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Abstract

Evenwhena systemis provento be correctwith respecto a specificationthereis still a question
of how completethe specificationis, and whetherit really coversall the behaiors of the system.
Coverage metricsattemptto checkwhich partsof a systemare actuallyrelevantfor the verification
procesdo succeed.Recentwork on coveragein model checkingsuggestsereral coveragemetrics
andalgorithmsfor finding partsof the systemthatarenot coveredby the specification.The work has
alreadyprovento be effectivein practice detectingdesignerrorsthatescapesarly verificationefforts
in industrial settings. In this paper we relatea formal definition of causalitygiven by Halpernand
Pearl[2005] to coverage. We shaw thatit givessignificantinsightinto unresoledissuesregarding
the definition of coverageand leadsto potentially useful extensionsof coverage. In particular we
introducethe notion of responsibility which assigndo componentsf a systema quantitatve measure
of theirrelevanceto the satishictionof the specification.

1 Intr oduction

In modelcheding, we verify the correctnessf afinite-statesystemwith respecto a desiredoehaior by
checkingwhethera labeledstate-transitiorgraphthat modelsthe systemsatisfiesa specificationof this
behaior [Clarke, Grumbeg, andPeled1999]. An importantfeatureof model-checkindoolsis their abil-
ity to provide, alongwith a negative answerto the correctnessjuery a countergampleto the satishction
of the specificationin the system. Thesecounterg@amplescanbe essentiain detectingsubtleerrorsin
compl designdClarke, Grumbeg, McMillan, andZhao1995]. On the otherhand,whenthe answerto
the correctnessjueryis positve, mostmodel-checkingoolsterminatewith no furtherinformationto the
user Sincea positive answemeanshatthe systemis correctwith respecto the specificationthis may
seento bereasonablatfirst glance.

In thelastfew years however, therehasbeengroving awarenesshatfurtheranalysisnaybenecessary
evenif amodelchecler reportsthata specificationis satisfiedoy a given system.The concernis thatthe
satisfiability may be dueto an errorin the specificationof the desiredbehaior or the modelling of the
systemyatherthanbeingdueto the correctnessf the system.Two mainlinesof researchhave focusedon
techniquedor checkingsucherrors. Oneapproachnvolvesvacuity detection thatis, checkingwhether
the specifications satisfiedfor vacuouseasonsn the model[Beatty andBryant 1994;Beer Ben-David,
Eisner andRodeh1997; Kurshan1998; KupfermanmandVardi 1999;PurandarendSomenzi2002]. One
particularlytrivial reasorfor vacuity is thatthe specificationis valid; perhapanoreinterestingare cases
of antecedentailure or valid/unsatisfiableconstraintsn the system. For example,the branching-time
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specificationAG(req — AFgrant) (every requestis eventually followed by a granton every path)is
satisfiedvacuouslyin a systemwhererequestarenever sent.A specificatiorthatis satisfiedvacuouslyis
likely to pointto someproblemsin themodellingof the systemor its desiredbehaior.

A secondapproachwhich is morethe focus of this paper useswhatis called coverage estimation
Initially, coverageestimatiorwasusedn simulation-basederificationtechniqueswherecoveragemetrics
areusedin orderto reveal stateghat werenot visited during the testingprocedurg(i.e, not “covered” by
this procedure)see[Dill 1998;Peled2001]for suneys. In the context of modelcheckingthis intuition
hasto be modified, asthe processof modelcheckingmay visit all the statesof the systemregardlessof
their relevanceto the satishiction of the specification.Intuitively, a componenbr a stateis covered by a
specification/ if changingthis componenfalsifiesy (see[Hoskote, Kam,Ho, andZhao1999;Chockler
Kupferman,andVardi 2001]). For example,if a specificationrequiresthat AG(req — AFgrant) holds
at aninitial state,andthereis a pathin which reqholdsonly in one state,followed by two statesboth
satisfyinggrant, then neitherof thesetwo statesis coveredby the specification(changingthe truth of
grantin eitheronedoesnot renderthe specificatioruntrue). On the otherhand,if thereis only onestate
on the pathin which grant holds,thenthat stateis coveredby the specification.The intuition is thatthe
presencedf mary uncoreredstatessuggestshat eitherthe specificatiorthe userreally desireshasmore
requirementshanthoseexplicitly written (for example,perhapghe specificationshouldreally requirea
correspondencbetweenthe numberof requestsand grants),or that the systemcontainsredundancies,
and can perhapsbe simplified (for example, perhapsthere shouldbe only a single grant on the path).
This approachhasalreadyproven to be effective in practice,detectingdesignerrorsthat escapesarly
verificationefforts in industrialsettinggHoskote, Kam, Ho, andZhao1999].

Intuitively, coverageconsiderghequestiorof whatcauseghesystemo satisfythe specification Here,
we malkethisintuition preciseoy relatingaformaldefinitionof causalitygivenby HalpernandPearl[2005]
(HP from now on) to coverage.We shaw thatit givessignificantinsightinto unresoled issuesegarding
the definitionof coverage andleadsto potentiallyusefulextensionsof coverage.

The definition of causalityusedby HP, like otherdefinitionsof causalityin the philosophyliterature
going backto Hume[1739], is basedon counterfactualdependenceEssentially event A is a causeof
event B if, had A not happenedthis is the counterfctual condition, since A4 did in fact happenjthen
B would not have happened.Unfortunately this definition doesnot captureall the subtletiesinvolved
with causality (If it did, therewould be far fewer papersin the philosophyliterature!) For example,
supposehat SuzyandBilly both pick up rocksandthron themat a bottle. Suzy’s rock getstherefirst,
shatteringhebottle. Sinceboththrows areperfectlyaccurateBilly’ s would have shatteredhe bottle had
it not beenpreemptedy Suzys throw. (This storyis taken dueto Hall [2004].) Thus,accordingto the
counteractualcondition,Suzys throw is not a causefor shaterringhe bottle. This problemis dealtwith
by HP by, roughly speakingtaking A to beacauseof B if B counterctuallydependsn A undersome
contingenyg. For example,Suzys throw is a causeof the bottle shatteringbecausdhe bottle shattering
counteréctually dependson Suzys throw, underthe contingeng thatBilly doesnt throw. It may seem
thatthis solvesone problemonly to createanother While this allows Suzy’s throw to be a causeof the
bottle shatteringjt alsoseemdo allow Billy’ sthrow to bea causeoo.

Why do mostpeoplethink thatSuzys throw is acauseandBilly’ sis not? Clearly; it is becaus&uzys
throw hit first. As is shavn by HP, in a naive modelthat doesnot take into accountwho hit first, both
Suzys throw andBilly’ s throw arein factcausesBut in a moresophisticateanodelthatcantalk about
thefactthatSuzys thronv camefirst, Suzysthrow is acauseput Billy’ sis not. Onemoralof this example
is that, accordingto the HP definitions,whetheror not A is a causeof B dependsn part on the model
used.Event A canbethe causeof event B in onemodelandnotin another

Like the definitionsof causality the main definitionsof coveragein the literature are inspired by



counterfctualdependenceA states is p-coveredby the specificationy if, hadthe value of the atomic
propositionp beendifferentin states, then would not have beentrue. Theinitial definitionof coverage
[Hoskote, Kam, Ho, andZhao 1999] andits generalizatioChockler Kupferman,andVardi 2001] can
be understoodn termsof causality The variantdefinition of coverageusedin the algorithmproposedy

Hoslote et al. [1999], which the authorssayis “less formal but meetsour intuitions better”, canalsobe
describedasaninstanceof causality In fact, the variantdefinition canbe capturedusingideassimilar to

thoseneededo dealwith theSuzy-Billy story Forexample thedistinctionmadeby Hosloteetal. between
thefirst positionin which aneventualityis satisfiedandlaterpositionsin which the eventualityis satisfied
is similar to the distinctionbetweenSuzy whoserock getsto the bottle first, andBilly, whoserock gets
therelater

Coverage like causality is an all-or-nothing notion. Either A is a causeor B or it is not; similarly,
eithera states is p-coveredby a specification/ or it is not. In acompaniorpaper ChocklerandHalpern
[Chockler and Halpern2004] (CH from now on) introducedan extensionof causalitycalled degree of
responsibilitythatallows usto do a morefine-grainedanalysisof causality Here,we shav how degreeof
responsibilityleadsto usefulinsightsin the appliedin the contet of coverageaswell.

To understandhe notion of degreeof responsibility let usreturnto SuzyandBilly, and considera
scenarian which their rocksgetto the bottle at exactly the sametime. Accordingto the HP definition,
bothSuzyandBilly arecause®f thebottleshatteringfor example thebottle shatteringdependsounter
factuallyon Suzys throw if Billy doesnotthrow). However, thereseemdo be a differencebetweenthis
scenaricandonewhereSuzyis the only onewho throws a rock at the bottle. We would like to saythat
SuzyandBilly eachhave someresponsibilityfor the bottle beingshatteredf they boththrow, while Suzy
bearsmoreresponsibilityif sheis the only onethatthrowns arock. And if, insteadof just SuzyandBilly,
thereare 100 childrenall throwing rocksat the bottle, hitting it simultaneouslywe would like to saythat
eachchild is lessresponsibldor thebottle beingshatteredhanin the caseof SuzyandBilly andtheirtwo
rocks. The CH definitionof responsibilitycaptureghis intution.

The notion of responsibilityis quite relevant in the contet of coverage. Considerfor examplethe
specificationEXp. Thereseemdo be a qualitative differencebetweera systemwheretheinitial statehas
100 successorsatisfyingp andonewherethereareonly two successorsatisfyingp. Although,in both
casesno stateis p-coveredby the specificationjntuitively, the stateshatsatisfyp play amoreimportant
role in the casewherethereareonly two of themthanin the casewherethereare 100 of them. Thatis,
eachof thetwo successoris moreresponsibldor thesatishctionof £ X p thaneachof thel00successors.

According to the CH definition, the degree of responsibilityof a states for a specificationy is a
numberbetweerD andl. A states is coveredby specificationy iff its degreeof responsibilityfor v is 1;
thevalueof s is a causeof ¢’ beingtrueif the degreeof responsibilityof s for ¢ is positve. A degree0
of responsibilitysaysintuitively that s playsno role in making true; a degreeof responsibilitystrictly
betweerD and1 saysthats playssomerole in makings true, evenif s by itself failing will not make v
false.For example,if the specificatioris EXp andtheinitial statehastwo successorarherep is true,then
thedegreeof responsibilityof eachonefor EXp is 1/2; if thereareonehundredsuccessoraherep is true,
thenthe degreeof responsibilityof eachoneis 1,/100.

Theissueof responsibilitypbecomegparticularlysignificantwhenoneconsiderghatanimportantrea-
sonthat a statemight be uncoveredis dueto fault tolerance.Here, one checksthe ability of the system
to copewith unexpectedhardware or softwarefaults,suchasa power failure, alink failure, or a Byzan-
tine failure [Lynch 1996]. It is often the casethat fault toleranceis achiezed by duplication,so that if
onecomponenfails, anothercantake over. Accordingly in this analysisredundancies the systemare
welcome:a statethat is coveredrepresents single point of failure; if thereis somephysicalproblem
or software problemthatinvolvesthis state thenthe specificatiorwill not be satisfied.To increasdault



tolerance we want statesto be uncovered. On the otherhand,we still want statesto somehav “carry
their weight”. Thus,from the point of view of fault tolerancewhile having a degreeof responsibilityof
1is notgood,sinceit meansa singlepoint of failure,a degreeof responsibilityof 1/100 implies perhaps
unnecessargedundang

Anotherareain formal verificationwherethe studyof causalityhasbeenappliedis explaining coun-
terexamples.Groceetal. introduceanotionof error explanation basedn counterfictualcausalityfGroce,
Chaki, Kroening,andStrichman). In their framework, a counter@gamplerepresentedsa traceof a pro-
gramis comparedo a goodtracethatis closesto this errortraceaccordingto somedistancemetric. The
differencebetweenthe errortraceanda goodtraceis consideredh causeof the error Sincetherecanbe
mary closesigoodtracesjt seemghatcomputingthe degreeof responsibilityof eachchangén causinga
traceto beanerrorcancontritute to our understandingf a givenerrortrace.

The restof this paperis organizedasfollows. We review the HP definition of causalityandthe CH
definition of responsibilityin Section2, aswell asthe temporallogic CTL usedin modelchecking.The
formal definitionsof responsibilityand causalityare a little complicated. Thus, we provide somavhat
simplerdefinitionsthatareappropriatdor Booleancircuits. This settingarisesnaturallyin the automata-
theoreticapproactto branching-timenodelcheckingasshavn in [KupfermanVardi,andWolper2000].
In Section3 we formally relatethe definitionsof causalityandresponsibilityto coverageestimationand
shav that variousdefinitionsof causalityfrom the literaturecanbe relatedto variousdefinitionsof cov-
erageusedin theliterature.We considercompleity-theoreticissuesn Sectiond. For acomplity class
A, FPAllegn] consistof all functionsthatcanbe computedby a polynomial-timeTuring machinewith an
oraclefor aproblemin A, which oninputa asksatotal of O(log |x|) queries(cf. [Papadimitriou1984]).
Eiter andLukasievicz [2002a]shawv thattestingcausalityis X4’ -complete;CH shav thatthe problemof
computingresponsibilityis Fp5 llog "l_complete Wefocushereon simplerversionsof theseproblemshat
aremorerelevantto coverage.We shov that computingthe degreeof responsibilityfor Booleancircuits
is FPYPllozn]_complete. (It follows from resultsof Eiter andLukasievicz thatthe problemof computing
causalityin Booleancircuitsis NP-complete. WWe thenconsiderspecialcase®f theproblemthataremore
tractableandarisenaturallyin the context of coverage Proofsof theoremsaregivenin theappendix.

2 Definitions and Notation

In this sectionwe review the HP definitionof causalityandthe CH definitionof (degreeof) responsibility
We startwith an overvien of the generalframewnork of causality Then, we amguethat sincemodelsin
formal verificationare binary, it is sufficient to studythe significantly simplerversionsof causalityand
responsibilityfor binarymodels(seg[Eiter andLukasiavicz 2002b]for the simplificationof the definition
of causalityfor the binary case).However, we stressthat the restrictionto binary modelsis beingmade
for expositorypurpose®nly; all thedefinitionsmake perfectsensen non-binarymodels.We alsopresent
the definitionsof causalityandresponsibilityfor Booleancircuits andamguethat binary recursve causal
modelsare equivalentto Booleancircuits. We use Booleancircuits in our algorithmsfor computing
responsibilityin modelcheckingandwe justify this choicein Section3.3. We definesomebasicconcepts
from modelcheckingin Section2.3.

2.1 The generalframework of causality

In this sectionwe review the detailsof the HP definition of causalityandthe CH definitionof responsibil-
ity.
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Figurel: Therock-thraving example.

A signatue is atupleS = (U, V, R), wherel{ is a finite setof exagenousvariables,V is a setof
end@enousvariables,andthe functionR : 4/ UV — 2P associatesvith every variableY ¢ /U V a
nonemptysetR(Y) of possiblevaluesfor Y from the rangeD. Intuitively, the exogenousvariablesare
oneswhosevaluesaredeterminedy factorsoutsidethe model,while the endogenousariablesareones
whosevaluesare ultimately determinecdby the exogenousrariables.A causalmodelover signatureS is
atuple M = (S, F), whereF is a function that associatesvith every endogenousariable X € V a
function Fx suchthat Fly : (xpeyyR(U)) X (Xyey\(x3R(Y)) — R(X). Thatis, Fx describeshow
thevalueof the endogenousariable X is determinedy the valuesof all othervariablesn ¢/ U V. If the
rangeD containsonly two values,we saythat M is abinary causalmodel

We candescribgsomesalientfeaturesof) a causaimodel M usinga causalnetwork Thisis agraph
with nodescorrespondingo therandomvariablesin V andanedgefrom anodelabeled X to onelabeled
Y if thefunction £y depend®nthevalueof X. Intuitively, variablescanhave acausakffectonly ontheir
descendantm the causalnetwork; if Y is notadescendamf X, thena changen thevalueof X hasno
affectonthevalueof Y. For easeof exposition,we restrictattentionto whatarecalledrecusivemodels.
Theseare oneswhoseassociatedausalnetwork is a directedagyclic graph(thatis, a graphthathasno
cycle of edges)For acausaimodel M, a contet « assigngo eachexogenousariable(i.e., variablein )
avaluein thedomain.If M is arecursve causaimodel,thengivena contet u, thevaluesof endogenous
variablesareuniquelydeterminedy equationsn F.

The equationgeterminedoy { F'x : X € V} canbethoughtof asrepresentingrrocessegor mech-
anisms)by which valuesare assignedo variables. For example,if Fx(Y,Z,U) = Y + U (which we
usuallywrite as X = Y + U), thenif Y = 3 andU = 2, thenX = 5, regardlessof how Z is set. This
eguationalsogives counterfictualinformation. It saysthat, in the context U = 4, if Y were4, then X
would beu + 4, regardlesof whatvalue X, Y, andZ actuallytake in therealworld.

While the equationgor a given problemaretypically obvious,the choiceof variablesmaynotbe. For
example,considerthe rock-thraving examplefrom the introduction. In this case,a naive modelmight
have an exogenousvariable U that encapsulatesvhatever backgroundfactorscauseSuzy and Billy to
decideto throw therock (the detailsof I/ do not matter sincewe areinterestednly in the context where
U’svalueis suchthatboth SuzyandBilly throw), a variableSTfor Suzythrows (ST= 1 if Suzythrows,
andST = 0 if shedoesnt), avariableBT for Billy throws, anda variable BS for bottle shatters.In the
nave model,BS is 1if oneof STandBTis 1.

This causalmodeldoesnot distinguishbetweenSuzy andBilly’ s rocks hitting the bottle simultane-
ouslyandSuzys rock hitting first. A moresophisticateanodelis the onethattakesinto accountthe fact
thatSuzythrowsfirst. It mightalsoincludevariablesSHandBH, for Suzysrock hitsthebottleandBilly’ s
rock hits the bottle. Clearly BSS is 1 iff oneof BH andBT is 1. However, now, SHis 1 if STis 1, and
BH = 1if BT = 1 andSH= 0. Thus,Billy’ sthrow hitsif Billy throws and Suzysrockdoesnt hit. This
modelis describedby the following graph,wherethereis anarrov from variable X to variableY if the
valueof Y dependon thevalueof X. (The graphignoresthe exogenousvariablelU, sinceit playsno
role.)

Given a causalmodel M = (S,F), a (possiblyempty)vector)? of variablesin V, andvectorsz



and# of valuesfor the variablesin X and/, respectiely, we candefinea new causalmodeldenoted
Mg _ . overthesignatureSy = (U,V — X’Rh}—)})- Formally, M¢__ = (Sg, FX %), where F{f =%
is obtainedfrom Fy- by settingthe valuesof the variablesin X to Z. Intuitively, this is the causalmodel
thatresultswhenthevariablesin X aresetto # by someexternalactionthataffectsonly thevariablesin
X; wedonotmodeltheactionor its causesxplicitly. For example,if M is themoresophisticateanodel

for therock-thraving example, thenM g1 is themodelwhereSuzydoesnt throw.

GivenasignatureS = (U, V, R), aformulaof theform X = z, for X € V andz € R(X), is called
aprimitive event A basiccausalformulais oneof theform [Y; <« y1, ..., Yr < yi]®, where

e ¢ is aBooleancombinationof primitive events;
e Y},..., Y} aredistinctvariablesn V; and
e y; € R(Y5).

Suchaformulais abbreviatedas[? — y]e. Thespecialcasewherek = 0 is abbreviatedas. Intuitively,
Y1 < 1,..., Y < yi]p saysthaty holdsin the counterfctualworld thatwould ariseif Y; is setto y;,
i=1,...,k. A causalformulais aBooleancombinationof basiccausaformulas.

A causalformulay is true or falsein a causalmodel,givena context. We write (M, %) |= ¢ if © is
truein causalmodel M givencontet @. (M, @) |= [Y — ¢](X = 2) if thevariableX hasvaluez in
the unique(sincewe aredealingwith recursve models)solutionto the equationsn Mﬁ_ﬁ in context
(thatis, the uniquevectorof valuesfor the exogenousvariablesthatsimultaneouslhgatisfiesall equations

F}/*ﬁ, ZecV— Y’, with thevariablesn i/ setto «). We extendthe definitionto arbitrarycausaformulas
in the obviousway.

With thesedefinitionsin hand,we cangive the HP definitionof causality

Definition 2.1 (Cause) We saythat)? = 72 is a causeof ¢ in (M, w) if the following three conditions
hold:

ACl. (M, ) = (X = %) A .

4

AC2. Thek exist a partition (Z, W) of V with X C Z and somesetting(#, @) of the variablesin
(X, W) sudthatif (M,u) |= Z = z* for Z € Z, then

@) (M, %) = [X — &, W «— &'|~¢. Thatis, changing(X, W) from (z, %) to (&, &) changes
@ fromtrue to false

(b) (M%) = [X — & W — ,Z" — z*|¢ for all subsetsZ’ of Z. Thatis, settingW to
w’ shouldhaveno effecton ¢ aslong as X hasthe value#, evenif all the variablesin an
arbitrary subsebf 7 are setto their original valuesin the context .

AC3. ()? = &) is minimal,thatis, no subsebf X satisfiesAC2.

ACl1justsaysthat A cannotbea causeof B unlessboth A and B aretrue,while AC3is a minimality
conditionto prevent, for example,Suzythrowing the rock andsneezingrom beinga causeof the bottle
shattering Eiter andLukasievicz [2002b]shavedthatoneconsequencef AC3is thatcausesanalways
be taken to be single conjuncts. The core of this definitionlies in AC2. Informally, the variablesin A
shouldbe thoughtof asdescribingthe “active causalprocessfrom X to . Thesearethe variablesthat



mediatebetweenX andy. AC2(a)is reminiscentof the traditional counterfctual criterion. However,
AC2(a)is morepermissie thanthe traditionalcriterion; it allows the dependencef ¢ on X to betested
underspecialstructurl contingencies in which the variablesW are held constantat somesettingw’.
AC2(b)is anattemptto counteracthe“permissveness’of AC2(a)with regardto structuralcontingencies.
Essentially it ensureshat X alonesuficesto bring aboutthe changefrom ¢ to —; settingW to '
merelyeliminatesspurioussideeffectsthattendto maskthe actionof X.

To understandherole of AC2(b), considerthe rock-thraving exampleagain. Looking at the simple
model,it is easyto seethatboth SuzyandBilly arecause®f the bottleshatteringTakingZ = {ST,BS},
considetthe structuralcontingeng whereBilly doesnt throw (BT = 0). Clearly[ST« 0,BT «+ 0|BS =
0 and[ST «+— 1,BT « 0|BS = 1 bothhold, so Suzyis a causeof the bottle shattering. A symmetric
agumentshavs thatBilly is alsothe cause.

But now considetthemodeldescribedn Figurel. It is still thecasethatSuzyis a causen thismodel.
We cantake Z — {ST, SH, BS} andagainconsiderthe contingeng whereBilly doesnt thron. However,
Billy is notacauseof thebottleshattering For supposéhatwe now take Z = {BT, BH, BS} andconsider
the contingeng whereSuzydoesnt throw. Clearly AC2(a)holds,sinceif Billy doesnt thronv (underthis
contingeng), thenthebottledoesnt shatter However, AC2(b)doesnothold. SinceBH ¢ Z, if we setBH
to O (it's original value),thenAC2(b)requireghat [BT + 1, ST+ 0,BH « 0](BS = 1) hold, but it does
not. Similar agumentsshav thatno otherchoiceof (Z, W) malesBilly’ s throw acause.

The definition of responsibilityrefinesthe “all-or-nothing” conceptof causalityby measuringhe de-
greeof responsibilityof X = 2 for the truth valueof ¢ in (M, ). We give hereonly the definition of
responsibilityfor binarymodels.

Definition 2.2 (Responsibility) The degree of responsibilityof X = « for the value of ¢ in (M, i),
denoteddr((M,u), X = z,¢), is0if X = x is nota causeof ¢ and otherwiseis 1/(|W| + 1), whee
W C V isthesmallestsetof variablesthat satisfieshe conditionAC2 in Definition2.1.

Thus, the degreeof responsibilitymeasureshe minimal numberof changeghat have to be madein
« in orderto make ¢ counteréctuallydependon X. If X = z is nota causeof ¢ in (M, «), thenthe
minimal setW in Definition 2.2 is taken to have cardinality oo, andthusthe degreeof responsibilityof
X =z is0. If ¢ counteractuallydepend®on X = 2, thenits degreeof responsibilityis 1. In othercases
the degreeof responsibilityis strictly betweerD and1. Notethat X = z is a causeof ¢ iff the degreeof
responsibilityof X = 2 for thevalueof ¢ is greaterthano0.

2.2 Causality and responsibility in Booleancir cuits

In this sectionwe considermnimportantsettingin whichto considercausalityandresponsibility:Boolean
circuits. A Booleancircuit is just a representationf a propositionaformula, wherethe leavesrepresent
atomicpropositionsaandtheinterior nodesepresenthe Booleanoperations-, A, andv. Givenanassign-
mentof valuesto theleaves,thevalueof therootis thevalueof theformula. Withoutlossof generalitywe
assumehatpropositionaformulasarein positivenormalform, sothatnegationis appliedonly to atomic
propositions.(Corverting a formulato anequialentformulain positve normalform at mostdoublesthe
lengthof theformula.) Thus,in the Booleancircuit, negationsoccuronly atthelevel abore theleaves. We
alsoassumewvithoutlossof generalitythatall A andyv gatesn a Booleancircuit arebinary

Letg : {0,1}" — {0, 1} beaBooleanfunctionon n variables,andlet C be a Booleancircuit that

computegy. As usual,we saythatacircuitC is monotondf it hasno negationgates.We denoteby X the
setof variableof C. A truthassignmeny tothesetX isafunctionf : X — {1,0}. Thevalueof agatew



of C underanassignmeny is definedasthe valueof the function of this gateunderthe sameassignment.
Thus,we canextendthe domainof f to all gatesof the circuit. For anassignmenf andavariable X, we
denoteby fy thetruth assignmenthatdiffersfrom f in thevalueof X. Formally, fx(Y) = f(Y") for all
Y # X, andfx(X) = ~f(X). Similarly, for asetZ C X, f is thetruth assignmenthatdiffersfrom f
in the valuesof variablesin 7.

It is easyto seethat Booleancircuits are a specialcaseof binary causalmodels,whereeachgateof
the circuit is a variableof the model,andvaluesof inner gatesare computedbasedon the valuesof the
inputsto the circuit andthe Booleanfunctionsof the gates.A contet « is a settingto theinput variables
of thecircuit. For theeaseof presentationywe explicitly definethenotionof criticality in Booleancircuits,
which captureghe notionof counteffactualcausaldependence.

Definition 2.3 Considera Booleancircuit C over the set X of variqbles,an assignmentf, a variable
X € X, andagatew of C. We saythat X is critical for w under f if fx(w) = —f(w).

If avariableX is critical for theoutputgateof a circuitC, changinghevalue X alonecauseschange
in thevalueof C. If X is not critical, changingits value alonedoesnot affect the valueof C. However,
it might bethe casethatchangingthe valueof X togethemwith several othervariablescauses changdan
thevalueof C. Fortunatelythe definitionsof causeandresponsibilitycanbe easilyre-writtenfor Boolean
circuits,wherethe only causaformulaswe considerarethe formulasof the gates.

Definition 2.4 Considera Booleancircuit C over the set X of variables,an assignmentf, a variable
X € X, andagatew of C. A (possiblyempty)setZ C X \ {X} makesX critical for w if f(w) = f(w)
and X is critical for w underfz. (Thevalueof) X is a causeof (the valueof) w if ther is someZ that
males X critical for w.

Similarly, we canrewrite the definition of responsibilityfor Booleancircuitsin thefollowing way.

Definition 2.5 (Degreeof Responsibility) Considera Booleancircuit C overtheset X of variables,an
assignmeny, a variable X € X, anda gatew of C. Thedeagreeof responsibilityof (thevalueof) X for
(thevalueof) w under f, denotedir(C, X, w, f),is 1/(1+|Z|), whee Z C X \ {X} isa setof variables
of minimal sizethatmakes X critical for w underf.

Thus,dr(C, X, w, f) measureshe minimal numberof changeghathave to bemadein f in orderto
male X critical for w. If nosubsetZ C X \ {X} makesX critical for w under, thenthe minimal set
Z in Definition 2.5 is taken to have cardinality co, andthusthe degreeof responsibilityof X is 0. If X
is critical for w under f, thenits degreeof responsibilityis 1. In othercaseghe degreeof responsibility
is strictly between0 and1. We denoteby dr(C, X, f) the degreeof responsibilityof X for the value
of the outputgateof C. For example,if f is the assignmenthat gives all variablesthe value 1, then
dr(X; V X, X1, f) = 1/2, while dr(\V}%] X;, X1, f) = 1/100. For anotherexample,considera circuit
C=(XANY)V(XANZ)V(YANZ)V (X AU). Thatis, eithertwo out of threevariablesX, Y, andZ
shouldbe assigned., or X andlU shouldbe assigned in orderfor C to have thevalue 1. Consideran
assignmenf; thatassignsll variablesthevaluel. Then,dr(C, X, f1) = 1/3, sincechangingthe value
of two out of threevariablesY’, Z, andUU doesnot affectthevalueof C, but changingthevalueof two out
of threevariablesy’, Z, andU togethewith X falsifiesC. Now consideranassignmeny, thatassigng’,
Z,andU thevaluel, and X thevalue0. Clearly changingthe valueof X from 0 to 1 cannotfalsify C,
thusdr(C, X, f2) = 0. Finally, consideranassignmenfs thatassignsX andY thevaluel, andZ andU
thevalue0. In this casechanginghevalueof X alonefalsifiesC, sodr(C, X, f3) = 1.



Remark 2.6 We note that while we definethe degree of responsibilityfor a specificcircuit, in factits
value dependssolely on the Booleanfunction that is computedby the circuit andis insensitve to the
circuit structure.Thus,degreeof responsibilityis a semanticmotion, nota syntacticone. L]

2.3 Thetemporal logic CTL: areview

We briefly review thetemporalogic CTL here;seg[EmersorandClarke 1982]. GivenasetA P of atomic
propositionsthe setof CTL formulasover AP is the leastsetthatincludestrue, false, and AP, and
is closedunderpropositionalconnecties,the unarymodaloperatorsEX, andthe binary modaloperators
AU and EU. We typically write AU and EU usinga modifiedinfix notation;thus,if ¢ and« areCTL
formulas,thensoare —p, ¢ Ay, EXp, A(pUy) and E(pUy). We take AXp, AGyp, and EGy as
abbreiationsfor - E X —p, = E(truel/—y), and—-A(truel —y), respectiely.

Wedefinethesemantic®f CTL with respecto Kripke structues A KripkestructureX = (AP, W, R, Wiy, L)
consistsof a set AP of atomicpropositionsa setW of statesa total transitionrelation R C W x W,
aninitial statew;,, € W, andalabelingfunction L : W — 247, For (w,w') € R, we saythatw’ is a
successoof w. A computatiorof aKripke structureds aninfinite sequencer = wyg, w1, . . . of statessuch
thatfor all i > 0, the statew; 1 is a successoof w;. We definethe size| K| of a Kripke structureK as
|W| + |R|. WeuseK,w |-~ ¢ toindicatethata CTL formula¢ holdsat statew of K. When K is knowvn
from the context we omit it andwrite w |= ¢. Therelation= is inductively definedasfollows.

e Forall w, we havethatw |~ true andw |/ false.

For anatomicpropositionp € AP, wehave w |= p iff p € L(w) andw = —p iff p & L(w).
w | iff w £ .

wEYVeiffwEyYorw = .

w = E X1 iff thereexistsasuccessow’ of w suchthatw’ |= .

w = EYUg iff thereexists a computationm = wq, w1, . .. suchthatwy, = w andthereisi > 0
suchthatw; |= ¢ andfor all 0 < j < 4, we have w; |= 9.

w = AyUy iff for all computationsr = wq, w1, . . . suchthatwy = w, thereexistsi > 0 suchthat
w; |= ¢ andforall 0 < j < i, wehave w; |= 9.

Let[l¢llx = {s € K : (M, s)l¢|y denotethesetof stateshatsatisfyy in Kripke structurek’. A Kripke
structureK satisfiesa formula g, denotedK = ¢ iff ¢ holdsin theinitial stateof K. The problemof
determiningwhetherK satisfiesy is the model-©ieding problem.

3 Coverage,Causality, and Responsibility in Model Checking

In this sectionwe shav how thinking in termsof causalityandresponsibilityis usefulin the studyof cov-
erageIn Section3.1we shav thatthe mostcommondefinitionof coveragen modelcheckingconformsto
thedefinitionof counteffactualcausalityanddemonstratéow the coverageinformationcanbeenhanced
by thedegreesof responsibilityof uncoseredstatesln Section3.2we discusotherdefinitionsof coverage
thatarisein theliteratureandin practiceanddescribehow they fit into the framavork of causality



3.1 Coveragein the framework of causality

The following definition of coverageis perhapsthe most naturalone. It arisesfrom the study of mu-
tant coverage in simulation-basederification[Millo, Lipton, andSayward1978;Millo andOffutt 1991;
AmmannandBlack 2001], andis a commonapproachbothin simulation-basederificationin industry
[DeMillo, Lipton, andSayward1978;Budd 1981; Budd andAngluin 1982;Bieman,Dreilinger, andLin
1996;Zhu, Hall, andMay 1997]andin formal verification[Hoskote, Kam, Ho, andZhao1999;Chockler
Kupferman,andVardi 2001; Chockler Kupferman Kurshan,andVardi 2001; ChocklerandKupferman
2002; JayakumarPurandareand Somenzi2003]. For a Kripke structure, an atomic propositiong,
anda statew, we denoteby f(w,q the Kripke structureobtainedfrom K by flipping the valueof ¢ in w.
Similarly, for a setof states7, f(z”,q is theKripke structureobtainedirom K by flipping thevalueof ¢ in
all statesn 7.

Definition 3.1 (Coverage) Considera Kripke structue K, a specificationp thatis satisfiedn K, andan
atomicpropositiong € AP. A statew of K is g-coveredby ¢ if K,, , doesnot satisfy.

It is easyto seethatcoveragecorrespond$o the simplecounterctual-dperdence approacho causal-
ity, wheregq is the only variablein V. Indeed,a statew of K is g-coveted by ¢ if ¢ holdsin K andif ¢
hadothervaluein w, theny would not have beentrue in K. The following exampleillustratesthe no-
tion of coverageandshaws thatthe countesfactualapproacho coveragemissessomeimportantinsights
in how the systemsatisfiesthe specification.Let K be a Kripke structurepresentedn Figure 2 andlet
p = AG(req — AFgrant). It is easyto seethat K satisfiesp. Statew is grant-coveredby ¢. Onthe
otherhand stateaw,, ws, w4, andws arenotgrant-covered,asflipping thevalueof grant in oneof them
doesnot falsify ¢ in K. Note thatwhile the valueof grant in statesw,, ws, andw, playsarole in the
satishctionof ¢ in K, thevalueof grant in ws doesnot.

req grant

OaO)

grant grant grant

Figure2: Statesws, w3, andw, arenotcoveredby AG(req — AFgrant), but have degreeof responsi-
bility 1/3 for its satishction.

Onewayto capturehis distinctionis by usingcausalityratherthancoverage.Thefollowing definition
is obtainedby translatingDefinition 2.1to the settingof modelchecking.

Definition 3.2 Considera Kripke structue K, a specificatiorky that is satisfiedin K, and an atomic
propositiong € AP. A statew is a causeof ¢ in K with respecto ¢ if ther existsa (possiblyempty)
subsebf statesY’ of K suc thatflippingthevalueof ¢ in Y doesnotfalsify ¢ in K, andflippingthevalue
of ¢ in bothw andY falsifiesy in K.

In Figure 2, we describea Kripke structureK in which the statesws, ws, w4, andw, are causef
AG(req — AFgrant) in K with respecto grant,while wjs is nota cause Thisreflectsthefactthatwhile



thevalueof grantis critical for the satishictionof ¢ only in the statew, in statesws, ws, andw, thevalue
of grantalsohassomeeffect onthevalueof ¢ in K. It doesnot, however, give usa quantatie measure
of this effect. Sucha quantatie measures provided usingthe analoguenf responsibilityin the context of
modelchecking.

Definition 3.3 Considera Kripke structue K, a specificationy that is satisfiedin K, and an atomic
propositiong € AP. Thedegreeof g-responsibilityof astatew for ¢ is 1/(]Z] + 1), whee Z is a subset
of statesof K~ of minimalsizesuc that K ; . satisfiesp andw is g-coveredby p in K .

In the Kripke structuredescribedn Figure?2, statesws, ws, andw, have degreeof responsibilityl /3
for the satishctionof AG(req — AFgrant), statews hasdegreeof responsibility0, and statew; has
degreeof responsibility1, all with respecto theatomicpropositiongrant.

Assigningto eachstateits degreeof responsibilitygivesmuchmoreinformationthanthe yes/noan-
swerof coverage.Coveragedoesnotdistinguishbetweerstateghatarequiteimportantfor the satishiction
of thespecificationeventhoughnotessentiafor it, andthosethathave verylittle influenceonthesatishc-
tion of the specificationresponsibilitycando thiswell. Thisis particularlyrelevantfor specificationghat
implicitly involve disjunctions,suchasformulasof the form EXy» or EF. Suchspecificationgypically
resultin mary uncoveredstates.Usingresponsibilitygivesa senseof how redundansomeof thesestates
really are. Moreover, aswe obsered in the introduction,ary degreeof redundang in the systemauto-
matically leadsto low coverage.On the otherhand,for fault tolerance we may actuallywantto require
that no statehasdegreeof statehigherthan,say 1/3, thatis, every stateshouldbe bacled up at least
twice. Thus,thedeagreeof g-responsibilityof a statew for ¢ refinesthe binarydefinition of coverage:the
smallerthe degreeof responsibility the lesscoveredthe state.In the contet of faulttolerancethe degree
of responsibilityindicatestheresistanc®f the systento faults: the smallerthe degreeof responsibilityof
anelementthe moretolerantthe systemis to its failure.

Remark 3.4 Definition 3.1hasbeenextendedo capturereachedefinitionof coveragelike code branch,
and assertioncoverage[Chockler Kupferman,and Vardi 2003]. The extensioninvolves the notion of
vacuity coverage, wherea statew is ¢g-coveredif f(w,q doessatisfy, but it doessoin a vacuousway
[Beer, Ben-David, Eisner and Rodeh2001; Kupfermanand Vardi 2003]. The refinementof vacuity to
responsibilityin Definition 3.3 appliesalsoto vacuity coverage. ]

In the contet of the error explanation,counterfctualcausalityis usedto helpin explaininganerror
[Groce,Chaki, Kroening,andStrichman]. In this contet, responsibilitycanbe usedto find primary (or
“root”) causef errors. For a given errortracer, the degreeof responsibilityof aline [ in the codein
causingr to falsify the specificationindicateshow important/ is for creatinganerror Lineswith alow
degreeof responsibilityaremorelik ely to besecondargausesthatis, causeshatdisappeawhentheroot
causedor theerroraretaken careof.

3.2 Other definitions of coverage

In the previous sectionwe shaved that the definition of coverageusedmost oftenin the literaturecan
be capturedin the framavork of causality Thereis anotherdefinition for coveragegiven in [Hoskote,
Kam, Ho, andZhao 1999] that, while basedon mutations,is sensitve to syntax. Thus,accordingto this
definition,w may g-cover ¢ but not g-cover ¢/, althoughy andy’ aresemanticallyequivalentformulas.
The justificationfor suchsyntacticdependencies that the way a userchoosego write a specification



carriessomeinformation. (Recallthatthe sameissuearosein the caseof Booleancircuits, althoughthere
we offereda differentjustificationfor it.) The variantdefinition given by Hoslote et al. [1999] hastwo

significantadvantagesit leadsto aneasiercomputationaproblem,andit dealsto someextentwith thefact
thatvery few statesare coveredby eventualityformulas,which implicitly involve disjunction.Moreover,

accordingo Hoskoteetal., thedefinition“meetsour intuitions better”.

RoughlyspeakingHoslote etal. s definitiondistinguishebetweerthefirst statewhereaneventuality
is fulfilled and otherstateson the path. Thatis, if an eventuality ¢ is first fulfilled in a statew in the
original systemandis no longerfulfilled in w in the mutantsystemobtainedby flipping the valueof ¢ in
somestatev, thenv is saidto beg-coveredby ¢, evenif ¢ is still satisfiedn the mutantsystem.

This specialdefinitionof coverageeadsto analgorithmin which a specificationy is transformedo a
new specificationtrans, () thatmayincludea freshatomicpropositiong’. Then,coverageis computed
with respectto ¢’ by trans,(¢) in the Kripke structureK”’ that extendsK by definingq’ to be true at
exactly thesamestatesasq. We do notgive thefull definitionof ¢rans, here(see[Hoskote,Kam,Ho, and
Zhao1999]); however, to give theintuition, we shav how it worksfor universaluntil formulas.Assuming
thattrans, hasbeenrecursvely definedfor ¢ andy, let

transq(A(pUy)) = Altranso(p)Uy] A Al(@ A —p)Ulransq(¥)],

wheretrans,(q) = ¢', for somefreshatomic propositiong’, and trans,(p) = p if p # ¢. Thus,for

example,trans,(A(pUq)) = A(pUq) A (A(p A —q)U¢’). It is nothardto seethatif K satisfiesA(pUq),

thenHosloteetal. saythatw is g-coveredby A(pUq) iff w is thefirst statewheregq is truein somepathin

K. Forexample let K beaKripke structurethatconsistof asinglepathm = wg, w1, wo, . . ., andassume
thatwy andw; aretheonly statesvherep is true andthatw; andw, arethe only stateswhereq is true.

Thenthe specificationp = A(pUyq) is satisfiedin K andneitherw; norws is ¢-coveredby ¢. Notethat
 is fulfilled for thefirst time in w; andthatif weflip ¢ in w1, wy, nolongerfulfils the eventuality Thus,
wq is saidby Hoslote etal. [1999]to be g-coveredby .

While the intuitivenesof this interpretationof coverageis debatableit is interestingto seethatthis
requirementanbe representeth the frameavork of causality Intuitively, the eventuality beingfulfilled
firstin w; is muchlike Suzys rock hitting the bottlefirst. And justasin thatexample thekey to capturing
theintuition is to addextravariableghatdescribavheretheeventualityis first fulfilled. Thus,weintroduce
two additionalvariablescalledF1 (“eventualityis first fulfilled in w; ") andF2 (“eventualityis first fulfilled
in w2"). This givesusthecausaimodeldescribedn Figure3.

(o)A a)—r

w1 wa \

@

wo /
(o) F1

w1

Figure 3: The causeof A(pUq) beingtrue in K is takento be the first placewherethe eventualityis
fulfilled.

Hoslote et al.s definition of coveragefor eventuality formulascanbe viewed as checkingwhether
aneventualityformulais satisfied'in the sameway” in the original modelandthe mutantmodel. Only a
fragmentof theuniversalsubsebf CTL is dealtwith by Hosloteetal., but thisapproacttanbegeneralized
to dealwith otherformulasthatcanbe satisfiedin severalways. For example,a specificationy = EXp



is satisfiedn aKripke structureK if thereexistsatleastonesuccessoof theinitial statew, labeledwith

p. If we wantto checkwhethery is satisfiedin a mutantstructurek” in the sameway it is satisfiedin

the original systemK, we introducea new variable X, for eachsuccessot of wg andwe assignl to

X, iff w is labeledwith p. Thenwe replacemodelcheckingof ¢ in mutantsystemdy modelchecking
of ¥ = Awesucc(uwo) bws Wherely, is X, if X,, = 1 andis ~.X,, otherwise. Clearly a mutantsystem
satisfieg)’ iff themutationdoesnot affectthevaluesof p in successorsf theinitial state.More generally
this ideaof addingextra variablesto checkthat certainfeaturesare presered canbe usedto give a more
fine-grainedcontrol over whatcoverageis checkingfor.

3.3 Booleancircuits in model checking

To motivateBooleancircuitsin thecontext of modelcheckingwe review theautomata-theoretiapproach
to branching-timenodelchecking,introducedby KupfermanVardi,andWolper[2000]. We focuson the
branching-timdogic CTL. Supposehatwe wantto checkwhethera specificationy writtenin branching-
time temporallogic holdsfor a systemdescribedby a Kripke structure K. We assumethat K hasa
specialinitial statedenotedw;,,. Checkingf K satisfiesp amountgo checkingif themodelwith rootw;,
obtainedby “unwinding” K satisfiess.

In the automata-theoretiapproachye transforme to analternatingtreeautomatonA,, thataccepts
exactly the modelsof ¢. Checkingif K satisfiesy is thenreducedio checkingthe nonemptinessf the
product Ak, of K and. A, (wherewe identify K with the automatorthat acceptgust K). When
is a CTL formula, the automatonA,, is linearin the lengthof ¢; thus,the productautomatoris of size
O(IK]| - |¢l)-

Let W bethe setof statesin K andlet AP bethe setof atomic propositionsappearingn . The
productautomaton4g ., canbe viewed asa graphGr,,. Theinterior nodesof G, arepairs (w, ),
wherew € W and is a subformulaof ¢ thatis not an atomic proposition. The root of Gk, is the
vertex (win, ). Theleavesof Gk, arepairs(w,p) or (w, —p), wherew € W andp € AP. As shavn
by Chockler Kupferman,andVardi [2001] (CKV from now on), we canassumehat eachinterior node
{(w, 1) hastwo successorsandis classifiedaccordingto the type of 4/ asan orR-nodeor an AND-node.
Eachleaf (w, p) or (w, —p) hasavalue,1 or 0, dependingon whetherp is in the label of statew in the
model K. Thegraphhasat most2 - |AP| - |W| leaves. We presenta simpleexampleof sucha graphin
Figure4.

We would like to view the graphG k., asa Booleancircuit. To do this, we first replaceeachnode
labeled{w, —p) by a NOT-node,andaddan edgefrom the leaf (w, p) to the NOT-node. Clearly this does
notincreasehesizeof thegraph.Theonly thing thatnow preventsGg , from beinga Booleancircuit is
thatit may have cycles. However, asshavn by Kupferman Vardi,andWolper[2000], thecyclesin Gk,
containonly verticesof onetype—eitheror or AND. Thus,eachcycle canbe “collapsed”into onenode
with mary successorghis nodecanthenbereplacedyy atree,whereeachnodehastwo successorsThe
sizeof theresultinggraphis still O(| K|+ |¢|). Modelcheckingis equivalentto finding thevalueof theroot
of G giventhevaluesof the leaves. Thatis, modelcheckingreducedo evaluatinga Booleancircuit.
Thefollowing resultis straightforvard, giventhe definitions.

Proposition 3.5 Considera Kripke structue K, a specificationp, and an atomic propositiong. The
following are equivalent:

(a) thedegreeof g-responsibilityof w for ¢ is 1/k;

(b) thenode(w, q) hasdegree of responsibilityl /& for (w;,, ) in the Booleancircuit corresponding
to K andy;
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Figure4: Constructiorof the productautomaton.

Kripke structurek’

po=AGp AN EXq

moduleexamplefs, oz, 03);
reg 01, 02, 03;

initial begin
01 = 02 = 03 = 0;
end

always @ (posedgelk) begin
assigml = ol;
assign2 = 02 | 03;
assigm3 = —03;
end
endmodule

Figure5: The Verilog descriptionof thedesign.

(c) X4 hasdgreeof responsibilityl /% for theoutputin the causalmodelcorrespondingo K and.

It is almostimmediatefrom Proposition3.5thatw is g-coveredby ¢ in the Kripke structureK iff (w, q)
is critical (i.e., hasdegreeof responsibilityl) for thevalueof (w;,, ) in the Booleancircuit iff X,, , has
degreeof responsibilityl for the valueof the outputin the causamodel.

3.4 A Detailed Example

In this sectionwe demonstratdéow responsibilitycanbe usedin modelchecking.The designis described
asa partof a Verilog program afinite statemaching(FSM), anda circuit. The designhasthreeregisters,
whichencoddhestatespace Thedesignis describedy meansf aVerilog programin Figure5. Figure6
shavs the FSM (eachstateis labeledby the truth valuesof o1, 02, andos) andthecircuit for this design.

First, it is easyto seethatall statesn whicho; = 1 areunreachableandthushave responsibility0 for
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Figure6: The FSMwith threelatches.

02

03

thesatishctionof all specificationshataresatisfiedn thedesign.We considercoverageandresponsibility
with respecto several specificationsWe startwith the specificationp = AG—o0;. Thatis, ¢ requireghat
thevalueof 01 is 0 in all reachablestates|t is easyto seethatall reachablestatesof thedesignarecovered
with respecto ¢ andmutationsof o1. Accordingly thevalueof o; in all reachabletateshasresponsibility
1 for thesatishctionof ¢ in thedesign.Also, noreachablestateis coveredwith respecto ¢ andmutations
of 09 or 03. Accordingly thevaluesof o, andog in all stateshave responsibilityd for thesatishctionof ¢

in thedesign.

Next considerthe specificationy’ = AFos. Thatis, ¢’ requireshatthevalueof o3 is 1 in atleastone
stateat eachpathof the designthatstartsin state000. Notethatthevalueof o3 is 1 in state€01 and011.
Thus,sincemorethanonestatecansatisfythe eventuality neither001 nor 011 is coveredwith respecto
¢’ andmutationsof o3 (in fact,thereareno coveredstatedor this specification) Responsibilityprovides
afiner measureshaving thatthe valueof o3 in the states001 and011 areresponsibldor the satishction
of ¢/, while the valuesof otherregistersandthe valueof o3 in otherstatesdo not have ary responsibility
Theresponsibilityof thevalueof o3 in eachoneof the state)01 and011 for the satishctionof ¢’ is 1/2,
becauseave needto changethe value of only oneregisterin onestatein orderto createa counterfictual
dependenceror example,changinghevalueof oz in 001 from 1 to 0 creates counteréctualdependence
of thesatishctionof ¢’ onthevalueof o, in the state011.

Thethird specificationis ¢ = AX AG(o0s V 03). Thatis, all stategeachabldrom a successoof 000
aresuchthateitheros or o3 have thevalue 1. While the states001 and010 arecoveredwith respecto ¢”
andmutationsof o3 andos, respectiely, the state011 is not covered. Indeed,both o, andoz canchange
their value (separatelyyvithout falsifying the specification Again, computingthe degreeof responsibility
enableausto distinguishbetweerthe valuesof o, andos in state011, which have responsibilityl /2 for
the satishctionof ¢, andthevaluesof all registersin state000, which have responsibility0.

4 Computing the Degreeof Responsibility in Binary CausalModels

In this sectionwe examinethe compleity of computingthe degreeof responsibility We startwith the
compl«ity resultfor the generalcaseof binary causaimodels. Thenwe discussseveral specialcasedor
which thecomplity of computingresponsibilityis muchlower andis feasiblefor practicalapplications.



4.1 The generalcase

For a compleity classA4, FPAI°g”] consistsof all functionsthat canbe computedby a polynomial-time
Turing machinewith an oraclefor a problemin A, which on input 2 asksa total of O(log|x|) queries
(cf. [Papadimitriou1984]). Eiter and Lukasiavicz [2002a]shav that testingcausalityis X4 -complete;
CH shaw thatthe problemof computingresponsibilityis FP-g llog "l_.completefor generalkcausaimodels.
Eiter and Lukasiavicz shaved thatin binary causalmodels,computingcausalityis NP-complete.Since
the causalmodel correspondingo a Booleancircuit is binary computingcausalityis NP-completein

Booleancircuits. We shav that computingthe degreeof responsibilityis FPNFlleg”l_completein binary
causalmodels. We actuallyprove the FPYllog"l_completenesirst for Booleancircuits. Thenwe shav

thataslightextensionof ouramgumentcanbeusedto prove thesamecompleity resultfor all binarycausal
models.

Formally, theproblemRESP-CIRCUITis definedasfollows: givenacircuitC overthesetof variables
X, avariableX € X, andatruthassignmeny, computedr(C, X, f). We prove thefollowing theorem.

Theorem 4.1 RESP-CIRCUITs FPNPlog7l_complete

Theproofsof Theoremd.1andits easyextensionbelov canbefoundin AppendixA.
Theorem 4.2 Computingthe degreeof responsibilityis FPNPeg”l.completen binary causalmodels.

By Proposition3.5, the upperboundin Theoremd.1 appliesimmediatelyto computingthe degreeof
responsibiltyof a statew for a formulay. The lower boundalsoappliesto modelchecking,sinceit is
not hardto shav thatfor every Booleanfunction f over the setof variablesX and assignments there
existsa pair (K, ) suchthat K is aKripke structure is a specificationandmodelcheckingof ¢ in K
amountgo evaluatinga circuit C thatcomputesf undertheassignmeng. Indeed /et K be asingle-state
structurewith aself-loopovertheset)? of atomicpropositionswherethesinglestateof K is labeledwith
XeXiffXis1 underthe assignmeng’. Let ¢ be a propositionaformula over the setof variablesX
that computeghe function f. Thenthe graphG'x, is a circuit thatcomputesf andevaluatingGg , is
eqguivalentto evaluatingf undertheassignmeng.

4.2 Tractable specialcases

Theorem4.1 shaws that thereis little hopeof finding a polynomial-timealgorithm for computingthe
degreeof responsibilityfor generalcircuits. The situationmay not be so hopelessn practice. For one
thing, we aretypically not interestedn the exact degree of responsibilityof a node, but ratherwant a
reportof all thenodeghathave low degreeof responsibility Thisis theanalogueof gettingareportof the
nodesthatarenot covered,which is the goal of algorithmsfor coverage.As in the caseof coverage the
existenceof nodeghathave alow degreeof responsibilitysuggestgithera problemwith thespecification
or unnecessargedundancief the system.

Clearly for ary fixedk, the problemof decidingwhetherdr(C, X, w, f) > 1/k canbesolvedin time
O(|X|*) by the naive algorithmthat simply checkswhetherX is critical for C underthe assignmeny'}
for all possiblesetsZ C X of sizeatmostk — 1. Thetestitself canclearly be donein lineartime. We
believe that, asin the caseof coverage wherethe nave algorithmcanbeimproved by an algorithmthat
exploits the factthatwe checkmary smallvariantsof the sameKripke structure]/Chockler Kupferman,
andVardi 2001],therearealgorithmsthat areeven moreefficient. In ary case this shawvs thatfor values
of k like 2 or 3, which areperhapsf mostinterestin practice,computingresponsibilityis quitefeasible.



Thereis alsoa naturalrestrictionon circuitsthatallows a lineartime algorithmfor responsibility We
saythat a Booleanformula ¢ is read-oncef eachvariableappearsn ¢ only once. Clearly a Boolean
circuit for a read-oncgformula is a tree. While only a small fraction of specificationsare read-once,
every formulacanbe corvertedto aread-oncdormulasimply by replacingevery occurrenceof anatomic
propositionby a newv atomic proposition. For example,s» = (p A q) V (p A r) canbe corvertedto
Y = (poAq)V(p1 Ar). Givenanassignmentor theoriginal formula,thereis acorrespondingssignment
for thecorvertedformulathatgiveseachinstanceof anatomicpropositionthesametruthvalue. While this
doesnot changethe truth value of the formula, it doeschangeresponsibilityand causality For example,
underthe assignmenthat gives every atomic propositionthe value 1, p is critical for ¢y and thus has
responsibilityl for the valueof +, while underthe correspondingssignmentp, hasresponsibilityonly
1/2 for 4/. Similarly, p is nota causeof thevalueof p V —p underthe assignmenthatgivesvaluel to p,
but pg is causeof thevalueof py VvV —p; underthe corresponding@ssignment.

If we think of eachoccurrenceof an atomic propositionas being “handled” by a differentprocess,
then as far as fault tolerancegoes, the corverted formula is actually a more reasonablanodel of the
situation.Thecorversionmodelsthefactthateachoccurrenc®f p in ¢ canthenfail “independently”.This
obseration shavs exactly why differentmodelsmay be appropriateto capturecausality Interestingly
this type of corversionis alsousedin vacuity detectionin [Beer, Ben-David, Eisner and Rodeh1997;
KupfermanandVardi 1999; Purandareand Somenzi2002], whereeachatomicpropositionis assumedo
have a singleoccurrencén theformula.

In modelchecking,we canconvert a Booleancircuit obtainedfrom the productof a systemK with
a specificationy to a read-onceree by unwinding the circuit into a tree. This resultsin a degree of
responsibilityassignedo eachoccurrencef a pair (w, '), andindeedeachpair may occurseveraltimes.
Theway oneshouldinterprettheresultis thendifferentthantheinterpretatiorfor theBoolean-circuitase
andhasthe flavor of nodecoverage introducedby Chockleret al. [2001]. Essentiallyin nodecoverage,
onemeasureshe effect of flipping the value of anatomicpropositionin a singleoccurrenceof a statein
theinfinite treeobtainedby unwindingthe system.

The generalproblemof vacuity detectionfor branching-timespecificationss co-NP-completethe
problemis polynomialfor read-oncdormulas[K upfermanandVardi 1999]. Consideringread-oncédor-
mulasalso greatly simplifies computingthe degree of responsibility To prove this, we first needthe
following propertyof monotoneBooleancircuits.

Lemma 4.3 Givena monotoneBooleancircuit C overthesetX of variables,a variable X € X, a gate
w € C,andanassignmeny, if f(w) # f(X), thendr(C, X,w, f) = 0.

Proof: BothfunctionsA andv aremonotonenon-decreasin boththeir variablesandthusalsotheir
compositionis monotonenon-decreasin@ eachoneof thevariables.Eachgateof C is a compositionof
functionsA, v over the setX of variables thusall gatesof C aremonotonenon-decreasingn eachone
of thevariablesof C. A gatew represents functionover thebasis{A, V}. Theassignmeny assignghe
variableX avaluein {0, 1}, andf (w) is computedrom thevaluesassignedy f to all variablesof C. We
assumeahat f(X) # f(w). Withoutlossof generalitylet f(X) = 1 and f(w) = 0. Assumeby way of
contradictiorthatdr(C, X, w, f) # 0. ThenthereexistsasetZ C X \ {X} suchthat f;(w) = f(w) = 0
and X is critical for w undeer. Thus,changingthevalueof X from 1 to 0 changeghevalueof w from
0 to 1. However, this contradictghefactthatw is monotonenondecreasinm X.

Thecasewheref(X) = 0 and f(w) = 1 follows by adualagument. L



Theorem 4.4 Theproblemof computingthe degree of responsibilityin read-onceBooleanformulascan
besolvedin linear time

Proof: We describea lineartime algorithm for computingthe degree of responsibilityfor read-once
Booleanformulas. Sincewe have assumedhat formulasare givenin positive normalform, we canas-

sumethatthe treesthatrepresenthe formulasdo not containnegationgates.(The leavesmay be labeled

with negationsof atomic propositionsinstead.) This meansthat the circuits correspondingo read-once
formulascanbeviewedasmonotoneBooleantreessio which Lemma4.3 canbeapplied.

Considerthe following algorithm,which getsasinput a monotoneBooleantree’l’, anassignmeny,
anda variable X whosedegreeof responsibilityfor the value of 7" underthe assignmenjf we wantto
compute.The algorithmstartsfrom the variablesandgoesup the treeto theroot. For eachnodew in the
tree,thealgorithmcomputegwo values:

e size(T, X, w, f), whichis thesizeof theminimal Z suchthat X is critical for w underfz (wetake

size(T, X,w, f) = o if thereis no Z suchthatX is critical for w undeer; i.e.,if X isnotacause
of theformulaassociatedavith w underassignmeny); and

o c(w, f), whichthesizeof theminimal Z suchthatZ C X andf(w) # f(w).

Note that size(T, X, w, f) = m —1if dr(T, X,w, f) > 0, and size(T, X,w, f) = oo if
dr(T, X,w, f) = 0.

For aleaf/x labeledwith X, we havec(lx, f) = 1 andsize(T, X,lx, f) = 0, by Definition 2.5. For
aleafly labeledwith Y £ X wehave c(ly, f) = 1 andsize(T, X, ly, f) = co. Supposéhatw is agate
with childrenu andwv, andthatwe have alreadycomputedsize(T', X, y, f) andc(y, f), for y € {u,v}.
Thensize(T, X, w, f) andc(w, f) arecomputedasfollows.

1. If wisanA-gateand f(w) = f(u) = f(v) = 0, orif wis v-gateand f(w) = f(u) = f(v) = 1,
then

(@) c(w, f) = c(u, f) + c(v, f) (becausave have to changethe valuesof bothw andv in orderto
changehevalueof w);

(b) size(T, X, w, [) = min(size(T, X,u, [), size(T, X,v, f)) + c(v, ).

2. If wisanA-gate,f(w) = f(u) = 0andf(v) = 1, orif wisanv-gate,f(w) = f(u) = 1, and
f(v) =0, thenc(w, f) = ¢(u, f), andsize(T, X, w, f) = co, by Lemma4.3.

3. If wisanA-gateandf(w) = f(u) = f(v) = 1, orif wisanv-gateandf(w) = f(u) = f(v) =0,
thenc(w, f) = min(c(u, f), c(v, f)), andsize(T, X, w, f) = min(size(T, X, u, f), size(T, X, v, f)).

Clearlywecancomputesize(T, X, w, f) ande(w, f) in constantimegivensize(T, X, u, f), size(T, X,v, f),
c(u, f), ande(v, f). Moreover, becausd’ is atree,it is easyto checkthatsize(T, X, w, f) reallyis the
sizeof theminimal Z suchthat X is critical for w undeer, theagumentuseghefactthatwe cannothave
bothsize(T, X,u, f) < oo andsize(T, X,v, f) < oo, sincethis would meanthat X is a descendandf
bothw andv, contradictingheread-onceassumptionAs we obsered earlier thedegreeof responsibility
of X for thevalueof nodew underf is 1/(1 + size(T, X, w, f)), sowe aredone. L



5 Conclusion

We have shawvn thatit is usefulto think of coverageestimationin termsof causality Thisway of thinking

aboutcoverageestimatiomotonly shavs thatanumberof differentdefinitionsof coveragecanbethought
of asbeingdefinedby differentmodelsof causality but alsosuggestdiow the notion of coveragemight

beextendedto take into accountwhich featuref satishctionareimportant. The notionof responsibility
alsoprovidesausefulgeneralizatiorof coverage thatgivesamorefine-grainedanalysisof theimportance
of a statefor satisfyinga specification.Our complity resultssuggesthatthesenotionscanbe usefully

incorporatednto currentmodel-checkingechniques.
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A Proofs

A.1 Proofof Theorem4.1

First we prove membershign FPYF1°8”) by describingan algorithmin FPYF1°8”) for solving RESP-CIRCUIT
ThealgorithmqueriesanoracleO;,, for membershipn thelanguagée..., definedasfollows:

LC - {<C/3X/a f/ai> : dT(C/aX/af/) Z 1/1}

In otherwords,(C’, X', f',i) € L, if thereexistsasetZ of variablesof sizeatmosti — 1 suchthat X" is critical for

c’ undertheassignmenf%. It is easyto seethat ., € NP, Indeed,givenasetZ of sizeatmosti — 1, the checkfor

whetherX” is critical for C’ underf’Z canbe performedin time linearin the sizeof C’. Giveninput (C, X, f), the
algorithmfor solving RESP-CIRCUITperformsabinarysearchon thevalueof dr(C, X, f), eachtime dividing the
rangeof possiblevaluesfor dr(C, X, f) by 2 accordingto the answerof Oy,_. The numberof possiblecandidates
for dr(C, X, f) is thenumberof variableshatappeain C, andthusthenumberof queriesto Oy, is atmost[log n],
wheren is thesizeof theinput.

We now prove FPY"I°8"l_hardnessy a reductionfrom the problem CLIQUE-SIZE, which is known to be
FPYPllos I _complete[Papadimitriou1984; Krentel 1988; Papadimitriou1994]. CLIQUE-SIZE is the problemof
determiningthe sizeof the largestclique of aninput graphG. Thereductionworksasfollows. Let G = (V,E> be
a graph.We startby constructinga circuit C, wherethe variablesarethe nodesin V, andthe outputof the circuit
is 1 iff the setof nodesassigned formsacliquein G. ThecircuitCe isCa = Ay wgp(V vV W). Itis easyto see
thatthevalueof Cz underanassignmeny is 1 iff thereareedgesetweenrall pairsof nodesthatareassigned by
f. In otherwords,the setof nodesassigned by f formsacliquein G.

Now let X be a variablethat doesnot appearin Co. Considerthe circuit C = X A Cq, andan assignment
F thatassignd) to all variablesin V' andto X. It is easyto seethatthe valueof C under ¥ is 0, andthatfor an
assignmenyf thatassignsX thevaluel, C outputsthevalueof C¢ undertheassignmeny restrictedto V. We claim
thatdr(C, X, F) = 1/i > 0 iff thesizeof themaximalcliquein G is |V| — i + 1, anddr(C, X, F') = 0 iff thereis
no cliguein G.

We startwith the“if ” direction. Let dr(C, X, F') = 1/i > 0. ThenthereexistsasetZ C V of sizei — 1 such

that £;(C) = —F,((C). SinceF;(X) = 0, we alsohave F'4(C) = 0, andthus F';, , (C) = 1. Thereforethe

valueof Cg undertheassignmenﬁz restrictedto V' is 1. Thus,the setof variablesassigned in FZ formsaclique
inG. Theassignmenﬁj differsfrom I’ preciselyonthevaluesit assigngo variablesn Z; thus,the setof variables
assigned by FZ isV \ Z. Weknow that|Z| = i — 1, therefore|V \ Z| = |V| — i + 1. Ontheotherhand,by

the definition of the degreeof responsibility for all setsZ C V' of sizej < i — 1 we have F4(C) = ~F00x1(C).
Thus,thevalueof Cq undertheassignmenﬁz restrictedto V is 0. Thus,for all setsZ C V of sizej <1 —1,we
havethatV \ Z is notacliquein G. Thereforethe maximalcliquein G is of size|V| — i + 1.

For the“only if” direction,letY C V of size|V| — i + 1 bethemaximalcliquein G. Thenthevalueof C¢ is

1 undertheassignment;, ;. Therefore Fi ) xy(C) = 1, while Fy, ¢(C) = F(C) = 0. Thus, X is critical

forC undertheassignmenﬁv\?, andthereforedr(C, X, f) > 1. Ontheotherhand,sinceY is maximal,for all sets
Zj of size|\7| —jfory <i—1,we ha/ethth is notacliquein G, thusthevalueof C¢ is 0 undertheassignment
Ey 7. ThereforeF(‘;\Z)U{X}(C) =0= Fﬁ\Z(C), andthus X is notcritical for C undertheassignment-y;, . It
followsthatdr(C, X, F) <i. Sincedr(C, X, f) > i, wegetthatdr(C, X, F') = i.

If dr(C, X, F') = 0, thenfor all setsZ C V, we have F; ., (C) = F4(C) = 0, andthus F4(Cg) = 0. Thus,
thereis no cliquein G. For the corverse,assumehatthereis nocliquein G._For the otherdirection,assumehat
thereis no cliqguein G. Thenfor all Y C V', we have F‘;\Y,(CG) =0, thusF(‘;\f,)U{X}(C) = Fﬁ\};(c) =01
followsthatdr(C, X, F') = 0.



A.2 Proofof Theorem4.2

Thelowerboundfollows from thelowerboundin Theorem4.1. For theupperbound,we usethefollowing obsena-
tion madeby Eiter andLukasiavicz: for binary causaimodels the conditionAC2 canbereplaceddy the following
condition(to getanequialentdefinition of causality):

AC?2'. Thereexist a partition (Z, W) of V with X C Z andsomesetting(#', @) of the variablesin (X, W) such
thatif (M, %) |= Z = z* for Z € Z, then

1 (M, 0) = [X « & W — @],
2. (M,@) |- [X — 2, W — o, Z — z¥e.

Thatis, for binary causalmodelsit is enoughto checkthat changingthe value of W doesnot falsify o if all other
variableskeeptheir original values.Thus,givena partition(.Z, W) andasetting(#’, ') we canverifythat(X = )
is anactive causdn polynomialtime: both conditionsin AC2 areverifiableby evaluatinga Booleanformulaunder
a given assignmento its variables. Thus checkingcausalityin binary modelsis in NP. Therefore,the following

languagél, is alsoin NP.

L ={{((M,4d),y, (X = x),1i) : the degree of responsibility of (X = z)
for 4 in the context (M, i) is at least 1/7}.

Indeedmembershipf (M, @), v, (X = z), {) in L., isverifiablein polynomialtime similarly to thecausalitycheck
with the additionof measuringhe size of witnessW, which hasto beatmosti — 1. The algorithmfor computing
the degreeof responsibilityof (X = z) for thevalueof ¢ in the context (M, ¥) performsabinarysearchsimilarly
to the samealgorithmfor Booleancircuits, eachtime dividing the rangeof possiblevaluesby 2 accordingto the
answerof anoracleto the NP languagel!.. Thenumberof queriesis boundedby [log ], wheren is thesizeof the
input, thusthe problemis in FPYF g



