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Abstract

An intelligent agent will often be uncertain about various properties of its environment,
and when acting in that environment it will frequently need to quantify its uncertainty. For
example, if the agent wishes to employ the expected-utility paradigm of decision theory to
guide its actions, it will need to assign degrees of belief (subjective probabilities) to various
assertions. Of course, these degrees of belief should not be arbitrary, but rather should
be based on the information available to the agent. This paper describes one approach
for inducing degrees of belief from very rich knowledge bases, that can include information
about particular individuals, statistical correlations, physical laws, and default rules. We
call our approach the random-worlds method. The method is based on the principle of
indifference: it treats all of the worlds the agent considers possible as being equally likely. It
is able to integrate qualitative default reasoning with quantitative probabilistic reasoning by
providing a language in which both types of information can be easily expressed. Our results
show that a number of desiderata that arise in direct inference (reasoning from statistical
information to conclusions about individuals) and default reasoning follow directly from the
semantics of random worlds. For example, random worlds captures important patterns of
reasoning such as specificity, inheritance, indifference to irrelevant information, and default
assumptions of independence. Furthermore, the expressive power of the language used and
the intuitive semantics of random worlds allow the method to deal with problems that are
beyond the scope of many other non-deductive reasoning systems.
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1 Introduction

Consider an agent with a knowledge base, KB, who has to make decisions about its actions
in the world. For example, a doctor may need to decide on a treatment for a particular
patient, say Eric. The doctor’s knowledge base might contain information of different types,
including: statistical information, e.g., “80% of patients with jaundice have hepatitis”; first-
order information, e.g., “all patients with hepatitis have jaundice”; default information, e.g.,
“patients with hepatitis typically have a fever”; and information about the particular patient
at hand, e.g., “Eric has jaundice”. In most cases, the knowledge base will not contain complete
information about a particular individual. For example, the doctor may be uncertain about
the exact disease that Eric has. Since the efficacy of a treatment will almost certainly depend
on the disease, it is important for the doctor to be able to quantify the relative likelihood
of various possibilities. More generally, to apply standard tools for decision making such as
decision theory (see, e.g., [LR57, Savb4]), an agent must assign probabilities, or degrees of
belief, to various events. For example, the doctor may wish to assign a degree of belief to an
event such as “Eric has hepatitis”. This paper describes one particular method that allows such
an agent to use its knowledge base to assign degrees of belief in a principled manner; we call
this method the random-worlds method.

There has been a great deal of work addressing aspects of this general problem. Two large
bodies of work that are particularly relevant are the work on direct inference, going back to
Reichenbach [Rei49], and the various approaches to nonmonotonic reasoning. Direct inference
deals with the problem of deriving degrees of belief from statistical information, typically by
attempting to find a suitable reference class whose statistics can be used to determine the
degree of belief. For instance, a suitable reference class for the patient Eric might be the class
of all patients with jaundice. While direct inference is concerned with statistical knowledge,
the field of nonmonotonic reasoning, on the other hand, deals mostly with knowledge bases
that contain default rules. As we shall argue, none of the systems proposed for either reference-
class reasoning or nonmonotonic reasoning can deal adequately with the large and complex
knowledge bases we are interested in. In particular, none can handle rich knowledge bases that
may contain first-order, default, and statistical information. The random-worlds approach, on
the other hand, can deal with such complex knowledge bases, and handles several paradigmatic
problems in both nonmonotonic and reference-class reasoning remarkably well.

We now provide a brief overview of the random-worlds approach. We assume that the
information in the knowledge base is expressed in a variant of the language introduced by Bac-
chus [Bac90]. Bacchus’s language augments first-order logic by allowing statements of the form
|Hep(z)|Jaun(z)||; = 0.8, which says that 80% of patients with jaundice have hepatitis. No-
tice, however, that in finite models this statement has the (probably unintended) consequence
that the number of patients with jaundice is a multiple of 5. To avoid this problem, we use
approximate equality rather than equality, writing ||Hep(z)|Jaun(z)||. ~ 0.8, read “approxi-
mately 80% of patients with jaundice have hepatitis”. Intuitively, this says that the proportion
of jaundiced patients with hepatitis is close to 80%: i.e., within some tolerance 7 of 0.8.

Not only does the use of approximate equality solve the problem of unintended consequences,
it has another significant advantage: it lets us express default information. We interpret a
statement such as “Birds typically fly” as expressing the statistical assertion that “Almost
all birds fly”. Using approximate equality, we can represent this as ||Fly(z)|Bird(z)||. ~ 1.



This interpretation is closely related to various approaches applying probabilistic semantics to
nonmonotonic logic; see Pearl [Pea89] for an overview of these approaches, and Section 6 for
further discussion.

Having described the language in which our knowledge base is expressed, we now need to
decide how to assign degrees of belief given a knowledge base. Perhaps the most widely used
framework for assigning degrees of belief (which are essentially subjective probabilities) is the
Bayesian paradigm. There, one assumes a space of possibilities and a probability distribution
over this space (the prior distribution), and calculates posterior probabilities by conditioning
on what is known (in our case, the knowledge base). To use this approach, we must specify
the space of possibilities and the distribution over it. In Bayesian reasoning, there is relatively
little consensus as to how this should be done in general. Indeed, the usual philosophy is that
these decisions are subjective. The difficulty of making these decisions seems to have been an
important reason for the historic unpopularity of the Bayesian approach in symbolic AT [MH69].

Our approach is different. We assume that the KB contains all the knowledge the agent
has, and we allow a very expressive language so as to make this assumption reasonable. This
assumption means that any knowledge the agent has that could influence the prior distribution
is already included in the KB. As a consequence, we give a single uniform construction of a
space of possibilities and a distribution over it. Once we have this probability space, we can use
the Bayesian approach: To compute the probability of an assertion ¢ given KB, we condition
on KB, and then compute the probability of ¢ using the resulting posterior distribution.

So how do we choose the probability space? Omne general strategy, discussed by Halpern
[Hal90], is to give semantics to degrees of belief in terms of a probability distribution over a
set of possible worlds, or first-order models. This semantics clarifies the distinction between
statistical assertions and degrees of belief. As we suggested above, a statistical assertion such
as ||Hep(z)|Jaun(z)||; =~ 0.8 is true or false in a particular world, depending on how many
jaundiced patients have hepatitis in that world. On the other hand, a degree of belief is neither
true nor false in a particular world—it has semantics only with respect to the entire set of
possible worlds and a probability distribution over them. There is no necessary connection
between the information in the agent’s KB and the distribution over worlds that determines
her degrees of belief. However, we clearly want there to be some connection. In particular, we
want the agent to base her degrees of beliefs on her information about the world, including her
statistical information. As this paper shows, the random-worlds method is a powerful technique
for accomplishing this.

To define our probability space, we have to choose an appropriate set of possible worlds.
Given some domain of individuals, we stipulate that the set of worlds is simply the set of all
first-order models over this domain. That is, a possible world corresponds to a particular way
of interpreting the symbols in the agent’s vocabulary over the domain. In our context, we
can assume that the “true world” has a finite domain, say of size N. In fact, without loss of
generality, we assume that the domain is {1,..., N}.

Having defined the probability space (the set of possible worlds), we must construct a
probability distribution over this set. For this, we give perhaps the simplest possible definition:
we assume that all the possible worlds are equally likely (that is, each world has the same
probability). This can be viewed as an application of the principle of indifference. Since
we are assuming that all the agent knows is incorporated in her knowledge base, the agent



has no a priori reason to prefer one world over the other. It is therefore reasonable to view
all worlds as equally likely. Interestingly, the principle of indifference (sometimes also called
the principle of insufficient reason) was originally promoted as part of the very definition of
probability when the field was originally formalized by Jacob Bernoulli and others; the principle
was later popularized further and applied with considerable success by Laplace. (See [Hac75]
for a historical discussion.) It later fell into disrepute as a general definition of probability,
largely because of the existence of paradoxes that arise when the principle is applied to infinite
or continuous probability spaces. We claim, however, that the principle of indifference can be
a natural and effective way of assigning degrees of belief in certain contexts, and in particular,
in the context where we restrict our attention to a finite collection of worlds.

Combining our choice of possible worlds with the principle of indifference, we obtain our
prior distribution. We can now induce a degree of belief in ¢ given KB by conditioning on KB
to obtain a posterior distribution and then computing the probability of ¢ according to this
new distribution. It is easy to see that, since each world is equally likely, the degree of belief in
o given KB is the fraction of possible worlds satisfying KB that also satisfy ¢.

One problem with the approach as stated so far is that, in general, we do not know the
domain size N. Typically, however, N is known to be large. We therefore approximate the
degree of belief for the true but unknown N by computing the limiting value of this degree of
belief as N grows large. The result is our random-worlds method.

The key ideas in the approach are not new. Many of them can be found in the work of
Johnson [Joh32] and Carnap [Car50, Car52], although these authors focus on knowledge bases
that contain only first-order information, and for the most part restrict their attention to unary
predicates. Related approaches have been used in the more recent works of Shastri [Sha89]
and of Paris and Vencovska [PV89], in the context of a unary statistical language. Chuaqui’s
recent work [Chu91] is also relevant. His work, although technically quite different from ours,
shares the idea of basing a theory of probabilistic reasoning upon notions of indifference and
symmetry. The works of Chuaqui and Carnap investigate very different issues from those
we examine in this paper. For example, Carnap, and others who later continued to develop
his ideas, were very much interested in inductive learning (especially the problem of learning
universal laws). While we believe the question of learning is very important (see Section 7.3),
we have largely concentrated on understanding (and generalizing) the process of going from
statistical information and default rules to inferences about particular individuals. Many of the
new results we describe reflect this different emphasis.

Having defined the method, how do we judge its reasonableness? Fortunately, as we men-
tioned, there are two large bodies of work on related problems from which we can draw guidance:
reference-class reasoning and default reasoning. While none of the solutions suggested for these
problems seems entirely adequate, the years of research have resulted in some strong intuitions
regarding what answers are intuitively reasonable for certain types of queries. Interestingly,
these intuitions often lead to identical desiderata. In particular, most systems (of both types)
espouse some form of preference for more specific information and the ability toignore irrelevant
information. We show that the random-worlds approach satisfies these desiderata. In fact, in
the case of random worlds, these properties follow from two much general theorems. We prove
that, in those cases where there is a specific piece of statistical information that should “obvi-
ously” be used to determine a degree of belief, random worlds does in fact use this information.



The different desiderata, such as a preference for more specific information and an indifference
to irrelevant information follow as easy corollaries. We also show that random worlds provides
reasonable answers in many other contexts, not covered by the standard specificity and irrel-
evance heuristics. Thus, the random-worlds method is indeed a powerful one, that can deal
with rich knowledge bases and still produce the answers that people have identified as being
the most appropriate ones.

The rest of this paper is organized as follows. In the next two sections, we outline some of
the major themes and problems in the work on reference classes and on default reasoning. Since
one of our major claims is that the random-worlds approach solves many of these problems,
this will help set our work in context. In Section 4, we describe the random-worlds method in
detail. In Section 5, we state and prove a number of general theorems about the properties of the
approach, and show how various desiderata follow from these theorems. In Section 6 we discuss
the problem of calculating degrees of belief. Using results from [GHK94], we demonstrate a
close connection between random worlds and mazimum entropy in the case of unary knowledge
bases. Based on this connection, we show that in many cases of interest a maximum-entropy
computation can be used to calculate an agent’s degree of belief. Furthermore, we show that
the maximum-entropy approach to default reasoning considered in [GMP90] can be embedded
in our framework. Finally, we discuss some possible criticisms and limitations of the random-
worlds method in Section 7 and the possible impact of the method in Section 8.

2 Reference classes

Strictly speaking, the only necessary relationship between objective knowledge about frequen-
cies and proportions on the one hand and degrees of belief on the other hand is the simple
mathematical fact that they both obey the axioms of probability. But in practice we usually
hope for a deeper connection: the latter should be based on the former in some “reasonable”
way. Of course, the random-worlds approach that we are advocating is precisely a theory of
how this connection can be made. But our approach is far from the first to attempt to connect
statistical information and degrees of belief. Most of the earlier work is based on the idea of
finding a suitable reference class. In this section, we review some of this work and show why
we believe that this approach, while it has some intuitively reasonable properties, is inadequate
as a general methodology. (See also [BGHK94c] for further discussion of this issue.) We go
into some detail here, since the issues that arise provide some motivation for the results that
we prove later regarding our approach.

2.1 The basic approach

The earliest sophisticated attempt at clarifying the connection between objective statistical
knowledge and degrees of belief, and the basis for most subsequent proposals, is due to Re-
ichenbach [Rei49]. Reichenbach describes the idea as follows:

“If we are asked to find the probability holding for an individual future event,
we must first incorporate the case in a suitable reference class. An individual thing
or event may be incorporated in many reference classes... . We then proceed by



considering the narrowest [smallest] reference class for which suitable statistics can
be compiled.”

Although not stated explicitly in this quote, Reichenbach’s approach was to equate the degree of
belief in the individual event with the statistics from the chosen reference class. As an example,
suppose that we want to determine a probability (i.e., a degree of belief) that Eric, a particular
patient with jaundice, has the disease hepatitis. The particular individual Eric is a member of
the class of all patients with jaundice. Hence, following Reichenbach, we can use the class of all
such patients as a reference class, and assign a degree of belief equal to our statistics concerning
the frequency of hepatitis among this class. If we know that this frequency is 80%, then we
would assign a degree of belief of 0.8 to the assertion that Eric has hepatitis.

Reichenbach’s approach consists of (1) the postulate that we use the statistics from a par-
ticular reference class to infer a degree of belief with the same numerical value, and (2) some
guidance as to how to choose this reference class from a number of competing reference classes.
We consider each point in turn.

In general, a reference class is simply a set of domain individuals® that contains the particu-
lar individual about whom we wish to reason and for which we have “suitable statistics”. In our
framework, we may take the set of individuals satisfying a formula ¥(z) to be a reference class.
The requirement that the particular individual ¢ we wish to reason about belongs to the class is
then represented by the logical assertion ¥(c).? But what does the phrase “suitable statistics”
mean? Suppose for now we take a “suitable statistic” to be a closed interval that is nontrivial,
i.e., that is not [0, 1], in which the proportion or frequency lies. More precisely, consider some
query @(c), where ¢ is some logical assertion and c is a constant, denoting some individual in
the domain. Then, under this interpretation, 1(z) is a reference class for this query if we know
both 9(c) and [|¢(z)|(z)|: € [a, (], for some nontrivial interval [, 3]. That is, we know that
¢ has property @, and that among the class of individuals that possess property v, the propor-
tion that also have property ¢ is between a and . If we decide that this is the appropriate
reference class then, using Reichenbach’s approach, we would conclude Pr(¢(c)) € [a, 5], i.e.,
the probability (degree of belief) that ¢ has property ¢ is between a and 3. Note that the
appropriate reference class for the query ¢(¢) depends both on the formula ¢(z) and on the
individual e.

Given a query ¢(c), there will in general be many reference classes that are arguably ap-
propriate for it. For example, suppose we know both 1 (c) and 13(¢), and we have two pieces
of statistical information: ||¢(2)|¥1(2)||z € [o1,B1] and ||¢(z)|P2(z)||. € [@2,82]. In this case
both 11(z) and 13(z) are reference classes for ¢(c) and, depending on the values of the a’s and
B’s, they could assign conflicting degrees of belief to ¢(c¢). The second part of Reichenbach’s
approach is intended to deal with the problem of how to choose a single reference class from a
set of possible classes. Reichenbach recommended preferring the narrowest (i.e., the smallest,
or most specific) class. In this example, if we know Va (11(z) = 13(z)), so that the class 11(z)

!These “individuals” might be complex objects (such as sequences of coin tosses) depending on what we take
as primitive in our ontology.

2 Although the examples in this section deal with reasoning about single individunals, in general both reference-
class reasoning and random worlds can be applied to queries such as “Did Eric infect Tom”, which involve
reasoning about a number of individuals simultaneously. In such cases the reference classes will consist of sets
of tuples of individuals.



is a subset of the class 13(z), then, using Reichenbach’s approach, we would take the statistics
from the more specific reference class 11(z) and conclude that Pr(¢(c)) € [aq, 1]

These two parts of Reichenbach’s approach—using statistics taken from a class as a degree
of belief about an individual and preferring statistics from more specific classes—are generally
reasonable and intuitively compelling when applied to simple examples. Of course, even on the
simplest examples Reichenbach’s strategy cannot be said to be “correct” in any absolute sense.
Nevertheless, it is impressive that there is such widespread agreement as to the reasonableness
of the answers. As we show later, the random-worlds approach agrees with both aspects of
Reichenbach’s approach when applied to simple (and uncontroversial) examples. Unlike that
approach, however, the random-worlds approach derives these intuitive answers from more
basic principles. As a result, it is able to deal well with more complex examples that defeat
Reichenbach’s approach.

Despite its successes, Reichenbach’s approach has several serious problems. For one thing,
defining what counts as a “suitable statistic” is not easy. For another, it is clear that the
principle of preferring more specific information rarely suffices to deal with the cases that arise
with a rich knowledge base. Nevertheless, much of the work on connecting statistical information
and degrees of belief, including that of Kyburg [Kyb83, Kyb74] and of Pollock [Pol90], has built
on Reichenbach’s ideas of reference classes by elaborating the manner in which choices are made
between reference classes. As a result, these later approaches all suffer from a similar set of
difficulties, which we now discuss.

2.2 Identifying reference classes

Recall that we took a reference class to be simply a set for which we have “suitable statistics”.
But if any set of individuals whatsoever can potentially serve as a reference class then problems
arise. Assume we know Jaun(FEric) and ||Hep(z)|Jaun(z)||; ~ 0.8. In this case Jaun(z) is
a legitimate reference class for the query Hep(FEric). Therefore, we would like to conclude
that Pr(Hep(Lric)) = 0.8. But Eric is also a member of the more specific class of jaundiced
patients without hepatitis together with { Eric} (i.e., the class defined by the formula (Jaun(z)A
- Hep(z))Va = FEric). If there are quite a few jaundiced patients without hepatitis, then we have
excellent statistics for the proportion of patients in this class with hepatitis: it is approximately
0%. Thus, the conclusion that Pr(Hep(Eric)) = 0.8 is disallowed by the rule instructing us
to use the most specific reference class. In fact, it seems that we can almost always find a
more specific class that will give a different and intuitively incorrect answer. This example
suggests that we cannot take an arbitrary set of individuals to be a reference class; it must
satisfy additional criteria.

Kyburg and Pollock deal with this difficulty by placing restrictions on the set of allowable
reference classes that, although different, have the effect of disallowing disjunctive reference
classes, including the problematic class described above. This approach suffers from two defi-
ciencies. First, as Kyburg himself has observed [Kyb74], these restrictions do not eliminate the
problem completely. FFurthermore, restricting the set of allowable reference classes may prevent
us from making full use of the information we have. For example, the genetically inherited
disease Tay-Sachs (represented by the predicate TS) appears only in babies of two distinct
populations: Jews of east-European extraction (FFE.J), and French-Canadians from a certain
geographic area (F'C'). Within the afflicted population, Tay-Sachs occurs in 2% of the babies.



The agent might represent this fact using the statement ||7S5(z)|EEJ(z)V FC(z)||, = 0.02.
However, if disjunctive reference classes are disallowed, then the agent would not be able to use
this information in reasoning.

It is clear that if one takes the reference-class approach to generating degrees of belief, some
restrictions on what constitutes a legitimate reference class are inevitable. Unfortunately, it
seems that the current approaches to this problem are inadequate. The random-worlds approach
does not depend on the notion of a reference class, and so is not forced to confront this issue.

2.3 Competing reference classes

Even if the problem of defining the set of “legitimate” reference classes can be resolved, the
reference-class approach must still address the problem of choosing the “right” class out of the
set of legitimate ones. The solution to this problem has typically been to posit a collection of
rules indicating when one reference class should be preferred over another. The basic criterion
is the one we already mentioned: choose the most specific class. But even in the cases to which
this specificity rule applies, it is not always appropriate. Assume, for example, that we know
that between 70% and 80% of birds chirp and that between 0% and 99% of magpies chirp. If
Tweety is a magpie, the specificity rule would tell us to use the more specific reference class, and
conclude that Pr(Chirps( Tweety)) € [0,0.99]. Although the interval [0,0.99] is certainly not
trivial, it is not very meaningful. Had the 0.99 been a 1, the interval would have been trivial,
and we could have then ignored this class and used the more detailed statistics of [0.7,0.8]
derived from the class of birds.

The knowledge base above might be appropriate for someone who knows little about mag-
pies, and so feels less confidence in his statistics for magpies than in his statistics for the class
of birds as a whole. But since [0.7,0.8] C [0,0.99], we know nothing that indicates that magpies
are actually different from birds in general with respect to chirping. There is an alternative
intuition that says that if the statistics for the less specific reference class (the class of birds)
are more precise, and they do not contradict the statistics for the more specific class (magpies),
then we should use them. That is, we should conclude that Pr( Chirps( Tweety)) € [0.7,0.8].
This intuition is captured and generalized in Kyburg’s strength rule.

Unfortunately, neither the specificity rule nor its extension by Kyburg’s strength rule are
adequate in most cases. In typical examples, the agent generally has several incomparable
classes relevant to the problem, so that neither rule applies. Reference-class systems such as
Kyburg’s and Pollock’s simply give no useful answer in these cases. For example, suppose
we know that Fred has high cholesterol and is a heavy smoker, and that 15% of people with
high cholesterol get heart disease. If this is the only suitable reference class, then (according
to all the systems) Pr(Heart-disease( Fred)) = 0.15. On the other hand, suppose we then
acquire the additional information that 9% of heavy smokers develop heart disease (but still
have no nontrivial statistical information about the class of people with both attributes). In
this case, neither class is the single right reference class, so approaches that rely on finding a
single reference class generate a trivial range for the degree of belief that Ired will contract
heart disease in this case. For example, Kyburg’s system will generate the interval [0, 1] for the

degree of belief.

Giving up completely in the face of conflicting evidence seems to us to be inappropriate.



The entire enterprise of generating degrees of belief is geared to providing the agent with some
guidance for its actions (in the form of degrees of belief) when deduction is insufficient to
provide a definite answer. That is, the aim is to generate plausible inferences. The presence of
conflicting information does not mean that the agent no longer needs guidance. When we have
several competing reference classes, none of which dominates the others according to specificity
or any other rule that has been proposed, then the degree of belief should most reasonably be
some combination of the corresponding statistical values. As we show later, the random-worlds
approach does indeed combine the values from conflicting reference classes in a reasonable way,
giving well-motivated answers even when the reference-class approach would fail.

2.4 Other types of information

We have already pointed out the problems that arise with the reference-class approach if more
than one reference class bears on a particular problem. A more subtle problem is encountered
in cases where there is relevant information that is not in the form of a reference class. We have
said that for ¥(z) to be a reference class for a query about ¢(c) we must know ¥ (c) and have
some statistical information about ||¢(z)|1(z)||.. However, it is not sufficient to consider only
the query ¢(c). Suppose we also know ¢(¢) < o(c) for some other formula 0. Then we would
want Pr(p(c)) = Pr(o(c)). But this implies that all of the reference classes for o(¢) are relevant
as well, because anything we can infer about Pr(o(¢)) tells us something about Pr(¢(c)). Both
Pollock [Pol90] and Kyburg [Kyb83] deal with this by considering all of the reference classes for
any formula o such that o(c) < ¢(c) is known. However, they do not consider the case where
it is known that o(c) = ¢(¢), which implies that Pr(o(c)) < Pr(¢(c)), nor the case where it
is known that ¢(c¢) = o(c), which implies that Pr(o(c)) > Pr(¢(c)). Thus, if we have a rich
theory about ¢(c) and its implications, it can become very hard to locate all of the possible
reference classes or even to define what qualifies as a possible reference class.

2.5 Discussion

A comparison between random worlds and reference-class approaches can be made in terms of
the use of local versus global information. The reference-class approach is predicated on the
assumption that we can always focus on a single piece of information, the statistics over a single
reference class, that summarizes all the relevant information in the knowledge base. A strategy
based on identifying a single relevant (“local”) datum can offer great efficiency, but of course
we should not expect this to be a general substitute for the use of all the (“global”) information
we have available. In this sense, the difficulties encountered by the reference-class approach are
not surprising. When generating degrees of belief from a rich knowledge base, it will not always
be possible to find a single reference class that captures all of the relevant information.

It is important to remember that although the notion of a reference class seems intuitive, it
arises as part of one proposed solution strategy for the problem of computing degrees of belief.
The notion of a reference classes is not part of the description of the problem, and there is no
reason for it to necessarily be part of the solution. Indeed, as we have tried to argue, making
it part of the solution can lead to more problems than it solves.

Our approach makes no attempt to locate a single local piece of information (a reference
class). Thus, all of the problems described above that arise from trying locate the “right”



reference class vanish. Rather, it uses a semantic construction that takes into account all of the
information in the knowledge base in a uniform manner. As we shall see, the random-worlds
approach generates answers that agree with the reference-class approach in those special cases
where there is a single appropriate reference class. However, it continues to give reasonable
answers in many situations where no single local piece of information suffices. Furthermore,
these answers are obtained directly from the simple semantics of random worlds, with no ad
hoc rules and assumptions.

3 Default reasoning

One main claim of this paper is that the random-worlds method of inference, coupled with
our statistical interpretation of defaults, provides a well-motivated and successful system of
default reasoning. Evaluating such a claim is hard because there are many, sometimes rather
vague, criteria for success that one can consider. In particular, not all criteria are appropriate
for all default reasoning systems: Different applications (such as some of the ones outlined
in [McC86]) require different interpretations for a default rule, and therefore need to satisfy
different desiderata. Nevertheless, there are certain desiderata that have gained acceptance as
measures for the success of a new nonmonotonic reasoning system. Some are general properties
of nonmonotonic inference (see Section 3.2). Most, on the other hand, involve getting the
“right” answers to a small set of standard examples (more often than not involving a bird called
“Tweety”). As we claim at the end of this section, this has made an “objective” validation of
proposed systems difficult, to say the least. In this section, we survey some of the desired
properties for default reasoning and the associated problems and issues. Of course, our survey
cannot be comprehensive. The areas we consider are the semantics of defaults, basic properties
of default inference, inheritance and irrelevance, expressive power, and the lottery paradox.

3.1 Semantics of defaults

It is possible to discuss some properties of default reasoning systems in an extremely abstract
fashion (see Section 3.2), but for other properties we need to make some assumptions about
the type of system being considered. In particular, we consider systems that incorporate some
notion of a default rule, which we now explain. In general, a default rule is an expression that
has the form A(z) — B(z), whose intuitive interpretation is that if A holds for some individual
z then typically (normally, usually, probably, etc.) B holds for that individual.> While the
syntax actually used differs significantly from case to case, most default reasoning systems have
some construct of this type. For instance, in Reiter’s default logic [Rei80] we would write

while in a circumscriptive framework [McC80], we might use

Va (A(z) A =Ab(z) = B(x))

We use — for a default implication, reserving = for standard material implication.
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while circumscribing Ab(z). Theories based on first-order conditional logic [Del88] often do use
the syntax A(z) — B(z). As we said in the introduction, in the random worlds framework this
default is captured using the statistical assertion ||B(z)|A(z)||. ~ 1.

While most systems of default inference have a notion of a default rule, not all of them
address the issue of what the rule means. In particular, while all systems describe how a default
rule should be used, some do not ascribe semantics (or ascribe only unintuitive semantics) to
such rules. Without a good, intuitive semantics for defaults it becomes very difficult to judge
the reasonableness of a collection of default statements. For example, as we mentioned above,
one standard reading of ¢ — 9 is “@’s are typically #’s”. Under this reading, the pair of
defaults A — B and A — —B should be inconsistent. In approaches such as Reiter’s default
logic, A — B and A — - B can be simultaneously adopted; they are not “contradictory”
because there is no relevant notion of contradiction.

In contrast, our approach does give semantics to defaults. In fact, we use a single logic and
semantics that covers first-order information, default information, and statistical information.
Such an approach enables us, among other things, to verify the consistency of a collection of
defaults and to see whether a default follows logically from a collection of defaults. Of other
existing theories, those based on conditional or modal logic come closest to achieving this (see
[Bou91] for further discussion of this point).

3.2 Properties of default inference

As we said, default reasoning systems have typically been measured by testing them on a number
of important examples. Recently, a few tools have been developed that improve upon this
approach. Gabbay [Gab84] (and later Makinson [Mak89] and Kraus, Lehmann, and Magidor
[KLM90]) introduced the idea of investigating the input/output relation of a default reasoning
system, with respect to certain general properties that such an inference relation might possess.
Makinson [Mak94] gives a detailed survey of this work.

The idea is simple. Fix a theory of default reasoning and let KB be some knowledge base
appropriate to this theory. Suppose ¢ is a default conclusion reached from KB according to
the particular default approach being considered. In this case, we write KB . The relation
ko clearly depends on the default theory being considered. It is necessary to assume in this
context that KB and ¢ are both expressed in the same logical language, and that the language
has a notion of valid implication. Thus, for example, if we are considering default logic or
e-semantics, we must assume that the defaults are fixed (and incorporated into the notion of
k) and that both KB and ¢ are first-order or propositional formulas. Similarly, in the case of
circumscription, the circumscriptive policy must also be fixed and incorporated into . (See
also the discussion at the beginning of Section 3.3.)

With this machinery we can state a few desirable properties of default theories in a way
that is independent of the (very diverse) details of such theories. There are five properties of
ko that have been viewed as being particularly desirable [KI1.M90]:

o Right Weakening. If ¢ = 1 is logically valid and KB p ¢, then KB |~ 9.

o Reflexivity. KB v KB.
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o Left Logical Fquivalence. If KB < KB’ is logically valid, then KB | ¢ if and only if
KB' .

o Cut. If KB 6 and KBAG P ¢ then KB b .
o Cautious Monotonicity. If KB 0 and KB p ¢ then KB A6 p~ .

While it is beyond the scope of this paper to defend these criteria (see [KLM90]), we do want to
stress Cut and Cautious Monotonicity, since they will be useful in our later results. They tell
us that we can safely add to KB any conclusion 8 that we can derive from KB, where “safely”
is interpreted to mean that the set of conclusions derivable (via ) from KB A 6 is precisely
the same as that derivable from KB alone.

As shown in [KLM90], numerous other conditions can be derived from these properties. For
example, we can prove:

o And. If KB v ¢ and KB |~ ¢ then KB p ¢ A 9.

Other plausible properties, however, do not follow from these basic five. For example, the
following property captures reasoning by cases:

e Or. If KB ¢ and KB’ |~ ¢, then KBV KB' |~ ¢.

Perhaps the most interesting property that does not follow from the basic five properties
is what has been called Rational Monotonicity [KLM90]. Note that the property of (full)
monotonicity, which we do not want, says that KB ¢ implies KB A 6 |~ ¢, no matter what
f is. It has been argued that default reasoning should satisfy the same property in those cases
where 6 is “irrelevant” to the connection between KB and ¢. While it is difficult to characterize
“irrelevance”, one situation where we may believe that # should not affect the conclusions we
can derive from KB is if 6 is not implausible given KB, i.e., if it is not the case that KB p -6
(see Section 3.3 for an example). The following property asserts that monotonicity holds when
adding such a formula 6 to our knowledge base:

o Rational Monotonicity. If KB |~ ¢ and it is not the case that KB p =6, then KBA# |~ .

Rational Monotonicity is a fairly strong property, and is certainly not universally agreed
upon (see [Mak94] for a discussion, and some weakened versions). However, several people, no-
tably Lehmann and Magidor [LM92], have argued strongly for the desirability of this principle.
One advantage of Rational Monotonicity is that it covers some fairly noncontroversial patterns
of reasoning involving property inheritance. We explore this further in the next section. As
is demonstrated in Section 5.1, our approach satisfies a slightly weakened version of Rational
Monotonicity.

The set of properties we have discussed provides a simple, but useful, system for classi-
fying default theories. There are certainly applications in which some of the properties are
inappropriate; Reiter’s default logic is still popular even though it does not satisfy Cautious
Monotonicity, Or, or Rational Monotonicity [Mak94]. (We briefly discuss one of the consequent
disadvantages of default logic in the next section.) Nevertheless, many people would argue that
the five core properties given above constitute a reasonable, if incomplete, set of desiderata for
mainstream default theories.
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3.3 Specificity and inheritance

As we have pointed out, systems of default reasoning have particular mechanisms for expressing
default rules. A collection of such rules (perhaps in conjunction with other information) forms
a default theory (or default knowledge base). For example, a particular default theory KB ;.
might contain the default “A’s are typically B’s”; we denote this by writing (A(z) — B(z)) €
KB ;. A default theory KB . is used by a default reasoning system in order to reason from
various premises to default conclusions. For example, a theory KB4 containing the above
default might infer B(c) from A(c). Let pvgs indicate the input/output relationship generated
by a particular default reasoning system that uses KB j.;. Thus, A(c) pvger B(c) indicates that
this default reasoning system is able to conclude B(c¢) from the premise A(c) using the default
theory KB .. In this section we examine some additional properties we might like oy to
satisfy.

Clearly, the presence of a default rule in a theory does not necessarily mean that the as-
sociated default reasoning system will (or should) apply that rule to any particular individual.
Nevertheless, unless something special is known about that individual, the following seems to
be an obvious requirement for any default reasoning system:

o Direct Inference for Defaults. If (A(z) — B(z)) € KB and KB g, contains no asser-
tions mentioning ¢, then A(c¢) peger B(c).

This requirement has been previously discussed by Poole [Po091], who called it the property
of Conditioning. We have chosen a different name that relates the property more directly to
earlier notions arising in work on direct inference.

We view Direct Inference for Defaults as stating a (very weak) condition for how a default
theory should behave on some of the simpler problems involving hierarchies of classes and
default properties. Consider the following standard example, in which our default knowledge
base KBpg, is

Bird(z) — Fly(z)
Penguin(z) — - Fly(z),
Va (Penguin(z) = Bird(z)).

Should Tweety the penguin inherit the property of flying from the class of birds, or the
property of not flying from the class of penguins? For any system satisfying Direct Infer-
ence for Defaults we must have Penguin(Tweety) poq, —Fly(Tweety). So long as the sys-
tem treats universals in a reasonable manner, this will be equivalent to Penguin( Tweety) A
Bird( Tweety) pegy ~Fly( Tweety). Thus we see that if a system satisfies Direct Inference for
Defaults, then it automatically satisfies a form of specificity—the preference for more specific
defaults. Specificity in default reasoning is, of course, directly related to the preference for more
specific subsets that we saw in the context of reference-class reasoning. Specificity is one of the
least controversial desiderata in default reasoning.

In approaches such as default reasoning or circumscription, the most obvious encoding of
these defaults satisfies neither Direct Inference for Defaults nor specificity. However, default
logic and circumscription are certainly powerful enough for us to be able to arrange specificity
if we wish. For example, in default logic, this can be done by means of non-normal defaults
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[RC81]. There is a cost to doing this, however: adding a default rule can require that all older
default rules be reexamined, and possibly changed, to enforce the desired precedences.

Direct Inference for Defaults is a weak principle, since in most interesting cases there is
no default that fits the case at hand perfectly. Suppose we learn that Tweety is a yellow
penguin. Should we still conclude that Tweety does not fly? That is, should we conclude
Penguin( Tweety) N Yellow( Tweety) pq, —Fly(Tweety)? Most people would say we should,
because we have been given no reason to suspect that yellowness is relevant to flight. In other
words, in the absence of more specific information about yellow penguins we should use the
most specific superclass for which we do have knowledge, namely penguins. The inheritance
property, i.e., the ability to inherit defaults from superclasses, is a second criterion for successful
default reasoning, and is not provided by Direct Inference for Defaults.

In some sense, we can view Rational Monotonicity as providing a partial solution to this
problem [LM92]. If a nonmonotonic reasoning system satisfies Rational Monotonicity in ad-
dition to Direct Inference for Defaults then it does achieve inheritance in a large number of
examples. TFor instance, we have already observed that Direct Inference for Defaults gives
Penguin( Tweety) pog, —Fly( Tweety), given KBg,. Since KBpg, gives us no reason to be-
lieve that yellow penguins are unusual, any reasonable default reasoning system would have
Penguin( Tweety) hq, - Yellow( Tweety). From these two statements, Rational Monotonicity
allows us to conclude Penguin(Tweety) A Yellow( Tweety) peg, ~Fly( Tweety), as desired.

However, Rational Monotonicity is still insufficient for inheritance reasoning in general.
Suppose we add the default Bird(z) — Warm-blooded(z) to KBp,. We would surely ex-
pect Tweety to be warm-blooded. However, Rational Monotonicity cannot be applied here.
To see why, observe that Bird(Tweety) pvq, Warm-blooded( Tweety), while we want to con-
clude that Bird( Tweety) A Penguin( Tweety) b, Warm-blooded( Tweety).* We could use Ra-
tional Monotonicity to go from the first statement to the second, if we could show that
Bird( Tweety) pa, - Penguin(Tweety). However, most default reasoning systems do not sup-
port this statement. In fact, since penguins are exceptional birds that do not fly, it is not
unreasonable to conclude the contrary, i.e., that Bird(Tweety) peg, —Penguin(Tweety). Thus,
Rational Monotonicity cannot be used to conclude that Tweety the penguin is warm-blooded.

It seems undesirable that if a subclass is exceptional in any one respect, then inheritance of
all other properties is blocked. However, it can be argued that this blocking of inheritance to
exceptional subclasses is reasonable. Since penguins are known to be exceptional birds perhaps
we should be cautious and not allow them to inherit any of the normal properties of birds. But
even if we accept this argument, there are many examples which demonstrate that the complete
blocking of inheritance to exceptional subclasses yields an inappropriately weak theory of default
reasoning. For example, suppose we add to KB g, the default Yellow(z) — Fasy-to-see(z). This
differs from standard exceptional-subclass inheritance in that yellow penguins are not known
to be exceptional members of the class of yellow things. That is, while penguins are known
to be somewhat unusual birds (and so perhaps the normal properties of birds should not be
inherited), there is no reason to suppose that yellow penguins are different from other yellow
objects. Nevertheless, Rational Monotonicity does not suffice even in this less controversial case.
Indeed, there are well-known systems that satisfy Rational Monotonicity but cannot conclude

*In any system that treats universals reasonably, this is clearly equivalent to the assertion we are really
interested in: Penguin( Tweety) I"'ﬁy Warm-blooded( Tweety).
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that Tweety, the yellow penguin, is easy to see [LM92, Pea90]. This problem has been called
the drowning problem [Ash93, BCDT93].

Theories of default reasoning have had considerable difficulty in capturing an ability to
inherit from superclasses that can deal properly with all of these different cases. In particular,
the problem of inheritance to exceptional subclasses has been the most difficult. While some
recent propositional theories have been more successful at dealing with exceptional subclass
inheritance [GMP90, Gef92, GP92], they encounter other difficulties, which we discuss in the
next section.

3.4 Expressivity

In the effort to discover basic techniques and principles for default reasoning, people have often
looked at weak languages based on propositional logic. For instance, e-semantics and variants
[GP90, GMP90], modal approaches such as autoepistemic logic [Moo85], and conditional logics
[Bou91], are usually considered in a propositional framework. Others, such as Reiter’s default
logic and Delgrande’s conditional logic [Del88], use a first-order language, but with a syntax
that tends to decouple the issues of first-order reasoning and default reasoning; we discuss this
below. Of the better-known systems, circumscription seems to have the ability, at least in
principle, of making the richest use of first-order logic.

It seems uncontroversial that, ultimately, a system of default reasoning should be built
around a powerful language. Sophisticated knowledge representation systems almost invariably
use languages with the expressive power of some large fragment of first-order logic, if not
much more. It is hard or impractical to encode the knowledge we have about almost any
interesting domain without the expressive power provided by non-unary predicates and first-
order quantifiers. We would also like to reason logically as well as by default within the same
system, and to allow perhaps even richer languages.

It has not been easy to integrate first-order logic and defaults completely. In fact, one of
the major contributions of our approach is its ability to express both types of information in a
single language. One difficulty for other approaches concerns “open” defaults, that are intended
to apply to all individuals. For instance, suppose we wish to make a general statement that
birds typically fly, and be able to use this when reasoning about different birds. Let us examine
how some existing systems do this.

In propositional approaches, the usual strategy is to claim that there are different types
of knowledge (see, for example, [GP92] and the references therein). General defaults, such
as Bird — Fly, are in one class. When we reason about an individual, such as Tweety, its
properties are described by knowledge in a different class, the context. For Tweety, the context
might be Bird A Yellow. In a sense, the symbol Bird stands for a general property when used in
a default and talks about Tweety (say) when it appears in the context. First-order approaches
have more expressive power in this regard. For example, Reiter’s default logic uses defaults with
free variables, e.g., Bird(z) — Fly(z). That Tweety is a bird can then be written Bird( Tweety),
which seems much more natural. The default itself is treated essentially as a schema, implying
all substitution instances (such as Bird( Tweety) — Fly( Tweety)).

One example shows the difficulties with both of these approaches. Suppose we know that:

Elephants typically like zookeepers.
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Fred is a zookeeper, but elephants typically do not like Fred.
Clyde is an elephant.
Eric is a zookeeper.

Using this information we can apply specificity to determine reasonable answers to such ques-
tions as “Does Clyde like Fred?” (No) or “Does Clyde like Eric” (Yes). But the propositional
strategy of classifying knowledge seems to fail here. Is “Elephants typically do not like Fred” a
general default, or an item of contextual knowledge? Since it talks about elephants in general
and also about one particular zookeeper, it does not fit either category well. In a rich first-order
language, there is no clear-cut distinction between specific facts and general knowledge (nor do
we believe there should be one).

Next, consider the first-order substitutional approach. It is easy to see that this does not
work at all. One substitution instance of

FElephant(z) A Zookeeper(y) — Likes(z,y)

is
FElephant(z) N Zookeeper(Fred) — Likes(x, Fred),

which will contradict the second default. Of course, we could explicitly exclude Fred:
FElephant(z) A Zookeeper(y) Ny # Fred — Likes(z,y).

However, explicit exclusion is similar to the process of explicitly disabling less specific defaults,
mentioned in the previous section. Both destroy the modularity of the knowledge base, i.e., the
form of a default becomes dependent on what other defaults are in the knowledge base. Hence,
these techniques are highly impractical for large knowledge bases.

The zookeeper example is similar to an example given by Lehmann and Magidor [LM90].
However, the solution they suggest to this problem does not provide an explicit interpretation
for open defaults. Rather, the “meaning” of an open default is implicitly determined by a
set of rules provided for manipulating such defaults. These rules can cope with the zookeeper
example, but the key step in the application of these rules is the use of Rational Monotonic-
ity. More precisely, Lehmann and Magidor’s argument applies to systems which, given the
premise Flephant(z) A Zookeeper(y), can infer by default that Likes(z,y) (i.e., Elephant(z) A
Zookeeper(y) i~ Likes(z,y)), and yet cannot infer either z # Clyde or y # Fric. The latter cer-
tainly seem reasonable since we know nothing whatsoever about Clyde or Eric. Now, however,
we can apply Rational Monotonicity twice, which effectively allows us to assume (i.e., add to
the premises) that z = Clyde Ay = Eric, while still concluding Likes(z,y). Finally, Reflexivity,
Right Weakening, and Left Logical Equivalence can be used to justify substituting for z and y;
we obtain Flephant( Clyde) A Zookeeper( Eric) |~ Likes(Clyde, Eric), as desired. The key point
is that this argument will typically fail for Fred, because we do have reason to believe that
Fred is unusual (and so, in many systems, we could conclude by default that y # Fred). Thus,
as we would hope, we cannot conclude that Likes(Clyde, Frred), and in fact it is easy to argue
analogously that we conclude = Likes( Clyde, Fred) using the second default. But while Rational
Monotonicity helps in this example, we have, in Section 3.3, already seen its main failing: it is
easily blocked by “irrelevant” exceptionality. For example, if Eric is known to be exceptional
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in some way (even one unrelated to zookeeping), then Lehmann and Magidor’s approach will
not be able conclude that he is liked by Clyde. This is surely undesirable.

Thus, it seems to be very hard to interpret generic (open) defaults properly. This is perhaps
the best-known issue regarding the expressive power of various approaches to default logic.
There are, of course, others; we close by mentioning one.

Morreau [Mor93] has discussed the usefulness of being able to refer to “the class of individ-
uals satisfying a certain default”. For example, the assertion:

Typically, people who normally go to bed late normally rise late.

refers to “the class of people who normally go to bed late”. The structure of this assertion is
essentially:

(Day(y) — To-bed-late(z,y)) — (Day(y') — Rises-late(z,y")).

This is a default whose precondition and conclusion are descriptions of people whose behaviors
are themselves defined using defaults. Such defaults appear to pose problems for most existing
default theories. Reiter’s default logic cannot express such defaults. And while some theories of
conditional logic (for example, those of [Del88, Bou91]) can express this example, they are as yet
incapable of generating reasonable inferences from nested defaults of this type. Circumscription,
on the other hand, could perhaps be configured to cope with this example, but precisely how
this could be accomplished is not obvious to us. We also note that the example has many
variants. For instance, there is clearly a difference between the above default and the one
“Typically, people who go to bed late rise late (i.e., the next morning)”; formally, the latter
statement could be written:

(Day(y) A To-bed-late(x,y)) — Rises-late(z, Next-day(y))),

There are also other variations. We would like to express and reason correctly with them all.
The real issue here is that we need to define various properties of individuals, and while many of
these properties can be expressed in first-order logic, others need to refer to defaults explicitly.
This argues, yet again, that it is a mistake to have a different language for defaults than the
one used for other knowledge.

3.5 The lottery paradox

The lottery paradoz ([Kyb61]) addresses the issue of how different default conclusions interact.
It provides a challenging test of the intuitions and semantics of any default reasoning system.
There are a number of issues raised by this paradox; we consider three here.

First, imagine that a large number N of people buy tickets to a lottery in which there is
only one winner. For a particular person ¢, it seems sensible to conclude by default that ¢ does
not win the lottery. But we can argue this way for every individual, which seems to contradict
the fact that someone definitely will win. Of course some theories, such as those based on
propositional languages, do not have enough expressive power to even state this version of the
problem. Among theories that can state it, there would seem to be several options. Clearly, one
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solution is to deny that default conclusions are closed under arbitrary conjunction, i.e., to give
up on the And Rule. But aside from explicitly probabilistic theories, we are not aware of work
taking this approach (although the existence of multiple extensions in theories such as Reiter’s
is certainly related). Without logical closure, there is a danger of being too dependent on merely
syntactic features of a problem. Another solution is to prevent a theory from reasoning about
all N individuals at once [EKP91]. Finally, one can simply deny that —Winner(c) follows by
default. Circumscription, for instance, does this: The standard representation of the problem
would result in multiple extensions, such that for each individual ¢, there is one extension
where ¢ is the winner. While this seems reasonable, circumscription only allows us to conclude
things that hold in all extensions; thus, we would not be able to conclude = Winner(c). The
problem with these “solutions” is that the lottery problem seems to be an extremely reasonable
application of default reasoning: if you buy a lottery ticket you should continue your life under
the assumption that you will not win.

Second, a closely related issue is raised by Lifschitz’s list of benchmark problems [Lif89].
Suppose we have a default, for instance Ticket(z) — - Winner(z), and no other knowledge.
Should Yz (Ticket(xz) = — Winner(z)) be a default conclusion? Likewise, if we know Winner(c)
but consider it possible that the lottery has more than one winner, should we nevertheless
conclude that Vz((Ticket(z) ANz # ¢) = - Winner(z))? In circumscription, although not in
many other theories, we get both universal conclusions (as Lifschitz argues for). The desire for
these universal conclusions is certainly controversial; in fact it seems that we often expect default
rules to have some exceptions. However, as Lifschitz observes, there is a technical difficulty in
following this latter intuition: How can we conclude from the default Ticket(z) — - Winner(z)
that, by default, each individual ¢is not a winner, and yet not also reach the universal conclusion
that, by default, no one wins? The concern is that, in many systems, the latter conclusion will
be logically entailed whether we wish it or not. Because of its treatment of open defaults,
Reiter’s default logic does not suffer from this difficulty. As we shall see, neither does the
random-worlds approach.

Finally, Poole [Poo91] has considered a variant of the lottery paradox that avoids entirely
the issue of named individuals. In his version, there is a formula describing the types of birds
we are likely to encounter, such as:

Va(Bird(z) & (Emu(z) V Penguin(z) V...V Canary(z))).

We then add to the knowledge base defaults such as birds typically fly, but penguins typically
do not fly, and we similarly assert that every other species of bird is exceptional in some way.
Now suppose all we know is that Bird(Tweety). Can we conclude that Tweety flies? If we
conclude that he can, then a similar argument would also allow us to conclude that he is a
typical bird in all other respects. But this would contradict the fact he must be exceptional in
some respect. If we do not conclude that Tweety flies, then the default “Birds typically fly” has
been effectively ignored. Poole uses such examples to give an exhaustive analysis of how various
systems might react to the Lottery Paradox. He shows that in any theory, some desideratum,
such as closure under conjunction or “conditioning” (Direct inference for defaults), must be
sacrificed. Perhaps the most interesting “way out” he discusses is the possibility of declaring
that certain combinations of defaults are inadmissible or inconsistent. Is it really reasonable
to say that the class of birds is the union of subclasses all of which are exceptional? In many
theories, such as Reiter’s default logic, there is nothing to prevent one from asserting this. But

18



in a theory which gives reasonable semantics to defaults, we may be able to determine and
justify the incompatibility of certain sets of defaults. This, indeed, is how our approach avoids
Poole’s version of the lottery paradox.

3.6 Discussion

In this section, we have presented a limited list of desiderata that seem appropriate for a default
reasoning system, and have discussed some key problems and issues that must be resolved
by such a system. While our list may be limited, it is interesting to point out that there
does not seem to be a single default reasoning system that fulfills all these desiderata in a
satisfactory way. Although we can (and do) show that random worlds does, in fact, achieve all
the requirements on this list, we would like to validate random worlds in a more comprehensive
fashion. Unfortunately, to the best of our knowledge, there is (as yet) no general framework
for evaluating default reasoning systems. In particular, evaluation still tends to be on the level
of “Does this theory solve these particular examples correctly?” (see, for example, the list
of benchmark problems in [Lif89]). While such examples are often important in identifying
interesting aspects of the problem and defining our intuitions in these cases, they are clearly
not a substitute for a comprehensive framework. Had there been such a framework, perhaps the
drowning problem from Section 3.3 would not have remained undiscovered for so long. While
we do not attempt to provide such a general framework in this paper, in Section 5 we prove a
number of general theorems concerning the random-worlds approach. These theorems provide a
precise formulation of properties such as Direct Inference for Defaults, and show that they hold
for random worlds. Other properties such as specificity and exceptional subclass inheritance
follow immediately from these theorems. Thus, our proof that the random-worlds approach
deals well with the paradigm examples in default reasoning follows from a general theorem,
rather than by a case-by-case analysis.

4 The formalism

4.1 The language

We are interested in a formal logical language that allows us to express both statistical infor-
mation and first-order information. We therefore define a statistical language £¥, which is a
variant of a language designed by Bacchus [Bac90]. For the remainder of the paper, let ® be a
finite first-order vocabulary, consisting of predicate, function, and constant symbols, and let X’
be a set of variables.

Our statistical language augments standard first-order logic with a form of statistical quan-
tifier. For a formula ¥ (z), the term ||1)(z)||; is a proportion expression. It will be interpreted as
a rational number between 0 and 1, that represents the proportion of domain elements satisfy-
ing ¥(z). We actually allow an arbitrary set of variables in the subscript and in the formula .
Thus, for example, ||Child(z,y)||. describes, for a fixed y, the proportion of domain elements
that are children of y; || Child(z,y)||, describes, for a fixed z, the proportion of domain elements
whose child is z; and || Child(z, y)||5,, describes the proportion of pairs of domain elements that
are in the child relation.
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We also allow proportion expressions of the form ||1(z)|6(z)||s, which we call conditional
proportion expressions. Such an expression is intended to denote the proportion of domain
elements satisfying ¥ from among those elements satisfying 6. Finally, any rational number is
also considered to be a proportion expression, and the set of proportion expressions is closed
under addition and multiplication.

One important difference between our syntax and that of [Bac90] is the use of approzimate
equality to compare proportion expressions. As we argued in the introduction, exact com-
parisons are sometimes inappropriate. Consider a statement such as “80% of patients with
jaundice have hepatitis”. If this statement appears in a knowledge base, it is almost certainly
there as a summary of a large pool of data. It is clear that we do not mean that ezactly 80%
of all patients with jaundice have hepatitis. Among other things, this would imply that the
number of jaundiced patients is a multiple of five, which is surely not an intended implica-
tion. We therefore use the approach described in [GHK94, KH92], and compare proportion
expressions using (instead of = and <) one of an infinite family of connectives ~; and <;, for
i=1,2,3... (“i-approximately equal” or “;-approximately less than or equal”).? For example,
we can express the statement “80% of jaundiced patients have hepatitis” by the proportion
formula ||Hep(z)|Jaun(z)||; ~1 0.8. The intuition behind the semantics of approximate equal-
ity is that each comparison should be interpreted using some small tolerance factor to account
for measurement error, sample variations, and so on. The appropriate tolerance will differ for
various pieces of information, so our logic allows different subscripts on the “approximately
equals” connectives. A formula such as || Fly(z)|Bird(z)||. =1 1 A ||Fly(z)|Bat(z)||, =2 1 says
that both || Fly(z)|Bird(z)||, and || Fly(z)| Bat(z)||,, are approximately 1, but the notion of “ap-
proximately” may be different in each case.

We can now give a recursive definition of the language £¥.

Definition 4.1: The set of terms in L7 is the least set containing X" and the constant symbols
in @ that is closed under function application (so that if f is a function symbol in @ of arity r,
and t1,...,1, are terms, then sois f(t1,...,%,)).

The set of proportion expressions is the least set that

(a) contains the rational numbers,

(b) contains proportion terms of the form ||¥||x and [|¥|8]|x, for formulas »,6 € £~ and a
finite set of variables X C X', and

(c) is closed under addition and multiplication.
The set of formulas in £¥ is the least set that

(a) contains atomic formulas of the form R(t1,...,%,), where R is a predicate symbol in
® U {=} of arity r and tq,...,t, are terms,

(b) contains proportion formulas of the form ¢ =; ¢’ and ¢ <; ¢/, where { and (' are proportion
expressions and ¢ is a natural number, and

°In [BGHK95] the use of approximate equality was suppressed in order to highlight other issues.
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(c) is closed under conjunction, negation, and first-order quantification. I

Notice that this definition allows arbitrary nesting of quantifiers and proportion expressions.
In Section 4.3 we demonstrate the expressive power of the language. As observed in [Bac90],
the appearance of a variable z in the subscript of a proportion expression binds the variable z
in the expression; indeed, we can view ||-||x as a new type of quantification.

We now need to define the semantics of the logic. As we shall see below, most of the
definitions are fairly straightforward. The two features that cause problems are approximate
comparisons and conditional proportion expressions. We interpret the approximate connective
¢ ~; (' to mean that ( is very close to (. More precisely, it is within some very small, but
unknown, tolerance factor. We formalize this using a tolerance vector 7 = (11, 72,...), T > 0.
Intuitively ¢ =; (" if the values of ( and (" are within 7; of each other. (Note that, although
the use of tolerance vectors leads to well-defined formal semantics, one might object that in
practice we generally will not know appropriate tolerance values. We defer our response to this
objection to the next section.)

A difficulty arises when interpreting conditional proportion expressions because we need to
deal with the problem of conditioning on an event of measure 0. That is, we need to define
semantics for ||1|6|| x even when there are no assignments to the variables in X that would satisfy
f. When standard equality is used rather than approximate equality, this problem is easily
overcome. Following [Hal90], we can eliminate conditional proportion expressions altogether
by viewing a statement such as ||1|f||x = a as an abbreviation for ||¢) A 8||x = «||6]|x. This
approach agrees with the standard interpretation of conditionals if [|f]|x # 0. If ||f]|x = 0, it
enforces the convention that formulas such as ||1|0||x = a or |||0]|x < a are true for any a. We
used the same approach in [GHK94], where we allowed approximate equality. Unfortunately, as
the following example shows, this interpretation of conditional proportions can interact in an
undesirable way with the semantics of approximate comparisons. In particular, this approach
does not preserve the standard semantics of conditional equality if ||0||x is approzimately 0.

Example 4.2: Consider the knowledge base:®
KB = (|| Penguin(2)|l. ~1 0) A (|| Fly(a)| Penguin(a)]. ~z 0).

We expect this to mean that the proportion of penguins is very small (arbitrarily close to 0
in large domains), but also that the proportion of fliers among penguins is also very small.
However, if we attempt to interpret conditional proportions as discussed above, we obtain the
knowledge base

KB' = (|| Penguin(2)||. %1 0) A (|| Fly(2) A Penguin(a)||, 2 0 - | Penguin(a)[ 1.,
which is equivalent to

(|| Penguin(z)|| ~1 0) A (|| Fly(z) A Penguin(z)||s ~2 0).

We remark that, here and in our examples below, the actual choice of subscript for = is unimportant.
However, we use different subscripts for different approximate comparisons unless the tolerances for the different
measurements are known to be the same.
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This last formula simply asserts that the proportion of penguins and the proportion of flying
penguins are both small, but says nothing about the proportion of fliers among penguins. In
fact, the world where all penguins fly is consistent with KB’. Clearly, the process of multiplying
out across an approximate connective does not preserve the intended interpretation of the
formulas. 1

Because of this problem, we cannot treat conditional proportions as abbreviations and
instead have added them as primitive expressions in the language. Of course, we now have to
give them a semantics that avoids the problem illustrated by Example 4.2. We would like to
maintain the conventions used when we had equality in the language. Namely, in worlds where
[16(z)||z # 0, we want ||¢(z)|0(z)|| to denote the fraction of elements satisfying §(z) that also
satisfy ¢(z). In worlds where ||6(z)||; = 0, we want all formulas of the form ||¢(2z)|0(2)||, ~i @
or ||¢(z)|6(z)||» =i @ to be true. There are a number of ways of accomplishing this. The route
we take is perhaps not the simplest, but it introduces machinery that will be helpful later.

We give semantics to the language £~ by providing a translation from formulas in £¥
to formulas in a language £~ whose semantics is more easily described. The language £~ is
essentially the language of [Hal90], that uses true equality rather than approximate equality.
More precisely, the definition of £= is identical to the definition of £L¥ given in Definition 4.1,
except that:

e we use = and < instead of =; and <;,

o we allow the set of proportion expressions to include arbitrary real numbers (not just
rational numbers),

e we do not allow conditional proportion expressions,

e we assume that £~ has a special family of variables ¢;, interpreted over the reals.

As we shall see, the variable ¢; is used to interpret the approximate equality connectives ~; and
=<;. We view an expression in £~ that uses conditional proportion expressions as an abbreviation
for the expression obtained by multiplying out.

The semantics for £~ is quite straightforward, and follows the lines of [Hal90]. Recall that
we give semantics to L= in terms of worlds, or finite first-order models. For any natural number
N, let Wn(®) consist of all worlds with domain D = {1,..., N} over the vocabulary .

Now, consider a world W € Wy (®), a valuation V : X — {1,..., N} for the variables in
X, and a tolerance vector 7. We simultaneously assign to each proportion expression ( a real
number [(]w,v,7 and to each formula £ a truth value with respect to (W,V,7). Most of the
clauses of the definition are completely standard, so we omit them here. In particular, variables
are interpreted using V. each tolerance variable ¢; is interpreted as denoting the tolerance
7;, the predicates and constants are interpreted using W, the Boolean connectives and the
first-order quantifiers are defined in the standard fashion, and when interpreting proportion
expressions, the real numbers, addition, multiplication, and < are given their standard meaning.
It remains to interpret proportion terms. Recall that we eliminate conditional proportion terms

by multiplying out, so that we need to deal only with unconditional proportion terms. If ( is
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the proportion expression ||¢||le77mk (for iy < iy < ...< i), then

1
(v = pel{(d e odi) € DF o WV fdi, iy i), 7) = 0}

Thus, if W € Wx(®), the proportion expression ||¢||le77xzk denotes the fraction of the N* k-
tuples of domain elements in D that satisfy ¢ in the world W. For example, [||Child(z, y)||..]w,v,z)
is the fraction of domain elements d that are children of V (y).

We now show how a formula x € £ can be associated with a formula y* € £=. We proceed
as follows:

e every proportion formula ¢ <; (' in x is (recursively) replaced by { — ¢’ < ¢,

e every proportion formula  =; (' in x is (recursively) replaced by the conjunction ({—(¢’ <

)N (¢ = (<L e),

e finally, conditional proportion expressions are eliminated as in [Hal90]’s semantics, by
multiplying out.

This translation allows us to embed £ in £=. Thus, for the remainder of the paper, we regard
L7 as a sublanguage of £L=. We can now easily define the semantics of formulas in £¥: For
X € L7, we say that (W, V,7) E x iff (W,V,7) = x*. It is sometimes useful to incorporate
particular values for the tolerances into the formula y*. Thus, let x[7] represent the formula
that results from x* if each variable ¢; is replaced by 7, its value according to 7.7

Typically we are interested in closed sentences, that is, formulas with no free variables. In
that case, it is not hard to show that the valuation plays no role. Thus, if y is closed, we write
(W, T) E x rather than (W, V,7) |= x.

4.2 Degrees of belief

As we explained in the introduction, we give semantics to degrees of belief by considering all
worlds of size N to be equally likely, conditioning on KB, and then checking the probability of
o over the resulting probability distribution. In the previous section, we defined what it means
for a sentence y to be satisfied in a world of size N using a tolerance vector 7. Given N and
7, we define #worlds};(x) to be the number of worlds in Wy(®) such that (W, 7) |= x. Since
we are taking all worlds to be equally likely, the degree of belief in ¢ given KB with respect to
Wy and T is
#worldsy(¢ A KB)

#worldsiy(KB)

If #worlds,(KB) = 0, this degree of belief is not well-defined.®

Pri (ol KB) =

"Note that some of the tolerances 7; may be irrational; it is for this reason that we allowed arbitrary real
numbers in the proportion expressions of £7.

8Strictly speaking, we should write #worlds%?(x) rather than #worldsf\,(x), since the number also depends
on the choice of ®. Indeed, we do so in the one place where this dependence matters (Theorem 5.27). The degree
of belief is, however unaffected by expansions of the vocabulary. That is, if ® O ® then the degree of belief
PIJT:](@|B’B) is the same under the vocabulary ® as it is under ®.
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Typically, we know neither N nor 7 exactly. All we know is that N is “large” and
that 7 is “small”. Thus, we would like to take our degree of belief in ¢ given KB to be
lim._g limy_e Pri(¢|KB). Notice that the order of the two limits over 7 and N is im-
portant. If the limit lim._ 5 appeared last, then we would gain nothing by using approximate
equality, since the result would be equivalent to treating approximate equality as exact equality.

This definition, however, is not sufficient; the limit may not exist. We observed above that
Prf\;(go|KB) is not always well-defined. In particular, it may be the case that for certain values
of 7, Priy(¢|KB) is not well-defined for arbitrarily large N. In order to deal with this problem
of well-definedness, we define KB to be eventually consistent if for all sufficiently small 7 and
sufficiently large N, #worlds}'}(KB) > 0. Among other things, eventual consistency implies
that the KB is satisfiable in finite domains of arbitrarily large size. For example, a KB stating
that “there are exactly 7 domain elements” is not eventually consistent.? For the remainder of
the paper, we assume that all knowledge bases are eventually consistent.

Even if KB is eventually consistent, the limit may not exist. For example, it may be the
case that for some i, Pr}FV((,o|KB) oscillates between a + 7; and a — 7; as N gets large. In this
case, for any particular 7, the limit as N grows will not exist. However, it seems as if the
limit as 7 grows small “should”, in this case, be «a, since the oscillations about a go to 0. We
avoid such problems by considering the lim sup and lim inf, rather than the limit. For any set
S C IR, the infimum of 5, inf 5, is the greatest lower bound of 5. The lim inf of a sequence is
the limit of the infimums; that is,

lﬁ\rfn_glof ay = ]\}Enminf{ai 1> N}
The lim inf exists for any sequence bounded from below, even if the limit does not. The lim
sup is defined analogously, where sup 5 denotes the least upper bound of 5. If lim y_. o, any does
exist, then limy_ ay = liminfy_ any = limsupy_ ., an. Since, for any 7, the sequence
Prfv(go|KB) is always bounded from above and below, the lim sup and lim inf always exist.
Thus, we do not have to worry about the problem of nonexistence for particular values of 7.
We can now present the final form of our definition.

Definition 4.3: If

lim liminf Pr};(¢|KB) and lim lim sup Pri(¢|KB)
7—0 N—co 70 N—oo

both exist and are equal, then the degree of belief in ¢ given KB, written Pro.(¢|KB), is defined

as the common limit; otherwise Pro.(¢|KB) does not exist.

We point out that, even using this definition, there are many cases where the degree of belief
does not exist. However, as some of our examples show, in many situations the nonexistence
of a degree of belief can be understood intuitively, and is sometimes related to the existence of
multiple extensions of a default theory. (See Sections 4.3 and 5.3 and [GHK94].)

90f course, in this case one probably would not want to consider lim N — oo anyway. If we are fortunate
enough to know the domain size, and it is reasonably small, we can simply compute degrees of belief using the

(known) fixed value of N.
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We remark that Shastri [Sha89] used a somewhat similar approach to defining degrees of
belief. His language does not allow the direct expression of statistical information, but does
allow us to talk about the number of domain individuals that satisfy a given predicate. He
then gives a definition of degree of belief similar to ours. Since he has no notion of approximate
equality in his language, and presumes a fixed domain size (an assumption we wish to avoid),
he does not have to deal with limits as we do.

4.3 Statistical interpretation for defaults

As we mentioned in the introduction, there are many similarities between direct inference from
statistical information and default reasoning. To capitalize on this observation, and to be able
to use random worlds as a default reasoning system, we need to interpret defaults as statistical
statements. However, finding the appropriate statistical interpretation is not straightforward.
For example, as is well known, if we interpret “Birds typically fly” as “Most (i.e., more than
50% of) birds fly”, then we get a default system that fails to satisfy some of the most basic
desiderata, such as the And rule, discussed in Section 3.2. Using a higher fixed threshold in a
straightforward way does not help. More successfully, Adams [Ada75], and later Geffner and
Pearl [GP90], suggested an interpretation of defaults based on “almost all”. In their framework,
this is done using extreme probabilities—conditional probabilities that are arbitrarily close to 1:
i.e., within 1 — € for some ¢, and considering the limit as € — 0. The basic system derived from
this idea is called e-semantics. Later, stronger systems (that are able to make more inferences)
based on the same probabilistic idea were introduced (see Pearl [Pea89] for a survey).

The intuition behind e-semantics and its extensions seems to be statistical. However, since
the language used in these approaches is propositional, this intuition cannot be expressed di-
rectly. Indeed, these approaches typically make no distinction between the statistical nature of
the default and the degree of belief nature of the default conclusion. We are able to capture this
intuition more directly in our approach, since we can make this distinction explicitly. Recall
that we interpret a statement such as “Birds typically fly” statistically, using the approximate
statement || Fly(z)|Bird(z)||, =; 1 for some 7. (Thus, the use of an approximate connective to
compare proportion expressions is not purely a technical convenience.) Clearly, we can view
our statistical interpretation of defaults as a generalization of the extreme probabilities inter-
pretation of defaults to the first-order case. The connection between our work and e-semantics
extends beyond the issue of representation: there is a deeper sense in which we can view our
approach as the generalization of one of the extensions of e-semantics, namely the maximum-
entropy approach of Goldszmidt, Morris, and Pearl [GMP90], to the first-order setting. This
issue is discussed in more detail in Section 6, where it is shown that this maximum-entropy
approach can be embedded in our framework.

Of course, the fact that our syntax is so rich allows us to express a great deal of information
that simply cannot be expressed in any propositional approach. We observed earlier that a
propositional approach that distinguishes between default knowledge and contextual knowledge
has difficulty in dealing with the elephant-zookeeper example (see Section 3.4). This example
is easily dealt with in our framework.

Example 4.4: The following knowledge base, KBjes, is a formalization of the elephant-
zookeeper example. Recall, this problem concerns the defaults that (a) Elephants typically like
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zookeepers, but (b) Elephants typically do not like Fred. As discussed earlier, simply expressing
this knowledge can be a challenge. In our framework this example can be expressed as follows:

|| Likes(z, y)| Elephant(z) A Zookeeper(y)||sy =1 1 A
|| Likes(z, Fred)| Elephant(z)||. &2 0 A
Zookeeper( Fred) A\ Elephant( Clyde) N Zookeeper( Eric). |

Furthermore, our interpretation of defaults allows us to deal well with interactions between
first-order quantifiers and defaults.

Example 4.5: We may know that people who have at least one tall parent are typically tall.
This default can be expressed in our language:

|| Tall(z)|3y (Child(z,y) A Tall(y))||- =~ 1. 1

We can also define defaults over classes themselves defined using default rules (as discussed by
Morreau [Mor93]).

Example 4.6: In Section 3.4, we discussed the problem of expressing the nested default “Typ-
ically, people who normally go to bed late normally rise late.” To express this default we can
simply use nested proportion statements: The individuals who normally rise late are those who
rise late most days; they are the z’s satisfying || Rises-late(z,y)|Day(y)|l, ~1 1. Similarly, the
individuals who normally go to bed late are the z’s satisfying || To-bed-late(x,y")| Day(y")||,
/o 1. Thus we can capture the default by saying most z’s that go to bed late also rise late, as
in the knowledge base KB ,.:

HHRz'ses-late(m,y)|Day(y)”y ~ ‘ || To-bed-late(z,y")| Day(y')||y ~2 1HI ~s .

On the other hand, the related default that “Typically, people who go to bed late rise late
(i.e., the next morning)” can be expressed as:

~1 17
1?7y

HRises-late(.r, Nezt-day(y)) ‘ Day(y) A To-bed-late(z, y)

which is clearly different from the first default. il

5 Properties of random worlds

We now show that the random-worlds method validates several desirable reasoning patterns,
including essentially all of those discussed in Sections 2 and 3. It is worth noting that all of
these reasoning patterns follow from the basic definition of the random worlds method given in
Section 4.2; none of these patterns require any additional structure to be added to the method.
We also note that all the results in this section hold for our language in its full generality: the
formulas can contain arbitrary function and predicate symbols (including non-unary predicates),
and have nested quantifiers and proportion statements. Finally, we note that the theorems we
state are not the most general ones possible. It is quite easy to construct examples for which the
conditions of the theorems do not hold, but random worlds still gives the intuitively plausible
answer. We could find theorems that deal with additional cases, although it seems to be fairly
difficult to find other results whose conditions are easy to state and check, and yet cover an
interestingly large class of examples. We discuss this issue again in Section 7.4.
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5.1 Random worlds and default reasoning

In this subsection, we focus on formulas which are assigned degree of belief 1. Given any
knowledge base KB (which can, in particular, include defaults using the statistical interpreta-
tion of Section 4.3), we say that ¢ is a default conclusion from KB, and write KB p ¢, if
Pro.(¢|KB) = 1. As we now show, the relation p_  satisfies all the basic properties of default
inference discussed in Section 3.2. We start by proving two somewhat more general results.

Proposition 5.1: If = KB & KB', then Pro. (9| KB) = Pro.(¢|KB') for all formulas .'°

Proof: By assumption, precisely the same set of worlds satisfy KB and KB’. Therefore, for
all N and 7, Pry(p|KB) and Pry(p|KB') are equal. Therefore, the limits are also equal. I

Proposition 5.2: If KB |~ 0, then Proo(¢|KB) = Proo(@|KB A 8) for any ¢.

Proof: Fix N and 7. Then, by the standard properties of conditional probability, we get

Priv(¢|KB) = Pri(¢|K B A 6) - Priy(8|KB) + Priy(¢|K B A -8) - Priy(-0|KB).

By assumption, Prf\,(t‘) KB) tends to 1 when we take limits, so the first summand tends to
Proo(¢|KB A 8). Since Pri (=8| KB) has limit 0 and Pri(p|K B A =) is bounded, the second
summand tends to 0. The result follows. I

Theorem 5.3: The relation p_  satisfies the properties of And, Cautious Monotonicity, Cut,
Left Logical Fquivalence, Or, Reflexivity, and Right Weakening.

Proof:

And: As we mentioned in Section 3.2, this follows from the other properties proved below.
Cautious Monotonicity and Cut: These follow immediately from Proposition 5.2.
Left Logical Fquivalence: Follows immediately from Proposition 5.1.

Or: Assume Proo(¢|KB) = Proo(¢|KB') = 1, so that Proo(-¢|KB) = Pro(—¢|KB') = 0. Fix
N and 7. Then
Pry(~p|KBV KB') = Pri(~¢ A(KBV KB')|KBV KB
Pri (¢ A KB|KBV KB') + Priy(-¢ A KB’
Pr(~¢| KB) + Priy (<ol KB).

< KBV KB')
<

Taking limits, we conclude that Pro.(—¢

KBVKB') = 0. It follows that (KBVKB') v, .

Reflexivity: Because we restrict our attention to K B’s that are eventually consistent, Pr.,( KB
is well-defined. But then Pr.,(KB|KB) is clearly equal to 1.

KB)

1By Preo(p|KB) = Proo(| KB’') we mean that either both degrees of belief exist and have the same value, or
neither exists. Proposition 5.2 should be interpreted analogously.
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Right Weakening: Suppose Pro(¢|KB) = 1. If |= ¢ = ¢/, then the set of worlds satisfying ¢’
is a superset of the set of worlds satisfying ¢. Therefore, for any N and 7, Pri(¢'|KB) >
Pri(¢|KB). Taking limits, we obtain that

1> Proo(¢'|KB) > Proo(¢|KB) = 1,

and so necessarily Pro.(¢'|KB) = 1.1

Besides demonstrating that pv = satisfies the minimal standards of reasonableness for a
default inference relation, these properties, particularly the stronger form of Cut and Cautious
Monotonicity proved in Proposition 5.2, will prove quite useful in computing degrees of belief,
especially when combined with some other properties we prove below (see also Section 7.4).
In particular, many of our later results show how random-worlds behaves for knowledge bases
and queries that have certain restricted forms. Sometimes a KB that does not satisfy these
requirements can be changed into one that does, simply by extending KB with some of its
default conclusions. We then appeal to Proposition 5.2 to justify using the new knowledge base
instead of the old one. The other rules are also useful, as shown in the following analysis of
Poole’s “broken-arm” example [Poo89].

Example 5.4: Suppose we have predicates LeftUsable, LeftBroken, RightUsable, RightBroken,
indicating, respectively, that the left arm is usable, the left arm is broken, the right arm is

usable, and the right arm is broken. Let KB’,  consist of the statements

o ||LeftUsable(z)||; ~1 1, || LeftUsable(z)|LeftBroken(z)||; ~2 0 (left arms are typically
usable, but not if they are broken),

o ||RightUsable(z)||, ~3 1, || RightUsable(z)|RightBroken(z)||, ~4 0 (right arms are typi-
cally usable, but not if they are broken).

Now, consider KB, = (KB',,,, A (LeftBroken( Eric) V RightBroken(Eric))); that is, we know

that Eric has a broken arm. Poole observes that if we use Reiter’s default logic, there is

precisely one extension of KB,.,, and in that extension, both arms are usable. However, it
can be shown that KB A LeftBroken(FEric) v —LeftUsable( Eric) (see Theorem 5.6 below)

arm

and hence (using Right Weakening) that KB, A LeftBroken(Eric) p ., —LeftUsable( Eric) Vv

arm

= RightUsable( E'ric); the same conclusion is obtained from KB’ . A RightBroken(Eric). By
the Or rule, it follows that KB ., ., 7 LeftUsable( Eric) V - Right Usable( Eric). Using similar
reasoning, we can also show that KBy, b, LeftUsable( Eric)V Right Usable( Eric). By applying
the And rule, we conclude by default from KB,., that exactly one of Eric’s arms is usable, but

we draw no conclusions as to which one it is. I

The final property mentioned in Section 3.2 is Rational Monotonicity. Recall that Rational
Monotonicity asserts that if KB |~ ¢ and KB [, -6 then (KB A#) b~ ¢. Random worlds
satisfies a weakened form of Rational Monotonicity. In particular, it satisfies Rational Mono-
tonicity except in those situations where limits fail to exist.!® If Pro,(p|KB A 8) does exist it
must be equal to 1, i.e., we must have (KB A 8) |~ ¢ as desired. Sometimes, however, this

1 As we discuss later in Section 5.3 there are often intuitive reasons for the non-existence of limits.
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limit does not exist. Note that the assumption that KB ¢ entails that Pr.,(¢|KB) exists.
But Rational Monotonicity’s other assumption, that KB ¢, =6 holds if either Pr, (8| KB) has
a value less than one or if this degree of belief does not exist. It is the latter “incompatibility”
of 8 with KB that is a potential source of problems. In this case the combination of KB and 6
may fail to assign a limiting degree of belief to ¢ even though KB by itself did. The following
theorem summarizes the status of Rational Monotonicity in the random-worlds approach.

Theorem 5.5: Assume that KB~ ¢ and KB [ 0. Then KB A8 |, ¢ provided that
Proo(¢|KB A 8) exists. Moreover, a sufficient condition for Pro(¢|KB A ) to exist is that
Pro. (0| KB) exists.

Proof: Longer proofs, including the proof of this result, are in the appendix. 1

5.2 Specificity and inheritance in random worlds

One way of using random worlds is to derive conclusions about particular individuals, based on
general statistical knowledge. This is, of course, the type of reasoning reference-class theories
were designed to deal with. Recall, these theories aim to discover a single piece of data—the
statistics for a single reference class—that summarizes all the relevant information. This idea is
also useful in default reasoning, where we sometimes want to find a single appropriate default.
Random worlds rejects this idea as a general approach, but supports it as a valuable heuristic
in special cases.

In this section, we give two theorems covering some of the cases where random worlds agrees
with the basic philosophy of reference classes. Both results concern specificity—the idea of using
the “smallest” relevant reference class for which we have statistics. However, both results also
allow some indifference to irrelevant information. In particular, the second theorem also covers
certain forms of inheritance (as described in Section 3.3). The results cover almost all of the
noncontroversial applications of specificity and inheritance that we are aware of, and do not
seem to suffer from any of the commonly found problems such as the disjunctive reference class
problem (see Section 2.2). Because our theorems are derived properties rather than postulates,
consistency is assured and there are no ad hoc syntactic restrictions on the choice of possible
reference classes. We remark that Shastri [Sha89] has also observed that irrelevance properties
hold in his framework.

Our first, and simpler, result is basic direct inference, where we have a single reference class
that is precisely the “right one”. That is, assume that the assertion 1(c) represents everything
the knowledge base tells us about the constant ¢. In this case, we can view the class defined by
() as the class of all individuals who are “just like ¢”. If we have adequate statistics for the
class 1(z), then we should clearly use this information. For example, assume that all we know
about Eric is that he exhibits jaundice, and let i represent the class of patients with jaundice.
If we know that 80% of patients with jaundice exhibit hepatitis, then basic direct inference
would dictate a degree of belief of 0.8 in Eric having hepatitis. We would, in fact, like this to
hold regardless of any other information we might have in the knowledge base. For example, we
may know the proportion of hepatitis among patients in general, or that patients with jaundice
and fever typically have hepatitis. But if all we know about Eric is that he has jaundice, we
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would still like to use the statistics for the class of patients with jaundice, regardless of the
additional information.

Our result essentially asserts the following: “If we are interested in obtaining a degree of
belief in ¢(c), and the KB is of the form ¥ (c) A ||¢(2)|¢(2)]|» = @ A KB, then conclude that
Pro.(¢(c)|KB) = a.” (Here, KB’ is simply intended to denote the rest of KB, whatever it
may be.) Clearly, in order for the result to hold, we must make certain assumptions. The
assumptions we consider can be viewed as ensuring that i)(c) represents all the information we
have about c. First, for obvious reasons, we require that KB’ does not mention c¢. However,
this is not enough; we also need to assume that ¢ does not appear in either ¢(z) or ¥(z). To
understand why ¢ cannot appear in ¢(z), suppose that ¢(z) is Q(z)V z = ¢, ¥(z) is true,
and the KB is ||¢(z)|truel|; ~1 0.5. If the result held in this case, we would erroneously
conclude that Pro(¢(c)|KB) = 0.5. But since ¢(c) holds tautologically, we actually obtain
Proo(p(c)|KB) = 1. To see why the constant ¢ cannot appear in ?(z), suppose that ¢(z) is
(P(z)Nz #c)V-P(z), o(x)is P(z), and the KB is ¥(c) A || P(z)|¥(2)||s ~2 0.5. Again, if the
result held, we would be able to conclude that Pro(P(¢)|KB) = 0.5. But ¢(c¢) is equivalent to
=P(c), soin fact Pro(P(c)|KB) = 0.

As we now show, these assumptions suffice to guarantee the desired result. In fact, the
theorem generalizes the basic principle to properties and classes dealing with more than one
individual at a time (as is demonstrated in some of the examples following the theorem). In
the following, let & = {z1,...,2;} and & = {e¢1, ..., ¢} be sets of distinct variables and distinct
constants, respectively. Furthermore, we use (&) to indicate that all of the free variables in
the formula ¢ are in #, and we use (&) to denote the new formula formed by substituting each
x; by ¢; in . Note that ¢ may contain other constants not among the ¢;’s; these are unaffected
by the substitution.

Theorem 5.6: Let KB be a knowledge base of the form ¥(¢) A KB', and assume that for all
sufficiently small tolerance vectors T,

KB[T] = le(@D)[¢ ()] € [, B]-

If no constant in ¢ appears in KB', in o(T), or in (%), then Proo(¢(¢)|KB) € [a, B], provided

the degree of belief exists.'?

Proof: See the appendix. I

Theorem 5.6 refers to any statistical information about ||¢(Z)|¥(Z)||z that can be inferred
from the knowledge base. An important special case is when the knowledge base contains the
relevant information explicitly.

Corollary 5.7: Let KB’ be the conjunction

H(E) A (a 2 le(@)](@)]|z =5 5)-

""The degree of belief may mnot exist since lim._gliminfy_c Prf\]((pH(B) may not be equal to
lim._gslimsupy_ . Priy(¢|KB). However, it follows from the proof of the theorem that both these limits

7—0

lie in the interval [o, 3]. A similar remark holds for many of our later results.
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Let KB be a knowledge base of the form KB'A KB" such that no constant in ¢ appears in KB",
in (%), or in Y(Z). Then, if the degree of belief exists, we have

Proo(¢(€)|KB) € [a, B].

Proof: Let € > 0, and let 7 be sufficiently small so that 7;,7; < e. For this 7, the formula

(a < ||e(7 )|gb( )Hz <; B) implies ||¢(Z)|(Z)||z € [a — €, 5 + ¢]. Therefore, by Theorem 5.6,
Proo(¢(¢)|KB) € [a— ¢, 3+ ¢|. But since this holds for any € > 0, it is necessarily the case that

B)
Proo(@(€)|KB) € [a, f]. 1

It is interesting to note one way in which this result diverges from the reference-class
paradigm. Suppose we consider a query ¢(c), and that our knowledge base KB is as in the hy-
pothesis of Corollary 5.7. While we can indeed conclude that Pr..(¢(€)|KB) € [a, f], the exact
value of the degree of belief within this interval depends on the other information in the knowl-
edge base. Thus, while random worlds certainly uses the information a <; ||¢(z)|¥(2)|ls <; 3,
it does not necessarily ignore the rest of the knowledge base altogether. On the other hand,
if the interval [a, ] is sufficiently small (and, in particular, when a = ), then we may not
care exactly where in the interval the degree of belief lies. In this case, we can ignore all the
information in KB’, and use the single piece of “local” information for computing the degree

of belief.

We now present a number of examples that demonstrate the behavior of the direct inference

result.

Example 5.8: Consider a knowledge base describing the hepatitis example discussed earlier.
In the notation of Corollary 5.7:

KB, = Jaun(Eric) A ||Hep(z)|Jaun(z)|| =1 0.8,
and
KBjey = KB}, N||Hep(z)|| <2 0.05 A ||Hep(z)|Jaun(z) A Fever(z)||. ~2 1.

Then Pro,(Hep( Eric) ») = 0.8 as desired; information about other reference classes (whether
more general or more specific) is ignored. Other kinds of information are also ignored, for exam-
ple, information about other individuals. Thus, Pr(Hep(Eric)| KB}, A Hep(Tom)) = 0.8. 1

Although it is nothing but an immediate application of Theorem 5.6, it is worth remarking
that the principle of Direct Inference for Defaults (Section 3.3) is satisfied by random-worlds:

Corollary 5.9: Suppose KB implies ||p(Z)|(Z)||z =: 1, and no constant in ¢ appears in KB,
@, or . Then Pro(¢(€)|KB A (€)= 1.

As discussed in Section 3.3, this shows that simple forms of reasoning about classification
hierarchies are possible.

Example 5.10: The knowledge base KBpg, from Section 3.3 is, under our interpretation of
defaults:

|| Fly(z)|Bird(z)||. =1 1 A ||Fly(z)|Penguin(z)||; =2 0 AVz (Penguin(z) = Bird(z)).

Then Pro ( Fly( Tweety) A Penguin( Tweety)) = 0. That is, we conclude that Tweety the
penguin does not fly, even though he is also a bird and birds generally do fly. 1
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Given this preference for the most specific reference class, one might wonder why random
worlds does not encounter the problem of disjunctive reference classes (see Section 2.2). The
following example, based on the example from Section 2.2, provides one answer.

Example 5.11: Recall the knowledge base KB’,ZEP from the hepatitis example above, and
consider the disjunctive reference class ¥(z) =qef Jaun(z) A (—mHep(z) VvV z = Eric). Clearly, as
the domain size grows large, ||Hep(z)|¢(z)||- becomes arbitrarily close to 0.3 Therefore, for
any fixed ¢ > 0

Prog (|| Hep(x) (o) € [0.6] | KB},) = 1.

We can construct a new knowledge base KBy, = KBj,, A ||[Hep(z)|[Y(z)||. € [0,¢]. Fur-
thermore, KBy | (Eric). Hence, KBy, contains a more specific reference class for
Hep(FEric) than Jaun(z) with very different statistics. Yet, by Proposition 5.2, we know that
Pro(Hep(Eric)|KBj,,) = Pro(Hep(Eric)| KByje,), and in Example 5.8 we showed this to be
equal to 0.8. So random worlds avoids using the spurious disjunctive class ¥(z) even in a
knowledge base that explicitly includes statistics from this class. Theorem 5.6 does not apply
here because the class ¥(z) explicitly mentions the constant Eric. Another way of seeing that
the class ¥(z) does not affect the random-worlds computation is to observe that its statistics
are not informative, i.e., these statistics are true in almost all worlds. Hence 1(z)’s statistics
places no constraints on the sets of worlds that determine the degree of belief. As we shall see
in Example 5.22, when we do have informative statistics for a class, those statistics can be used,
even if the class is disjunctive. I

As we have said, we are not limited to unary predicates, nor to examining only one individual
at a time.

Example 5.12: In Example 4.4, we showed how to formalize the elephant-zookeeper example
discussed in Section 3.4. As we now show, the natural representation of KBj;.s indeed yields
the answers we expect. We consider two queries. First, assume that we are interested in
finding out whether Clyde likes Eric. In this case, we can use the class of pairs ¥(z,y) =
Flephant(z) A Zookeeper(y). Applying Corollary 5.9 to the first default in KBj.s, we can
conclude that Pro.(Likes(Clyde, Eric)| KBiites) = 1. Second, we examine whether or not Clyde
likes Fred. Applying Corollary 5.9 to the second default in KByj.s, we can conclude that
Proo(Likes( Clyde, Fred)| KBiites) = 0. Note that we cannot apply Corollary 5.9 to the first
default in KBjjt.s to conclude that Clyde likes Fred. The conditions of the corollary are violated,
because the constant Fred is used elsewhere in the knowledge base. 1

The same principles continue to hold for more complex sentences; for example, we can mix
first-order logic and statistical knowledge arbitrarily and we can nest defaults.

Example 5.13: In Example 4.5, we showed how to express the default: “People who have
at least one tall parent are typically tall.” If we have this default, and also know that
Jy (Child( Alice, y)A Tall(y)) (Alice has a tall parent), Corollary 5.9 tells us that we can conclude
by default that Tall( Alice). I

13This actually relies on the fact that, with high probability, the proportion (as the domain size grows) of
jaundiced patients without hepatitis is nonzero. We do not prove this fact here; see [PV89, GHK93a].
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Example 5.14: In Example 4.6, we showed how the default “Typically, people who normally
go to bed late normally rise late” can be expressed in our language using the knowledge base
KB Let KB}, be

KBiate N || To-bed-late( Alice,y")| Day(y')||, =2 1.
By Corollary 5.9, Alice typically rises late. That is,

Pro. (|| Rises-late( Alice,y)| Day(y)||, ~1 1

I(Bllate) =L

By Cautious Monotonicity and Cut, we can add this conclusion (which is itself a default) to
KBj,;.. By Corollary 5.9 again, we then conclude that Alice can be expected to rise late on

any particular day, say Tomorrow. So, for instance:

Proo( Rises-late( Alice, Tomorrow)| KBj,,, A Day( Tomorrow)) = 1. 1

In all the examples presented so far in this section, we have statistics for precisely the
right reference class to match our knowledge about the individual(s) in question; Theorem 5.6
and its corollaries require this. Unfortunately, in many cases our statistical information is
not detailed enough for Theorem 5.6 to apply. Consider the knowledge base KB}, from the
hepatitis example. Here we have statistics for the occurrence of hepatitis among the class of
patients who are just like Eric, so we can use these to induce a degree of belief in Hep( Eric).
But now consider the knowledge base KB}, A Tall( Eric). Since we do not have statistics for
the frequency of hepatitis among tall patients, the results we have seen so far do not apply. We
would like to be able to ignore Tall( Fric). But what entitles us to ignore Tall( Eric) and not
Jaun(Eric)? To solve this problem in complete generality requires a better theory of irrelevance
than we currently have. Nevertheless, our next theorem covers many cases, including many of
the less controversial examples found in the default reasoning literature.

The theorem we present deals with a knowledge base KB that defines a “minimal” reference
class g with respect to the query ¢(c). More precisely, assume that KB gives statistical
information regarding ||¢(z)|v:(z)||s for a number of different classes ¢;(z). Further suppose
that, among these classes, there is one class 1o(z) that is minimal—all other classes are strictly
larger or entirely disjoint from it. Our result states that if we also know wy(c), we can use
the statistics for ||p(z)|1o(z)]|» to induce a degree of belief in ¢(c). What makes this such
an interesting result is that we are allowed to know more about ¢ than just ¢o(c); any extra
information will be treated as being irrelevant. This pattern of reasoning is best explained using
an example:

Example 5.15: Assume we have a knowledge base KBiyzonomy containing information about
birds and animals; in particular, KByzonomy contains a taxonomic hierarchy of this domain.
Moreover, KB qzon0my contains the following information about the swimming ability of various
types of animals:

||Swims(z)| Penguin(z)||l. ~1 0.9 A
|| Swims(z)|Sparrow(z)||z =2 0.01 A
|| Swims(z)| Bird(z)||» ~3 0.05 A
||Swims(z)|Animal(z)||, =4 0.3 A
|| Swims(z)| Fish(z)||» ~s L.

33



If we also know that Opus is a penguin, then in order to determine whether Opus swims the
best reference class is surely the class of penguins. The remaining classes are either larger (in
the case of birds or animals), or disjoint (in the case of sparrows and fish). This is the case
even if we know that Opus is a black penguin with a large nose. That is, Opus inherits the
statistics for the minimal class ¥g—penguins—even though the class of individuals just like
Opus is smaller than . 11

That random-worlds validates this intuition is formalized in the next theorem. This theorem
requires that no symbol in ¢(z) appear in the knowledge base other than in statistics of the
form ||¢(2)|1(z)|| for various ¥(z). This is necessary for our assumption of a unique minimal
reference class to be a practical one. Suppose that, in violation of this condition, the knowledge
base contains Vz(i)(z) = ¢(z)). Clearly ¥(z) is in fact a reference class for ¢(z) (where the
statistic is 100%). But if we identify reference classes only by looking for terms of the form
ll(z)|9(2)||z, we will not notice this. Obviously the minimality assumption needs to consider
all reference classes, irrespective of syntactic form. But because first-order logic provides many
subtle and nonobvious ways to constrain statistics relating to ¢(z), we simplify the issue by
assuming that the only mention of information that might be related to ¢(z) is contained
in explicit statistical assertions. Of course, it would be very interesting to find a result that
addresses cases in which this assumption is not true.

Theorem 5.16: Let ¢ be a constant and let KB be a knowledge base satisfying the following
conditions:

(a) KB = o(c),

(b) for any expression of the form ||¢(z)|v(z)||. in KB, it is the case that either KB |=
Va(o(z) = P(z)) or that KB |= Va(o(z) = —(z)),

(c) the (predicate, function, and constant) symbols in p(z) appear in KB only on the left-hand
side of the conditionals in the proportion expressions described in condition (b),

(d) the constant ¢ does not appear in the formula ¢(z).
Assume that for all sufficiently small tolerance vectors 7:
KB[7] |= [le(2)|¢o(2)]]s € [a, 5].

Then Pro(p(c)|KB) € |a, §], provided the degree of belief exists.

Proof: See the appendix. I
Again, the following analogue to Corollary 5.7 is immediate:
Corollary 5.17: Let KB’ be the conjunction

do(e) A (a =i [lg(@)|do()ll =5 B)-

Let KB be a knowledge base of the form KB' A KB" that satisfies conditions (b), (c), and (d)
of Theorem 5.16. Then, if the degree of belief exists,

Preo(¢(¢)|KB) € [a, 5],
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This theorem and cor