly, it is to the player’s benefit not
to abort the protocol.

The proof that this strategy is a Nash equilibrium and
survives iterated deletion is similar to the argument given
in the proof of Theorem 3.2, with the share issuer imple-
mented by the multiparty computation protocol, and the
zero-knowledge proofs acting in the same way as the signa-
tures on shares. We omit details here.

5. CONCLUSIONS
We have shown how to apply ideas of rationality to secret

sharing and multiparty computation. This allows us to think
of players as being rational, rather than “good” or “bad”.
For many applications of multiparty function computation,
this seems like a far more reasonable approach. Many open
problems remain, including the following:

• We have assumed that we are working in synchronous
systems. We conjecture that in asynchronous systems
there are no practical mechanisms for secret sharing
or multiparty computation satisfying (some variant of)
U1–U3, but have not yet proved this.

• We have focused on preferences that satisfy U1–U3.
McGrew, Porter, and Shoham [16] characterize when
multiparty computation is achievable with a trusted
party under various other assumptions about players’
preferences. We conjecture that it will continue to
be the case that we can do multiparty computation
without a trusted party whenever we can do it with a
trusted party.

• We have concentrated on strategies that are Nash equi-
libria and survive iterated deletion of weakly-dominated
strategies. What about other solution concepts? We
note that our impossibility result (Theorem 3.1) does
not hold for trembling hand equilibria, and therefore
not for sequential or subgame perfect equilibria either.

• Our mechanism requires, not just knowing that the
utilities satisfy U1–U3, but exactly what the utilities
are. Is there a single mechanism (without a parameter
α) that works for any utilities that satisfy U1–U3?

6. ACKNOWLEDGMENTS
We would like to thank Adam Brandenburger, Cynthia

Dwork, Joan Feigenbaum, Bob McGrew, John Mitchell, An-
drew Postlethwaite, Yoav Shoham, and Moshe Tennenholtz
for helpful discussions about this work.

7. REFERENCES
[1] M. Ben-Or, S. Goldwasser, and A. Wigderson.

Completeness theorems for non-cryptographic
fault-tolerant distributed computation. In Proc. 20th
ACM Symp. on Theory of Computing, pages 1–10,
1988.

[2] M. Blum. How to exchange (secret) keys. ACM
Trans. on Computer Systems, 1(2):175–193, 1983.

[3] D. Boneh and M. Naor. Timed commitments. In
Proc. CRYPTO 2000, Volume 1880, pages 236–254,
2000.

[4] A. Brandenburger and J. Keisler. Epistemic conditions
for iterated admissibility. Unpublished manuscript;
first version 6/16/00, latest draft 6/9/03, 2000.

[5] R. Canetti. Studies in Secure Multiparty Computation
and Applications. PhD thesis, Technion, 1996.

[6] D. Chaum, C. Crépeau, and I. Damg̊ard. Multi-party
unconditionally secure protocols. In Proc. 20th ACM
Symp. on Theory of Computing, pages 11–19, 1988.

[7] R. Cleve. Controlled gradual disclosure schemes for
random bits and their applications. In Proc. CRYPTO
’89, pages 573–588, 1989.

[8] I. Damg̊ard. Practical and provably secure release of a
secret and exchange of signatures. Journal of
Cryptology, 8(4):201–222, 1995.

[9] S. Even, O. Goldreich, and A. Lempel. A randomized
protocol for signing contracts. Communications of the
ACM, 28(6):637–647, 1985.

[10] R. Fagin, J. Y. Halpern, Y. Moses, and M. Y. Vardi.
Reasoning about Knowledge. MIT Press, 1995.

[11] J. Feigenbaum and S. Shenker. Distributed
algorithmic mechanism design: Recent results and
future directions. In Proc. 6th Int. Workshop on
Discrete Algorithms for Mobile Computing and
Communication, pages 1–13, 2002.

[12] O. Goldreich. Foundations of Cryptography, Vol. 2.
Cambridge University Press, 2004. To appear; draft
available at
www.wisdom.weizmann.ac.il/∼oded/foc.html.

[13] O. Goldreich, S. Micali, and A. Wigderson. How to
play any mental game. In Proc. 19th ACM Symp. on
Theory of Computing, pages 218–229, 1987.

[14] M. Luby, S. Micali, and C. Rackoff. How to
simultaneously exchange a secret bit by flipping a
symmetrically-biased coin. In Proc. 24th IEEE
Symp. on Foundations of Computer Science, pages
11–21, 1983.

[15] R. McGrew. Towards infomational mechanism design:
A new perspective on Secure Function Evaluation,
Unpublished manuscript, 2004.

[16] R. McGrew, R. Porter, and Y. Shoham. Towards a
general theory of non-cooperative computing. In
Theoretical Aspects of Rationality and Knowledge:
Proc. Ninth Conference (TARK 2003), pages 59–51,
2003.

[17] M. J. Osborne and A. Rubinstein. A Course in Game
Theory. MIT Press, Cambridge, Mass., 1994.

[18] A. Shamir. How to share a secret. Communications of
the ACM, 22:612–613, 1979.

[19] Y. Shoham and M. Tennenholtz. Non-cooperative
computing: Boolean functions with correctness and
exclusivity. Theoretical Computer Science, 2004. To
appear; available at
iew3.technion.ac.il/∼moshet/NCC-TCS.pdf.

[20] A. Yao. Protocols for secure computation (extended
abstract). In Proc. 23rd IEEE Symp. on Foundations
of Computer Science, pages 160–164, 1982.

