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Abstract

A standardassumptionin the databasequeryoptimiza-
tion literatureis that it is adequateto optimize for the
“typical” case—thatis, thecasein whichvariousparam-
eters(e.g.,theamountof availablememory, theselectiv-
itiesof predicates,etc.) take on their “typical” values.In
[CHS99],wearguedthatwecoulddobetterby choosing
plansbasedon their expectedcost. Herewe investigate
this issuemore thoroughly. We show that in many cir-
cumstancesof interest,a “typical” valueof theparame-
teroftendoesgiveacceptableanswers,providedthatit is
chosencarefullyandwe areinterestedonly in minimiz-
ing expectedrunningtime. However, by minimizing the
expectedrunningtime, we areeffectively assumingthat
if plan ��� runsthreetimesaslong asplan ��� , then ��� is
exactly threetimesasbadas��� . An assumptionlike this
is not alwaysappropriate(for example,for time-critical
data). We show that the focusingon leastexpectedcost
canleadto significantimprovementfor anumberof cost
functionsof interest.

1 Introduction

Databasequeriesaretypically specifieddeclaratively, so
it is up to theDBMS to choosea goodplanto carryout
the query[SAC

�
79]. Given a query, a cost-basedopti-

mizer hasto pick a plan of leastcost. To do this, the
optimizerhasto estimatethecostof aplan.Oneproblem
is that thecostof a plandependson variousparameters
(e.g.,theamountof availablememory, theselectivitiesof
predicates,the sizesof the tables,etc.),someof whose
valuetheoptimizermight not (or cannot)know at query
optimizationtime. Traditionally, an optimizerassumes
(at optimizationtime) that the parameterswill take on�
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certainspecificvalues(at run time), andthencomputes
anoptimalplanbasedon theassumptionthattheparam-
etersactuallytake on thesevalues.How thesevaluesare
chosenvaries from implementationto implementation.
In [CHS99],we termedthis approachleastspecificcost
(LSC) optimization. Of course,if theperformanceof the
planchosencanvary significantly, dependingon thepa-
rametervalue,thentheplanchosenby anLSCoptimizer
mightbefar from optimal.

We may be ableto do betterif we have a probability
distribution on the possibleparametervalues(which is
oftena quite reasonableassumptionin practice).In this
case,one obvious choiceof specificvalue for an LSC
optimizer to take is the expectedvalue of the parame-
ter (or perhapsthemodalvalue—thatis, theonethatoc-
cursmost frequently). However, if the goal is to find a
plan of leastexpectedrunning time, thenchoosingthis
specificvalueis not necessarilytheright thing to do. In
general,thebestplan underthe assumptionthat the pa-
rametertakeson its expectedvalue is not necessarilya
plan with leastexpectedrunningtime, asthe following
exampleshows.

Example 1.1: Supposethat we have two plans, ��� and��� , suchthat if thereareat least1000pagesof memory
available, ��� takes280 secondsto run and ��� takes300
secondsto run,andif theamountof memoryis between
633pagesand1000pages,��� takes560 secondsto run
and � � (still) takes300secondsto run. Supposethat,by
observation, theprobabilityof having 2000pagesis 	�

�
andtheprobabilityof having 700pagesis 	�

� . Theex-
pectedvalueof theamountof memoryavailableis 1740
pages.If theoptimizerassumesthatthereare1740pages
of memory, it will choose��� . However, theexpectedrun-
ning time of � � is 	�

��������	�����	�

��������	���������� , while the
expectedrunningtimeof ��� is ��	�	 .

In light of suchexamples,we advocatedin [CHS99]
what we called leastexpectedcost (LEC) optimization,



whereplansarechosenbasedon their expectedcostin-
stead� of their cost at a specificparametersetting. The
advantageof LEC optimizationis that the plan it picks
hasthe leastexpectedcostamongthe plansundercon-
sideration. So if the query is compiledonceand exe-
cutedmany times(asis oftenthecase),thentheaverage
runningtime of thequeryis likely to betheleastamong
all the candidatesconsidered.We alsoshowed how the
LECplancouldbecomputedgivenaprobabilitydistribu-
tion ontheparameters,by extendingtechniquescurrently
usedin LSCoptimizers,with relatively little overheadin
runningtime. If theprobabilitydistribution over thepa-
rametersis givenby histograms,theactualoverheadde-
pendson thenumberof bucketsusedin thehistograms;
LSC optimizationis essentiallyLEC optimizationwith
onebucket.

In this paperwe investigatetherelationbetweenLEC
optimization and LSC optimization more thoroughly,
boththroughempiricalexperimentsandanalyticalexplo-
rations.Ourcontributionsareasfollows:

1. Onesurprisethatwe encounteredis thatLSC opti-
mizationcanproduceLEC plans(at leastin princi-
ple) in a wide variety of situations.This prompted
usto characterizewhenLSCoptimizationcanyield
LEC plans.

2. We exhibit, both throughexperimentsandanalyti-
cal results,scenariosin which theabove conditions
hold. This is of specialinterestfor practitioners,
since under theseconditions, they can obtain the
LEC plan without modifying the coreof the exist-
ing optimizers.

3. The scenariosabove all dependon the cost being
linear in terms of running time (which is a stan-
dardassumptionin theliterature).Wearguethatthis
is notalwaysappropriatethroughmotivatingexam-
ples,andwe investigatesomeconsequencesof hav-
ing non-linearcostfunctions.

Therestof this paperis organizedasfollows. In Sec-
tion 2.1wereporttheresultsof experimentsshowing that
LSC optimizationcanproduceLEC plansin centralized
databases.In Section2.2,we show thatthis continuesto
be true even in a distributed settingin which the trans-
missiontime canbe modeledprobabilistically. Thenin
Section2.3wecharacterizewhenit is feasibleto produce
LEC plansusingLSC optimizers.Theresultsin Section
2 dependcritically on theassumptionthatthecostis just
runningtime. In Section3, we show that full LEC opti-
mizationis in generalnecessaryif thecostfunctionis not
linearin therunningtime. Wethendiscuss,in Section4,
somechallengesthatariseswhenthecostfunctionis not

linearin therunningtime. Finally, in Section5 we offer
someconcludingremarksandpossiblefuturedirections.

2 LEC Through LSC

We originally plannedto constructanLEC prototypeto
benchmarkthe performanceof LEC optimizationusing
theTPC-HdatabaseonacommercialDBMS. Oneof the
thingswedid wasto fine-tunethecostformulawe found
in textbooks. (It is well known that textbook formulas
donotaccuratelydescribethecostof joins;see[GBC98,
LG98].) As we weredoingtheseexperiments,however,
we ran into somefindingsthat alteredthe courseof our
research.

2.1 The Experiments

We ranall our experimentson a machineequippedwith
two PentiumProprocessorsrunningat200MHz,128MB
of RAM, Windows NT 4.0 SP5 1381, and an 8.9GB
SCSI hard disk. The pagesize of the DBMS is 8KB
andwe maysettheavailablebuffer memoryfrom 4MB
to 127MB.(Dueto overheadof theoperatingsystem,we
variedthebuffer poolsizeonly from4MB to80MB.Note
that the DBMS refusesto run certainmemory-intensive
plansif the sizeof the buffer pool is below 4MB.) The
DBMS allows usersto force a given plan to be used
by giving “hints” to the optimizer. The databasewe
usedwas the TPC-H databasewith the scalefactor set
to one. (We refer the readerto [TPPC99] for thedetails
of TPC-H.)

2.1.1 Amount of Available Memory

Sincetheamountof availablememoryis difficult to pre-
dict [G. Lohman,privatecommunication,1998],we fo-
cusedon this parameterin [CHS99]. Whenwe ran the
experimentsto fine-tunethe cost formulaswe have for
join methods,we discoveredthat thereis often a domi-
nantplan; that is, sort-merge (or indexednested-loop)is
alwaysbetter, eventhoughbothindexednested-loopand
sort-mergeexhibit discontinuousbehavior, asonewould
expect,whenthe amountof memorybecomeslow (see
Figure1). Of course,wealsohavecasesin whichnojoin
methoddominatesanother;thatis, thecurvescross.

Clearly thereis no needfor LEC optimizationwhen
thereis adominantplan.Usingany valueof theparame-
ter in LSC optimizationwill give theoptimalplan. How
muchLEC optimizationhelpswhenthereis a crossover
dependson theprobabilitydistribution of memorysizes.
For example,considerTPC-HQuery12, whoserunning
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Figure1: Runningtime for ORDERS� � LINEITEM

time for differentvaluesof memoryis shown in Figure
2.1 Notethatsort-mergedoesbetterthanindexednested-
loop in all memorysettingsexceptat 5MB (the DBMS
refusesto executeeitherjoin methodbelow 5MB). Soif
thereis significantprobability that the amountof mem-
ory availableis low (in thiscase,around5MB), thenLEC
optimizationwill help.

In our experiments,the crossovers for memorytypi-
cally happenat the low endof the scale. This suggests
that,if theparameterof interestis memory, aslongasthe
probabilityof a memoryshortageis low enoughfor this
possibility to besafelyignored,thentherewill typically
bea dominantplan. (This comesout in all our otherex-
periments,not just the experimentsshown in Figures1
and2.) Thus,in thiscase,LSC optimizationsuffices.

Onemight wonderif this phenomenonis just anarti-
fact of the experimentalsetupwe used. This is not so.
Thetextbookcostformulafor indexednested-loopis es-
sentially the numberof pagesof the outer relationplus
the numberof tuplesin the outer relation that satisfies
theselectionpredicate,sincefor eachof thesetupleswe
will needto reada pagefrom the inner relation[Ull89].
(The textbook formula is not running time, but is sup-
posedto bedirectly proportionalto runningtime.) This
quantityis clearlyindependentof memory. Therationale
is that if we areusing indexed nested-loop,we assume
thattheindex fits in memory, sothatwehaveto readonly
a pagefor eachtuple of the outerrelation(that satisfies
the selectionpredicates).Oncethe amountof memory
becomessolow that the index no longerfits in memory,
the running time will clearly change. Figures1 and 2

1Actually, this is the running time for a slight modificationof
Query 12; we added“and o totalprice !#"%$'&%&%& ” to the predi-
cate,sincesort-mergedominatesindexednested-loopfor theoriginal
query.
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Figure2: Runningtime for TPC-HQuery12

show that this is essentiallythe case.The textbook for-
mulafor sort-mergeinvolveslogarithmsof theamountof
memory, so they arenot constantwith respectto mem-
ory (unlike indexednested-loop).However, thebasesof
theselogarithmsarethenumberof pagesavailable,soif
wehavealargeamountof memory, theformulais essen-
tially constantfor a large rangeof memoryvalues.The
bottomline is that,accordingto textbookformulas,there
typically is adominantplanwhentheamountof memory
availableis sufficiently large.

2.1.2 Selectivity

Anotherparameterwe investigatedis selectivity. Unlike
memory, the runningtime is not a stepfunction, andit
increasesas selectivity increases(whereasthe running
time decreasesasmemoryincreases).While it is often
the casethat an optimizermight not know the selectiv-
ity of a particular predicatedue to a lack of statistics
on the tables,this problemcanbe alleviatedby keeping
moredetailedstatistics. Thereis anothersourceof un-
certaintythat cannotbe dealtwith by keepingstatistics
on thedatabaseitself. Oftenanoptimizeris facedwith a
problemof optimizinga querytemplate; that is, a query
with (user)input variables. (This canhappenwith em-
beddedSQLthatcontainshostlanguagevariables;it can
alsohappenwith storedproceduresthat acceptinputs.)
In this case,the optimizer doesnot know the value of
the inputsandmustchoosea plan in theabsenceof that
information.Theproblemis thattheselectivitiesof pred-
icatesin thequerynow dependon the input values,and
this uncertaintycannotbealleviatedby keepingdetailed
statisticsaboutthedatabaseitself. However, if we have
distributionson the input values(eithercollectedby the
DBMS or furnishedby the users),thenwe canperform
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select
n name,
sum( l extendedprice)�( "+* l discount, , asrevenue

from
customer, orders,lineitem,supplier, nation,region

where
c custkey - o custkey
andl orderkey - o orderkey
andl suppkey - s suppkey
andc nationkey - s nationkey
ands nationkey - n nationkey
andn regionkey - r regionkey
andr name- [REGION]
ando orderdate.�- [DATE]
ando orderdate! [DATE] / interval 1 year

groupby
n name

orderby
revenuedesc;

Figure3: TPC-HQuery5

LEC optimization.2

As an exampleof a query template,considerQuery
5 from the TPC-H benchmark(reproducedin Figure
3). Thequerycontainstwo parameters:[REGION] and
[DATE]. Sincethe TPC-H databaseis uniformly pop-
ulated, the selectivity is essentiallyindependentof the
parametervalues (especiallyfor those values used in
the actualbenchmarkitself). This is hardly surprising,
sinceTPC-His designedto evaluatetraditionaloptimiz-
ers,which useLSC optimization. However, it is known
that,in practice,databasesareoftennot uniformly popu-
lated.Let usseewhatcouldhappenif this is thecase.

Example 2.1: Supposewehaveadatabasepopulatedas
follows:

0 20% of the orders have o orderdate between
1992-01-01and1996-12-31,0 80% of the orders have o orderdate between
1997-01-01and1998-12-31, and0 within eachof theabove groupsthedistribution on
o orderdateis uniform.

Supposethat the input distribution on [DATE] is132 � [DATE] �54 -01-01�6�7	�

� for 498;: 1993, 1994,

2Thereareotherwaysof dealingwith this problem;for example,
[INSS92] proposesan approachcalled parametric query optimiza-
tion. In thatapproach,an LSC plan is producedfor eachparameter
value. The problemis that the plan size grows, in the worst case,
with the numberof possibleparametervalues. Anotherproblemis
thatthey mightoutputplansfor parametervalueswith very low prob-
ability. It is possiblethat mostof the plansin the output rarely get
used.
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Figure4: Runningtime for TPC-HQuery5

1995,1996,1997< . If the optimizerusesthe expected
value of the input, it will take 1995-01-01as the rep-
resentative. This translatesto having selectivity 	�

	%= ,
sincethe interval is oneyearand4% of theordershave
o orderdatein 1995.However, theexpectedselectivity is
actually 	�
 =>��	�

������	�

	%=>��	�

�����?	�

@�@�� . If we applyLSC
optimizationundertheassumptionthat theselectivity is	�

	%= , weareunlikely to getanoptimalplan.

As Example2.1shows,theselectivity thatcorresponds
to the expectedvalue of the input neednot be the ex-
pectedselectivity in general.(Indeed,sometimesit does
not even make senseto talk aboutthe “expectedvalue”
of the input, sincethe input might not benumeric,asin
thecaseof [REGION].) Why shouldwe careaboutthe
expectedselectivity atall?

Proposition 2.2: If the cost of a plan is linear in the
(intermediate)table sizes,thentheLSCplan for theex-
pectedselectivityis an LECplan.

How reasonableis it to assumethat the cost is linear
in the input table sizes? If we have enoughmemory,
the textbook formulassaysort-merge is essentiallylin-
ear in the input table sizes. The textbook formula for
indexed nested-loopis alsoessentiallylinear in the size
of theouterinput table.Sinceour focusis on selectivity
in this subsection,we do assumethatwe have plentyof
memory. (For sort-merge,“enoughmemory”essentially
meansthe amountof memoryis more than the square
root of the larger relation. So if pagesare8KB, 80MB
of memorywill handletablesup to about8GB. For in-
dexed nested-loop“enoughmemory” essentiallymeans
that the index fits in memory.) In Figure4 we show the
runningtime of TPC-HQuery5 againstselectivity; note
that the running time is in fact almostlinear in the in-
put size. The A -axis shows the numberof rows in the
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ORDERStablethatgot selected.Sowe canconvert theA -axisto selectivity if wedivideby thenumberof rowsin
theORDERStable,namely1,500,000.(SinceTPC-His
uniformly populated,thedifferentvaluesof [DATE] will
selectroughlythesamenumberof rows,sowe madethe
lengthof the interval a variableandvariedthat instead.
Thenumberof rows selectedis roughlydirectly propor-
tional to the lengthof the interval, becausethe TPC-H
databaseis uniformly populated.)

Wesaidthatto useanLSCoptimizerto getLEC plans
weneedto convert theinputdistribution to adistribution
on selectivity. To do this, we needto evaluatetheselec-
tivity of eachinput. This canbedoneoffline for astored
procedure.For example,theinputdistribution for Exam-
ple 2.1 is

1+2 � [DATE] �B4 -01-01�C�D	�

� for 4E8F: 1993,
1994,1995,1996,1997< . Theselectivity distribution is132 ��GH�I	�
 =>�J�I	�

� and

132 ��GH�K	�

	%=>�L�I	�

� , whereG denotesthe selectivity. If the numberof input values
is large andit is infeasibleto convert thedistribution of
input valuesto thedistribution of selectivities in onefell
swoop, thenwe cando it incrementally. (In fact, if the
DBMS actuallygetsthedistribution on the input values
by collectingstatisticson userinputs,asopposedto be-
ing given a distribution by fiat, then the DBMS cando
theconversionwhile collectingthestatistics.)

2.2 Distributed Databases

As we saw in the previous section,carefulselectionof
parametervaluesenablesLSC optimizationto produce
LECplanswhenwehaveuncertaintyaboutselectivity. In
this section,we show that thesamething happenswhen
we have uncertaintyaboutcommunicationcostin a dis-
tributedor federateddatabase.

A relatively recent trend has been a focus on dis-
tributed databasesor federateddatabases,suchas Gar-
lic [HKWY97, ROH99]. In thesedatabases,the tables
arestoredon (geographically)separatesites,connected
by LANs or WANs, so one issuethat comesup when
executingqueriesis whereoperationsgetperformedand
which tablesandintermediateresultsareshippedacross
thenetwork. Evenif we areultimatelyinterestedonly in
the runningtime of a query, part of the runningtime is
thetime it takesto transmittables,whichdependson the
characteristicsof the network. For “local areaclusters”
or “server farms” thereis a generallyacceptedmodel.3

Let M denotelatency (essentially, this countsthe time to

3For the generalcase,suchasthe Internet,thereis no probabil-
ity distribution that describesthe transmissiontime [K. Birman and
R. van Renesse,privatecommunication,2001], so we focuson the
caseswhentheuncertaintycanberepresentedby aprobabilitydistri-
bution.

setuptheconnections,whichis roughlythetimeto trans-
mit an emptypacket), let N denotethe sizeof the table,
andlet O denotetheavailablebandwidth.Thenthetrans-
missiontime is P

�QM�RSNTRSOU�V�WMC��NYX�O (2.1)

[K. BirmanandR. vanRenesse,privatecommunication,
2001].

Thetransmissiontimeis certainlynot linearin O , sinceO occursin thedenominator;so,in generalZ �
P

�QM�RSNYRSO%���\[�
P

� Z �QM]��R Z ��NY��R Z ��O%����

Unlike selectivity, we can no longer take the expected
valuesof theseparametersif we wantLEC plans.How-
ever, it turnsout thatby choosingtheappropriateparam-
eters,we canstill useLSC optimizationto produceLEC
plans,asthefollowing propositionshows.

Proposition 2.3:
Z �

P
�QM�RSNYRSO%���^� Z �QM]�3� Z ��NY� Z ��@�X�O%� .

Onceagain,themoralof thestoryis that,if wechoose
theright parameters(in thiscaseN , M , and @�X�O —notethatZ ��@�X�OU�_[�K@�X Z ��OU� in general,so we cannotuse O ) and
theright specificvalues,wecanuseLSCoptimizationto
produceLEC plans.

2.3 When Is One Bucket Enough?

Theexamplesin this sectionhave shown that it is often
possibleto produceLEC plansusingLSC optimization
(i.e., usingjust onebucket). It is naturalto wonderex-
actlywhenit sufficesto usejustonebucket.

A necessaryconditionis that thereexistsa parameter
settingwhoseLSCplanis anLEC plan: if sucha setting
doesnot exist, thenwe cannotpossiblyproduceanLEC
planby usingjustonebucket. In theory, this is alsoasuf-
ficient condition. In practice,however, it is not enough
thatthereexistssomeparametersetting:wemustbeable
tofindoneefficiently, sayin lineartime. Someconditions
thatallow usto find suchaparametervaluein lineartime
arethefollowing:

C1: If thereis a dominantplan(e.g.,seeSection2.1.1),
thenany valuewill do.

C2: If the costof a plan is essentiallylinear in the pa-
rameter(s)of interest(e.g.,seeSection2.1.2),then
we canusetheexpectedvalueof the parameter(s),
sinceexpectationis a linearoperator.

C3: If thecostof aplanis a (sumof) product(s)of inde-
pendentparameters(e.g.,seeSection2.2), thenwe
canusetheexpectedvalueagain,sincetheexpected
valueof the productis the productof the expected
valuesfor independentparameters.
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Sometimesparametersthat do not fit the above criteria
canbe

`
transformedsothatthey do (seeSection2.2).

Note that while it is possibleto produceLEC plans
usingLSC optimizationin thecasesabove, existing op-
timizers (including the DBMS we usedin the experi-
ments)do not take advantageof C2 andC3, sincethey
do not usetheexpectedvalueof theappropriateparam-
eters. Thus,existing LSC optimizersarein generalnot
producingLEC plans.Theseresultsshow that, in many
cases,with relatively little overhead,they could.

So far eachscenariowe coveredsatisfiesone of the
conditionsabove. In the following sections,we investi-
gatescenariosin whichLSCoptimization,nomatterhow
cleverly done,cannotproduceanLEC plan.

3 More General Cost Functions

In [CHS99] and so far in this paper, we have implic-
itly assumedthat “cost” is essentially“running time”.
While thisassumptioncertainlyseemsreasonableandre-
quireslittle motivation,is it alwaysappropriate?If “cost”
means“money” andwe arepayinga fixed amountper
time unit, then“running time” and“cost” are essentially
interchangeable.By minimizing expectedrunningtime,
we arein fact minimizing expectedcost. However, this
is not always true, as the following examplesshow. In
theseexamples,given a plan � , let a�� � � be the random
variabledescribingthe runningtime of � (a�� � � is a ran-
domvariablesinceit is a functionfrom parameterssuch
asthe amountof memoryavailableor the selectivity to
theactualrunningtime). We alsoassumesomedistribu-
tion

132
on theseunderlyingparameters.Thus, we can

talk about
132 �'a�� � �b� 1 minute� —the probabilityof the

setof underlyingparametersfor which therunningtime
of � is 1 minute.

Example 3.1: An investor may need the results of a
queryto decidewhetherto sell a certainstockwithin 10
minutes.After that,hestandsto losemillions of dollars
(eitherby notsellingastockthatis goingdown orby sell-
ing a stockthat is goingup). In this case,theuserdoes
notcareif aplanrunsfor 10secondsor9minutes—either
will meetthedeadline.The useralsodoesnot careif a
planrunsfor 11minutesor anhour—eitherwill missthe
deadline.Now supposethat theoptimizerhasto choose
betweenplan � � andplan � � for thequery. Supposefur-
therthat

0 1+2 �'a�� ��� �V� 9 minutes�c�?@ ,0 1+2 �'a�� � � �V� 10seconds�V��

� , and0 1+2 �'a�� ��� �V� 11minutes�V��

� .

It is easyto seethat ��� haslower expectedrunningtime.
However, � � alsomissesthe deadline50% of the time;
the user would surely prefer ��� over ��� while, unfor-
tunately, an optimizer that minimizesexpectedrunning
time would just assurelypick � � over � � . In this case,
clearly, minimizing theexpectedrunningtime is not the
right thing to do.

Example 3.2: Supposean optimizerhasto choosebe-
tweenplan ��� andplan ��� for somequery. Supposefur-
therthat

0 132 �'a�� ��� �c� .5 minutes�V�?

d ,0 132 �'a�� ��� �c� 10 minutes�c�?

@ ,0 132 �'a�� � � �c� 2 minutes�^�?

d , and0 132 �'a�� ��� �c� 3 minutes�^�?

@ .

It is easyto checkthat the expectedrunningtime of ���
is @�
 =>� minutes,which is lessthantheexpectedrunning
time of ��� ( ��

@ minutes). Thus,an optimizer that min-
imizesexpectedrunning time will pick ��� . But is this
necessarilythe“right” choice?A usercouldgetupsetif
a querythat usually takes30 secondswereto suddenly
take 10 minutes. So while thereis no deadlineto meet
in this case,it is not so clear that minimizing expected
runningtime is theright thing to do.

The LEC approachdeals naturally with situations
whereour goal is not necessarilyto minimize running
time. All that is requiredis that theuserspecifya func-
tion characterizingthe “cost” of eachpossiblerunning
time. For example, in Example3.1, we can take the
“cost” of getting an answerin lessthan 10 minutesto
be 1, andthe “cost” of getting it in more than10 min-
utesto be1,000,000.Oncewe have a costfunction,we
simplychoosetheplanof leastexpectedcost.Of course,
thereis no reasonto assumethat the costof a plan de-
pendsonly on runningtime. For example,it maymatter
whethertheplanis blockingor producesresultsatacon-
stantrate.Sometimestheorderof theresultsmaymatter
for displaypurposes.All of thesefactorscanbe taken
into accountin thecostfunction. As long astheplanin-
ducesa probabilityon eachof the relevant eventsanda
costfor eachof them(e.g.,aprobabilityof blockinganda
costfor blocking),wecanstill sensiblydefinethenotion
of a planof leastexpectedcost. We focusfor simplicity
hereon caseswherethe cost function dependsonly on
running time. Although this is somewhat restrictive, it
doesseemto cover many casesof interest.

Formally, we assumethat there is a plan-costfunc-
tion that takes as input a plan � and returnsa random
variable ef� � � , the cost of plan � as a function of the
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parametersettings. Up to now, we have assumedthateg� � ���ha�� � � . Now we insistonly that eg� � � bea function
of a�� � � . However, wedo not requirethat ef� � ����NT� depend
only on a�� � ����NT� , where N is a parametersetting. We al-
low ef� � ����NT� to dependon globalpropertiesof a�� � � , such
asits variance. Our goal is still to find LEC plans,but
with respectto a costfunction that is moregeneralthana�� � � . We write

Zjilkm � � � to denotethe expectedvalueofeg� � � (giventheunderlyingdistribution
1+2

on theparam-
eterspace).

Oneobvious way to geta plan-costfunction is to de-
fine a time-costfunction, that is, a function that charac-
terizethecostof runningfor n timeunits.

Example 3.3: ConsiderExample3.1.As wesaidabove,
onetime-costfunction that capturesthe costof time to
theinvestoris

o �QnS�c� @ if nCp?@�	 and@�	Uq if nCr?@�	 .

Given a time-costfunction o , we candefinea plan-cost
function e by taking eg� � ����NY�V� o �'a�� � ����NY��� .

With sucha plancostfunction,it is easyto checkthatZ i�km � � �V� s o �QnU� 1+2 �'a�� � �V�WnS� . Thus,in thiscase,Z ilkm � ��� �V�?@ut�	�

����@�	 q �3��	�

�u� Z ilkm � ��� ��

So if the optimizerminimizedexpectedcost insteadof
expectedrunningtime, it wouldpick ��� insteadof ��� .

Of course,oncethe cost function is no longer linear in
runningtime, theexpectedcostof a plan is not thecost
of the expectedrunningtime of the plan, so we canno
longerusejustonebucket in general.

Therealquestionis often“Wherearethecostscoming
from?” In asituationlikeExample3.1,they clearlyneed
to be obtainedsomehow from the user. This is a non-
trivial problem. In a casesuchasExample3.1, it may
bequitepossiblefor theuserto provide a costfunction.
Moreover, in this case,even a qualitative descriptionof
thecostfunctionmaybeenoughto provide usefulguid-
ancein choosinga plan (and, in particular, to steerthe
systemawayfrom theobviousplanwhichjustminimizes
expectedrunningtime). However, in Example3.2, it is
not immediatelyclear how to choosea plan-costfunc-
tion that capturesusers’annoyanceregardingvariation
in runningtime. We could,of course,just take theplan
costto bethevariance.Thentheplanof leastcostwould
certainlybe theoneof minimumvariance.However, in
thatcase,one“optimal” planwouldbeto justslow down
the computationto that of the worst case.4 While this

4While we maynot alwaysknow theworstcase,aslong asthere
is someupperboundon runningtime,we canusethat.

will minimize variance,it will probablynot make users
thathappy. While notperfect,onewayof capturingboth
preferencesof the users(i.e., minimizing running time
andminimizing variance)is to usea plan-costfunction
basedon a time-costfunction that is exponentialin the
runningtime. In Example3.2,thiswill havetheintended
effect. To seethis, let o �QA��b�v�Sw and e be basedon o .
Then Zjilkm � ��� �x� 	�

d����UyTz {��+��	�

@���� � y��r 	�

d���� � �+��	�

@����U|��� Z}i�km � ��� ��R
so the optimizerwould pick ��� insteadof ��� if it mini-
mizedexpectedcost. (Alternatively, we could just have
theplan-costfunction take the varianceof a�� � � into ac-
count;weconsiderthisapproachin Section4.2.)

4 Least Expected User Cost Query Op-
timization

As wesaw in theprevioussection,theplan-costfunctionef� � ����NT�~��a�� � ����NY� doesnot alwaysadequatelycapture
the preferencesof the user. If the plan-costfunction is
linear in running time (i.e., eg� � ����NT�����3�'a�� � ����NT��� for
somelinear function � ), then a dynamicprogramming
algorithm(DPA) à la SystemR would producean LEC
plan.Suchanalgorithmdoesnot,however, produceLEC
plansin general,asthefollowing exampleshows.

Example 4.1: Supposethatweadopttheplan-costfunc-
tion from Example3.3. Considera two-stagejoin. Sup-
posethatwe have two possibleplans,��� and ��� , for the
first stage,andonepossibleplan,� | , for thesecondstage.
Supposefurtherthat

0 132 �'a�� � � �c� 1 minute�^�?	�

d ,0 132 �'a�� � � �c� 11 minutes�c�?	�

@ , and0 132 �'a�� � � �c� 9 minutes�^�?@ .

Notethatthis translatesto
Z i�km � ��� �c�?	�

d���@�����	�

@���@�	Uq��

and
Z}i�km � ��� ����@ , so it seemslike we shouldpick ��� at

thefirst stage.
Now supposethat

132 �'a�� � | �c� 2 minutes�V�?@ . Then

0 132 �'a�� ���U��� | �V� 3 minutes�V�?	�

d ,0 132 �'a�� � � ��� | �V� 14 minutes�V�?	�

@ , and0 132 �'a�� � � ��� | �V� 11 minutes�V�?@ .

So
Z ilkm � ���U��� | �V�?	�

d���@��U��	�

@���@�	Uqg� while

Z i�km � ������� | �c�@�	 q . The upshotis that, although� � is the LEC plan at
thefirst stage,������� | is theglobalLEC plan.
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Thus, in general,a (näıve) DPA à la SystemR will
not work, sincekeepingonly a local LEC plan at each
level mightnotgive aglobalLEC plan.Onewayaround
this problemis to restrictour searchspaceby usingthe
“black box” approachof [CHS99]. The key idea there
is to generatea relatively small set of candidateplans,
in thehopethat this setincludestheoptimalplan(or, at
least,a plancloseto optimal). We thencomputetheex-
pectedcostof eachof the plansgenerated,andchoose
thebestone.Theapproachto generatingcandidateplans
usedin [CHS99]wasto run a standardLSC queryopti-
mizer asa black box, for a setof possiblevaluesof the
parametersof interest. (That is, for eachsettingof the
parameters,we computethe optimal LSC plan for that
setting.)This approachcanclearlybeappliedwith more
generalcostfunctionsaswell. Anotherapproachis toun-
derstandwhendynamicprogrammingwill produceLEC
plans. We considerthis issuein the remainderof this
section.

4.1 When Does the DPA Produce LEC Plans?

Let � be a left-deepplan that computesthe join � � � �� � � �5�S�S�~� ����� . (As is standardin the literature,
we restrict to left-deepplans.) Let � 
�� � be the sub-
plan of � that computes� � � ���S�S�\� �D����� � , let � 
��U�
be the methodusedto access��� , and let � 
 ��� be the
top-level join methodof � (i.e., themethodusedto join� � � ���S�S�]� �����l� � with ��� ). Notethat

a�� � �V��a�� � 
�� ���3��a�� � 
��U���+��a�� � 
 ���L��

A plan-costfunction e is additiveif f for all � � and� � ,

eg� ���U����� �c��eg� ��� �+��ef� ��� ��R
wheretheadditionontheright is pointwiseaddition(that
is, �'eg� � � �S�beg� � � ������NT�V��eg� � � ����NY�S�beg� � � ����NY� ). Of course,
if we identify the cost with the running time, then the
plan-costfunction is certainlyadditive. Denotetheplan
pickedby theDPA theDPA plan.

Theorem 4.2: If e is additive, thenthe DPA plan is an
LECplan.

Theplan-costfunctioninExample4.1 is not additive,
which is why theDPA doesnot work. Sincein [CHS99]
the plan-costfunction is a�� � � , we wereable to usethe
DPA to obtainLEC plans.Giventhatplan-costfunction
arenotadditive in general,therearetwo questions.

Q1: How non-optimalis theDPA plan?

Q2: How do wegetLEC plansin general?

To answerthefirst question,let

� m � ��� R ��� �� U¡'¢�£eg� ���U����� �3¤��'ef� ��� �+��eg� ��� ����

Note that

� m � ��� R ��� � , like eg� ��� � and ef� ��� � , is a random
variable,whosevaluedependson thesettingsof theun-
derlyingparameters.As thenext theoremshows,we can
boundthenon-optimalityof theDPA planby aboundon� m � ��� R ��� � .
Theorem 4.3: Supposethat ¥ � p Z}ilk¦�§ � ��� R ��� ��pH¥ �

for
all ��� , ��� , and N . Let ��¨ betheDPA plan for a ��©ª�«��� -
way join and let �l¬ be an LEC plan for that join; thenZ}ilkm � ��¨ �+¤ Zjilkm � ��¬ �Vp?��©g��¥ � ¤�¥ � � .

Now considerQ2. Thekey problemis that,in general,
we could have

Z}ilkm � ���%��� ��t Z}i�km � ���­��� � even thoughZ ilkm � ��� ��® Z ilkm � ��� � ; this meansthat if we prune��� be-
cause

Z}i�km � � � ��® Zjilkm � � � � , then we will not consider������� , which is betterthan ������� . The following propo-
sition shows that, if

Z i�km � ��� �V¤ Z ilkm � ��� � is big enough,
thenthereversalcannothappen.

Proposition 4.4: For all ��� , ��� , and � ,

1.
Z ilkm � ������� �V® Z i�km � ���­��� � iff

2.
Zjilkm � ��� �¯¤ Z}i�km � ��� �c® Z}i�k¦�§ � ��� R � �¯¤ Z}i�k¦�§ � ��� R � � .

Hereis aneasycorollaryof Proposition4.4.

Corollary 4.5: Supposethat ¥ � p Zjilk¦�§ � � � R � � �Vp?¥ �
for

all ��� and ��� . Then
Zjilkm � ��� �T¤ Z}ilkm � ��� �V®�¥ � ¤~¥ � impliesZ ilkm � ���%��� �V® Z ilkm � ���­��� � for all ��� , ��� , and � .

Corollary4.5suggestsa modificationof theDPA that
will yield a global LEC plan. Supposethat the set of
tablesin thejoin is °±�²:

P � RS
S
S
�R
P
�³< . For each́Hµ�° ,

let ¶�· betheexpectedcostof theLEC plansfor ´ . For
each́ , keepall plans� suchthat

Z}i�km � � �>¤�¶ · p?�¹¸ °\¸º¤¸ ´J¸ ����¥ � ¤�¥ � � . An easyinductionshowsthatin factwedo
have thatfor eachset ´ , thesetof plansthatwekeepfor´ includesanLEC plan. The following exampleshows
how themodifiedalgorithmworksfor a two-stagejoin.

Example 4.6: Supposethat

o �QnU�^� n if n�p�@�	 andn���@�	 if n�r�@�	 .

Let e be theplan-costfunctionbasedon o . It is easyto
checkthat ¤u@�	Wp � m � ��� R ��� �~pK@�	 for all ��� and ��� .
Considera two-stagejoin. Supposethat we have three
possibleplans,��� , ��� , and� | for thefirst stageand
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0 1+2 �'a�� ��� �V� 5 minutes�c�?@�

	 ,0 1+2 �'a�� ��� �V� 2 minutes�c�?	�

� ,0 1+2 �'a�� ��� �V� 11minutes�V��	�

� ,0 1+2 �'a�� � | �V� 20minutes�V��	�

d , and0 1+2 �'a�� � | �V� 7 minutes�c�?	�

@ .

Thenwehave

0 Z ilkm � ��� �c�?����@�

	����?� ,0 Z}ilkm � ��� �c�?����	�

��������@���	�

�����?@�@�

� , and0 Z}ilkm � � | �c�?��	���	�

d�����»���	�

@����?��»�

» .

Thus, � � is theLEC planat stage1 andthat
Z}i�km � � | ��¤Z}i�km � ��� �c�?����

»b®���	 , sowe maydrop � | .

Supposethat thereis only oneplan � at stage2 and132 �'a�� � ��� 6 minutes�c�?@ . Then

0 1+2 �'a�� ���U��� �V� 11 minutes�^�?@�

	 ,0 1+2 �'a�� ���­��� �V� 8 minutes�^�?	�

� ,0 1+2 �'a�� ���­��� �V� 17 minutes�^�?	�

� ,0 1+2 �'a�� � | ��� �V� 26 minutes�^�?	�

d , and0 1+2 �'a�� � | ��� �V� 13 minutes�^�?	�

@ .

Sowehave that

0 Z ilkm � ���U��� �c����@���@�

	����?��@ ,0 Z}ilkm � ���­��� �c������	�

��������»���	�

�����?@�»�

� , and0 Z}ilkm � � | ��� �c��������	�

d�����»���	�

@����?��»�

» .

Note that we indeedhave
Z ilkm � ���U��� ��p Z ilkm � � | ��� � , so

we canindeedprune � | (sincethis is a two-level join).
However,

Z}i�km � ������� �}t Z}ilkm � ���U��� � , sowe cannotprune��� andstill obtainaglobalLEC plan.

Wehaveseenhow wecandealwith non-additive plan-
costfunctionsin thissection.However, dependingonthe
sizesof ¥ �

and ¥ � , we might have to keepa lot of plans
for eachsubset. If we have someinformation abouta
non-additive e , can we do better? In the next section,
we investigatethe caseof a cost function of particular
interest,variance.

4.2 Variance Minimization

As we have argued,usersmight preferplanswith more
stablebehavior, so usersmight prefer plans with low
variance(seeExample3.2). As we have seen,just tak-
ing theplan-costfunction to be the varianceof the run-
ning time leadsto a preferenceorderingover plansthat

would almost certainly not satisfy most users. How-
ever, anotherapproachto dealingwith variancemight
be to considera plan-costfunction e that takes into ac-
countboth therunningtime andthevariance,for exam-
ple ef� � ���½¼�a�� � �¯��¾�¿E�'a�� � ��� , where¿E�QA�� denotesthe
varianceof randomvariableA . Theusercanthenchoose¼ and¾ to reflectherrelativepreferencefor runningtime
vs.variance. If this is in fact the user’s plan-costfunc-
tion, thenthereis still theproblemof choosingtheLEC
plan. In this section,we show how to exploit theproper-
tiesof varianceto getapproximationsto theLEC plan.

Recall that ¿E�QA��b� Z �QA � �c¤ Z �QA�� � . Let thecovari-
anceof ��� and ��� be denotedby À�� ��� R ��� � . Recall thatÀ��QA�R�43�V� Z �QA³4��³¤ Z �QA�� Z �Q43� . Two randomvariablesA
and4 are

0 uncorrelatedif f À��QA�R�43�V�?	 ,0 positivelycorrelatedif f À��QA�R�43�^r?	 , and0 negativelycorrelatedif f ÀÁ�QA�R�4��Vt�	 .

Note that ¿E�QA��B43���Â¿E�QA��}�²¿E�Q43�j�Ã��ÀÁ�QA�R�4�� ,
so ¿E�QA_��43�Ä��¿E�QA��c�F¿E�Q43� for uncorrelatedrandom
variablesA and 4 . Let

Z ilkm eYÅª� � �Æ�#¿E�'a�� � ��� (which
meansthat eTÅª� � � is a constantfunction, independentof
the parametersetting). The randomvariablesthat we
encounterin doingqueryoptimization(i.e., the running
timesof subplansof aparticularplan� ) aretypicallynon-
negativelycorrelated(i.e., À��QA�R�43�V®?	 ). For example,at
any particularstage,thesizeof theresultandtherunning
timebothdependontheinputsizes,andthebiggerthein-
put sizes,the longertherunningtime andthebiggerthe
result.A biggerresultmeanslongerrunningtime for the
next stage,so the runningtime of the currentstageand
the next stagearealso(non-negatively) correlated.For
the restof this section,we will assumethat all random
variablesarepairwisenon-negatively correlated.

Recall that Theorem 4.3 gives a bound on how
non-optimal a DPA plan could be that dependsonZ ilk¦ § � ��� R ��� � . As the following theoremshows, we can
givea tight boundfor eTÅ thatdoesnotdependon

� m�Ç .

Theorem 4.7: If
Z}i�km�Ç � ��� �cp Z}ilkm�Ç � ��� � , then

Z i�km�Ç � ���U��� �Z i�km�Ç � � � ��� � p?�
andtheboundis tight.

Theorem4.7 shows that the DPA is off by at most
a factor of two for two-stagejoins. The next theorem
shows that the error grows only linearly with respectto
thedepthof thejoin.
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Theorem 4.8: If
Z i�km�Ç � ��È'É Ê�Ë �Cp Z i�km�Ç � ��È'É | � Ê�Ë � for all @ÁpÌ pFÍ and @upWÎªp?� , thenfor all @bp?© � RS
S
S
�RS© � p�� ,

Z i�km�Ç � ���ÏÉ ÊÑÐÑ� �S�S� ��� � É ÊÓÒ �Z ilkm�Ç � � �ÏÉ Ô ÐÑ� �S�S� ��� � É Ô Ò � pFÍ^

Essentially, Theorem4.8 shows that the DPA plan is

nomorethanafactorÍ awayfrom any plan,soin partic-
ular, theDPA planis no morethana factor Í away from
anLEC plan.

Theseboundsapproximationsarestill nowherenearas
goodaswewould like. Weexpectthatin practice,things
will bemuchbetter. After all, Justbecausethereis some
sequencejoin for which the Õ�Öu� plan hasvariancea
factorof Í timesthatof theoptimalplandoesnot mean
thatthatis whatwill typically happen.Our initial experi-
mentsbearthisout. Wearecurrentlytrying to find some
additionalassumptionsthatguaranteethatwe will geta
betterapproximationusingtheDPA.

5 Conclusions

Wehave investigatedtheextentto whichwecanusespe-
cific parametersettings(i.e., LSC optimization)to pro-
duceLEC plans. Somewhat surprisingly, we found that
in many casesof interest,LSC optimizationcould pro-
duceLEC plans.However, wemustbecarefulto choose
theparametersandtheirsettingsappropriately. Thismay
involve transforminga distribution on (say) user input
values,to a distribution on selectivity, so that we can
computetheexpectedselectivity with respectto thisdis-
tribution. Currentimplementationsof queryoptimizers
do not seemto take advantageof probabilisticinforma-
tion, even when it is readily available, so that even in
caseswherethereis a reasonablespecificsettingof the
parametersthatcanbeused,this is not thesettingthatis
actuallyusedin thecomputation.(For example,it seems
that for the DBMS we tested,the settingit usesis the
first onegiven.) In caseswhereoneplan dominatesall
othersno matterwhattheparametervalue(asis thecase
in someof theexamplesin Section2.1.1),thenthespe-
cific valuechosendoesnotmatter. Otherwise,of course,
it couldmake a big difference.We seeoneof thecontri-
butionsof this paperasclarifying exactly whenwe can
useLSCoptimization(andwhatparametersettingto use
in thesecases).

On theotherhand,particularlyin thecasewhererun-
ning time is not the appropriatecostmeasure,LEC op-
timization becomesparticularly important. It can be
usedto capturethings like deadlines,a preferencefor
minimizing variance,and featuresunrelatedto running

time, like the issueof whetheror not there is block-
ing [HHW97]. However, consideringmoregeneralcost
functionsopensupahostof new issues.For onething, it
requiresconstructinganappropriatecostfunction,either
from informationprovided by users(which may be dif-
ficult to get)or throughanunderstandingof theapplica-
tion domain. Secondly, it requiresdesigningalgorithms
that can take advantageof this information to produce
high-qualityplans. We arecurrently investigatingboth
problems.
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