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Abstract

A standardassumptiorin the databasejuery optimiza-
tion literatureis that it is adequatdo optimize for the
“typical” case—thais, thecasen which variousparam-
eters(e.g.,theamountof availablememory the selecty-
ities of predicatesetc.) take ontheir “typical” values.In
[CHS99],we amuedthatwe coulddo betterby choosing
plansbasedon their expectedcost Herewe investigate
this issuemorethoroughly We shav thatin mary cir-
cumstancesf interest,a “typical” value of the parame-
ter oftendoesgive acceptablanswersprovidedthatit is
chosencarefully andwe areinterestecnly in minimiz-
ing expectedrunningtime. However, by minimizing the
expectedrunningtime, we areeffectively assuminghat
if planp; runsthreetimesaslong asplanp., thenp; is
exactly threetimesasbadasps. An assumptiodik e this
is not alwaysappropriatgfor example,for time-critical
data). We shav thatthe focusingon leastexpectedcost
canleadto significantimprovementfor a numberof cost
functionsof interest.

1 Introduction

Databasejueriesaretypically specifieddeclaratiely, so
it is up to the DBMS to choosea goodplanto carry out
the query[SAC*79. Givena query a cost-baseapti-
mizer hasto pick a plan of leastcost. To do this, the
optimizerhasto estimatahecostof aplan. Oneproblem
is thatthe costof a plan dependsn variousparameters
(e.g..theamountof availablememory theselectvities of
predicatesthe sizesof the tables,etc.), someof whose
valuethe optimizermight not (or cannot)know at query
optimizationtime. Traditionally an optimizerassumes
(at optimizationtime) that the parameterswill take on
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certainspecificvalues(at run time), andthen computes
anoptimal planbasedn the assumptiorihatthe param-
etersactuallytake onthesevalues.How thesevaluesare
chosenvaries from implementationto implementation.
In [CHS99], we termedthis approacHeastspecificcost
(LSO optimization Of course|jf the performancef the
planchosencanvary significantly dependingon the pa-
rametewvalue,thentheplanchoserby anLSC optimizer
mightbefar from optimal.

We may be ableto do betterif we have a probability
distribution on the possibleparametewalues(which is
oftena quite reasonabl@ssumptiorin practice).In this
case,one ohvious choice of specificvalue for an LSC
optimizer to take is the expectedvalue of the parame-
ter (or perhapghe modalvalue—thats, the onethatoc-
cursmostfrequently). However, if the goalis to find a
plan of leastexpectedrunningtime, thenchoosingthis
specificvalueis not necessarilythe right thing to do. In
general the bestplan underthe assumptiorthat the pa-
rametertakes on its expectedvalueis not necessarilya
planwith leastexpectedrunningtime, asthe following
exampleshaws.

Example 1.1: Supposdhatwe have two plans,p; and
p2, suchthatif thereareatleast1000pagesof memory
available, p; takes280 secondgo run andp, takes 300
seconddo run, andif theamountof memoryis between
633 pagesand1000pagesp; takes560 seconddo run

andp, (still) takes300secondgo run. Supposehat, by

obsenation, the probability of having 2000pagesis 0.8

andthe probability of having 700 pagesis 0.2. The ex-

pectedvalue of the amountof memoryavailableis 1740
pageslf theoptimizerassumethatthereare1740pages
of memory it will choosep;. However, theexpectedun-

ningtime of p; is 0.8(280) + 0.2(560) = 336, while the
expectedrunningtime of p, is 300. I

In light of suchexamples,we adwcatedin [CHS99]
what we calledleast expectedcost (LEC) optimization



whereplansare chosenbasedon their expectedcostin-
steadof their costat a specificparametersetting. The
advantageof LEC optimizationis thatthe planit picks
hasthe leastexpectedcostamongthe plansundercon-
sideration. So if the queryis compiledonceand exe-
cutedmary times(asis oftenthe case) thenthe average
runningtime of thequeryis likely to be theleastamong
all the candidateconsidered.We alsoshaved how the
LEC plancouldbecomputedjivenaprobabilitydistribu-
tion ontheparameterdyy extendingtechniquegurrently
usedin LSC optimizers with relatively little overheadn
runningtime. If the probability distribution over the pa-
rameterds given by histogramsthe actualoverheadle-
pendson the numberof bucketsusedin the histograms;
LSC optimizationis essentiallyLEC optimizationwith
onebucket.

In this paperwe investigatetherelationbetweerLEC
optimization and LSC optimization more thoroughly
boththroughempiricalexperimentsandanalyticalexplo-
rations.Our contritutionsareasfollows:

1. Onesurprisethatwe encountereds that LSC opti-
mizationcanproducelL EC plans(at leastin princi-
ple) in awide variety of situations. This prompted
usto characterizavhenLSC optimizationcanyield
LEC plans.

2. We exhibit, both throughexperimentsand analyti-
cal results,scenariosn which the abore conditions
hold. This is of specialinterestfor practitioners,
since under theseconditions, they can obtain the
LEC planwithout modifying the core of the exist-
ing optimizers.

. The scenariosabove all dependon the costbeing
linear in terms of running time (which is a stan-
dardassumptiorin theliterature).We amguethatthis
is not alwaysappropriatehroughmotivating exam-
ples,andwe investigatesomeconsequences hav-
ing non-linearcostfunctions.

Therestof this paperis organizedasfollows. In Sec-
tion 2.1wereporttheresultsof experimentshaving that
LSC optimizationcanproduceLEC plansin centralized
databasedn Section2.2,we shawv thatthis continuego
be true evenin a distributed settingin which the trans-
missiontime canbe modeledprobabilistically Thenin
Section2.3we characterizevhenit is feasibleto produce
LEC plansusingLSC optimizers.Theresultsin Section
2 depenceritically ontheassumptiorthatthe costis just
runningtime. In Section3, we shav thatfull LEC opti-
mizationis in generahecessarif thecostfunctionis not
linearin therunningtime. We thendiscussijn Sectior4,
somechallengedhatariseswhenthe costfunctionis not

linearin therunningtime. Finally, in Section5 we offer
someconcludingremarksandpossiblefuture directions.

2 LEC Through LSC

We originally plannedto constructan LEC prototypeto
benchmarkthe performanceof LEC optimizationusing
theTPC-HdatabasenacommerciaDBMS. Oneof the
thingswe did wasto fine-tunethe costformulawe found
in textbooks. (It is well known that textbook formulas
do notaccuratelydescribehe costof joins; seefGBC98,
LG98].) As we weredoing theseexperimentshowever,

we raninto somefindingsthat alteredthe courseof our
research.

2.1 TheExperiments

We ran all our experimentson a machineequippedwith
two PentiumProprocessorsunningat200MHz,128MB
of RAM, Windows NT 4.0 SP5 1381, and an 8.9GB
SCSlharddisk. The pagesize of the DBMS is 8KB
andwe may setthe available buffer memoryfrom 4MB
to 127MB. (Dueto overheadf theoperatingsystemwe
variedthebuffer poolsizeonly from 4MB to 80MB. Note
thatthe DBMS refusesto run certainmemory-intensie
plansif the size of the buffer pool is belov 4MB.) The
DBMS allows usersto force a given plan to be used
by giving “hints” to the optimizer The databasewve
usedwasthe TPC-H databasevith the scalefactor set
to one. (We referthereaderto [TPPC99 for the details
of TPC-H)

2.1.1 Amount of Available Memory

Sincetheamountof availablememoryis difficult to pre-
dict [G. Lohman,private communication1998], we fo-

cusedon this parametein [CHS99]. Whenwe ran the
experimentsto fine-tunethe costformulaswe have for

join methodswe discoveredthat thereis often a domi-
nantplan;thatis, sort-mege (or indexed nested-loop)s
alwaysbetter eventhoughbothindexed nested-loo@mand
sort-mege exhibit discontinuousehaior, asonewould
expect, whenthe amountof memorybecomedow (see
Figurel). Of coursewe alsohave casesn whichnojoin

methoddominatesanotherthatis, the curvescross.

Clearly thereis no needfor LEC optimizationwhen
thereis adominantplan. Usingary valueof the parame-
terin LSC optimizationwill give the optimalplan. How
muchLEC optimizationhelpswhenthereis a crosseer
depend®nthe probability distribution of memorysizes.
For example,considerTPC-HQuery12, whoserunning
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Figurel: Runningtime for ORDERSx LINEITEM

time for differentvaluesof memoryis shovn in Figure
2.1 Notethatsort-mege doesbetterthanindexednested-
loop in all memorysettingsexceptat 5SMB (the DBMS

refusedo executeeitherjoin methodbelon 5MB). Soif

thereis significantprobability that the amountof mem-
ory availableis low (in thiscasearound5MB), thenLEC

optimizationwill help.

In our experiments,the crosseers for memorytypi-
cally happenat the low end of the scale. This suggests
that,if theparameteof interestis memory aslong asthe
probability of a memoryshortagas low enoughfor this
possibility to be safelyignored,thentherewill typically
be adominantplan. (This comesoutin all our otherex-
periments,not just the experimentsshavn in Figuresl
and2.) Thus,in this case LSC optimizationsufices.

Onemight wonderif this phenomenotis just an arti-
fact of the experimentalsetupwe used. This is not so.
Thetextbook costformulafor indexed nested-loops es-
sentially the numberof pagesof the outerrelation plus
the numberof tuplesin the outerrelation that satisfies
the selectionpredicate sincefor eachof thesetupleswe
will needto reada pagefrom theinnerrelation[UII89].
(The textbook formula is not running time, but is sup-
posedto be directly proportionalto runningtime.) This
guantityis clearlyindependentf memory Therationale
is thatif we are usingindexed nested-loopwe assume
thattheindex fitsin memory sothatwe have to readonly
a pagefor eachtuple of the outerrelation (that satisfies
the selectionpredicates).Oncethe amountof memory
becomesolow thattheindex no longerfits in memory
the runningtime will clearly change. Figuresl and 2

IActually, this is the running time for a slight modification of
Query 12; we added“ando_totalprice < 15000" to the predi-
cate,sincesort-mege dominatesndexed nested-loogor theoriginal

query

Figure2: Runningtime for TPC-HQuery12

shaw thatthis is essentiallythe case. The textbook for-
mulafor sort-megeinvolveslogarithmsof theamountof
memory so they arenot constantwith respectto mem-
ory (unlike indexed nested-loop) However, the baseof
theselogarithmsarethe numberof pagesavailable,soif
we have alargeamountof memory theformulais essen-
tially constantfor a large rangeof memoryvalues. The
bottomline is that,accordingto textbookformulas,there
typically is adominantplanwhentheamountof memory
availableis suficiently large.

2.1.2 Selectivity

Anotherparameterve investigateds selectvity. Unlike
memory the runningtime is not a stepfunction, andit
increasesas selectvity increasegwhereasthe running
time deceasesas memoryincreases).While it is often
the casethat an optimizer might not know the selectv-
ity of a particular predicatedue to a lack of statistics
on thetables,this problemcanbe alleviatedby keeping
more detailedstatistics. Thereis anothersourceof un-
certaintythat cannotbe dealtwith by keepingstatistics
onthedatabasdéself. Oftenanoptimizeris facedwith a
problemof optimizinga querytemplate thatis, a query
with (user)input variables. (This canhappenwith em-
beddedsQL thatcontainshostlanguagevariables;jt can
also happenwith storedproceduregshat acceptinputs.)
In this case,the optimizer doesnot know the value of
theinputsandmustchoosea planin the absencef that
information. Theproblemis thattheselectvities of pred-
icatesin the querynow dependon the input values,and
this uncertaintycannotbe alleviated by keepingdetailed
statisticsaboutthe databasetself. However, if we have
distributions on the input values(eithercollectedby the
DBMS or furnishedby the users) thenwe canperform



select

n_name,

sum(l_extendedprice: (1 — |_discoun}) asrevenue
from

customerorders ineitem, supplier nation,region
where

c-custley = o_custley
andl_orderley = o_orderley
andl_suppley = s suppley
andc_nationley = s_nationley
ands_nationley = n_nationley
andn_regionkey = r_regionkey
andr_name= [REGION]
ando_orderdate>= [DATE]
ando_orderdate< [DATE] + interval 1 year
groupby
n_name
orderby
revenuedesc;

Figure3: TPC-HQuery5

LEC optimization?

As an exampleof a querytemplate,considerQuery
5 from the TPC-H benchmark(reproducedin Figure
3). The querycontainstwo parametersfREGION] and
[DATE]. Sincethe TPC-H databases uniformly pop-
ulated, the selectvity is essentiallyindependenbf the
parametervalues (especiallyfor those valuesusedin
the actualbenchmarkitself). This is hardly surprising,
sinceTPC-His designedo evaluatetraditionaloptimiz-
ers,which useLSC optimization. However, it is known
that,in practice databaseareoftennot uniformly popu-
lated.Let usseewhatcouldhapperif thisis thecase.

Example 2.1: Supposeve have adatabas@opulatecas
follows:

e 20% of the orders have o_orderdate between
1992-01-01and1996-12-31

e 80% of the orders have o_orderdate between
1997-01-01and1998-12-31and

e within eachof the above groupsthe distribution on
o_orderdatés uniform.

Supposethat the input distribution on [DATE] is
Pr([DATE] = y-01-0) = 0.2 for y € {1993,1994,

2Thereareotherwaysof dealingwith this problem;for example,
[INSS92] proposesan approachcalled parametric query optimiza-
tion. In thatapproachan LSC planis producedfor eachparameter
value. The problemis that the plan size grows, in the worst case,
with the numberof possibleparametewvalues. Another problemis
thatthey mightoutputplansfor parametevalueswith very low prob-
ability. It is possiblethat mostof the plansin the outputrarely get
used.
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Figure4: Runningtime for TPC-HQuery5

1995,1996,1997}. If the optimizerusesthe expected
value of the input, it will take 1995-01-01as the rep-
resentatie. This translatesto having selectvity 0.04,
sincetheintenal is oneyearand4% of the ordershave
o_orderdatén 1995.However, theexpectedselectvity is
actually0.4(0.2) 4 0.04(0.8) = 0.112. If we applyLSC
optimizationunderthe assumptiorthatthe selectvity is
0.04, we areunlikely to getanoptimalplan.li

As Example2.1shaws,theselectvity thatcorresponds
to the expectedvalue of the input neednot be the ex-
pectedselectvity in general.(Indeed,sometimest does
not even make senseto talk aboutthe “expectedvalue”
of theinput, sincetheinput might not be numeric,asin
the caseof [REGION].) Why shouldwe careaboutthe
expectedselectvity atall?

Proposition 2.2: If the cost of a plan is linear in the
(intermediate}table sizesthenthe LSCplan for the ex-
pectedselectivityis an LEC plan.

How reasonablés it to assumehatthe costis linear
in the input table sizes? If we have enoughmemory
the textbook formulassay sort-mege is essentiallylin-
earin the input table sizes. The textbook formula for
indexed nested-loops alsoessentiallylinear in the size
of the outerinput table. Sinceour focusis on selectvity
in this subsectionye do assumehatwe have plenty of
memory (For sort-mege, “enoughmemory”essentially
meansthe amountof memoryis more than the square
root of the larger relation. Soif pagesare 8KB, 80MB
of memorywill handletablesup to about8GB. For in-
dexed nested-loog'enoughmemory” essentiallymeans
thattheindex fits in memory) In Figure4 we shaw the
runningtime of TPC-HQuery5 againstselectvity; note
that the runningtime is in fact almostlinear in the in-
put size. The z-axis shavs the numberof rows in the



ORDERStablethatgot selected.Sowe canconvert the
x-axisto selectvity if wedivide by thenumberof rowsin
the ORDERStable,namely1,500,000(SinceTPC-His
uniformly populatedthe differentvaluesof [DATE] will
selectroughlythe samenumberof rows, sowe madethe
lengthof the interval a variableandvariedthat instead.
The numberof rows selecteds roughly directly propor
tional to the length of the intenal, because¢he TPC-H
databasés uniformly populated.)

We saidthatto useanLSC optimizerto getLEC plans
we needto corverttheinputdistribution to a distribution
on selectvity. To do this, we needto evaluatethe selec-
tivity of eachinput. This canbe doneoffline for a stored
procedureFor example theinputdistribution for Exam-
ple2.1is Pr([DATE] = y-01-01) = 0.2 for y € {1993,
1994,1995,1996,1997}. Theselectvity distribution is
Pr(c = 0.4) = 0.2 andPr(c = 0.04) = 0.8, where
o denoteghe selectvity. If the numberof input values
is large andit is infeasibleto corvert the distribution of
input valuesto thedistribution of selectvities in onefell
swoop, thenwe cando it incrementally (In fact, if the
DBMS actuallygetsthe distribution on the input values
by collectingstatisticson userinputs,asopposedo be-
ing given a distribution by fiat, thenthe DBMS cando
the corversionwhile collectingthe statistics.)

2.2 Distributed Databases

As we saw in the previous section,careful selectionof
parametewaluesenablesLSC optimizationto produce
LEC planswhenwe have uncertaintyaboutselectvity. In
this section,we shav thatthe samething happensvhen
we have uncertaintyaboutcommunicatiorcostin a dis-
tributedor federatedlatabase.

A relatvely recenttrend has beena focus on dis-
tributed databasesr federateddatabasessuchas Gar
lic [HKWY97, ROH99]. In thesedatabaseshe tables

setuptheconnectionswhichisroughlythetimeto trans-
mit an empty paclet), let s denotethe size of the table,
andlet b denotethe availablebandwidth.Thenthetrans-
missiontime is

T, 5,b) =L+ s/b (2.1)

[K. BirmanandR. vanRenesseprivatecommunication,
2001].

Thetransmissiortime is certainlynotlinearin b, since
b occursin thedenominatorso,in general

E(T(¢,s,b)) # T(E((),E(s),E(b)).

Unlike selectvity, we can no longer take the expected
valuesof theseparameter#f we wantLEC plans. How-

ever, it turnsoutthatby choosingheappropriatgoparam-
eterswe canstill useLSC optimizationto produceLEC

plans,asthefollowing propositionshaws.

Proposition 2.3: E(T'(¢,s,b)) = E(¢) + E(s)E(1/b).

Onceagainthemoralof thestoryis that,if we choose
theright parametergin this cases, ¢, and1/b—notethat
E(1/b) # 1/E(b) in general,sowe cannotuseb) and
theright specificvalueswe canuseL SC optimizationto
produceL EC plans.

2.3 When IsOne Bucket Enough?

The examplesin this sectionhave shavn thatit is often
possibleto produceLEC plansusing LSC optimization
(i.e., usingjust one bucket). It is naturalto wonderex-
actly whenit sufficesto usejustonebucket.

A necessarygonditionis thatthereexists a parameter
settingwhosel.SC planis anLEC plan: if sucha setting
doesnot exist, thenwe cannotpossiblyproducean LEC
planby usingjustonebucket. In theory thisis alsoasuf-
ficient condition. In practice,however, it is not enough
thatthere existssomeparametesetting:we mustbeable

arestoredon (geographica”ybeparataites’Connected tofind OneefﬁCientIy, Sayin lineartime. Someconditions

by LANs or WANSs, so oneissuethat comesup when
executingqueriess whereoperationgyetperformedand
which tablesandintermediateesultsare shippedacross
thenetwork. Evenif we areultimatelyinterestednly in
the runningtime of a query partof the runningtime is
thetime it takesto transmittables which depend®nthe
characteristicef the network. For “local areaclusters”
or “sener farms” thereis a generallyacceptednodel?
Let ¢ denotelateny (essentiallythis countsthe time to

3For the generalcase, suchasthe Internet, thereis no probabil-
ity distribution that describeghe transmissiortime [K. Birmanand
R. van Renesseprivate communication2001], so we focuson the
casesvhentheuncertaintycanberepresentedly a probability distri-
bution.

thatallow usto find suchaparametevaluein lineartime
arethefollowing:

C1: If thereis adominantplan(e.g.,seeSection2.1.1),

thenary valuewill do.

If the costof a planis essentiallylinearin the pa-
rameter(s)f interest(e.g.,seeSection2.1.2),then
we canusethe expectedvalue of the parameter(s),
sinceexpectations alinearoperator

If thecostof aplanis a(sumof) product(s)f inde-
pendenfparameterge.g.,seeSection2.2), thenwe
canusetheexpectedvalueagain,sincetheexpected
value of the productis the productof the expected
valuesfor independenparameters.

C2:

C3:



Sometimegarametershat do not fit the above criteria
canbetransformedothatthey do (seeSection2.2).

Note that while it is possibleto produceLEC plans
usingLSC optimizationin the casesabove, existing op-
timizers (including the DBMS we usedin the experi-
ments)do not take advantageof C2 and C3, sincethey
do not usethe expectedvalue of the appropriatgparam-
eters. Thus, existing LSC optimizersarein generalnot
producingLEC plans. Theseresultsshav that,in mary
casesyith relatively little overheadthey could.

So far eachscenariowe covered satisfiesone of the
conditionsabove. In the following sectionswe investi-
gatescenario$n which LSC optimization,nomatterhow
cleverly done,cannotproduceanLEC plan.

3 More General Cost Functions

In [CHS99] and so far in this paper we have implic-
itly assumedhat “cost” is essentially“running time”.
While thisassumptiorcertainlyseemseasonablandre-
guireslittle motivation,is it alwaysappropriate?f “cost”
means‘money” andwe are paying a fixed amountper
time unit, then“running time” and“cost” are essentially
interchangeableBy minimizing expectedrunningtime,
we arein fact minimizing expectedcost. However, this
is not alwaystrue, asthe following examplesshaw. In
theseexamples,given a plan p, let r(p) be the random
variabledescribingthe runningtime of p (r(p) is aran-
domvariablesinceit is a functionfrom parametersuch
asthe amountof memoryavailable or the selectvity to
theactualrunningtime). We alsoassumesomedistribu-
tion Pr on theseunderlyingparameters.Thus, we can
talk aboutPr(r(p) = 1 minute—the probability of the
setof underlyingparameters$or which the runningtime
of p is 1 minute.

Example 3.1: An investor may needthe results of a
gueryto decidewhetherto sell a certainstockwithin 10
minutes. After that, he standsto losemillions of dollars
(eitherby notsellingastockthatis goingdown or by sell-
ing a stockthatis goingup). In this casethe userdoes
notcareif aplanrunsfor 10second®r 9 minutes—either
will meetthe deadline. The useralsodoesnot careif a
planrunsfor 11 minutesor anhour—eitherwill missthe
deadline.Now supposédhatthe optimizerhasto choose
betweerplanp; andplanp, for the query Supposédur-
therthat

e Pr(r(p;) = 9minuteg =1,
e Pr(r(p2) = 10seconds= .5, and
e Pr(r(p2) = 11minuteg = .5.

It is easyto seethatpy haslower expectedrunningtime.

However, p, alsomissesthe deadline50% of the time;

the userwould surely prefer p; over ps while, unfor

tunately an optimizerthat minimizesexpectedrunning
time would just assurely pick p, over p;. In this case,
clearly minimizing the expectedrunningtime is not the
rightthingto do.lI

Example 3.2: Supposean optimizer hasto choosebe-
tweenplanp; andplanp, for somequery Supposedur-
therthat

e Pr(r(p;) = .5minuteg = .9,

e Pr(r(p1) = 10 minuteg = .1,

e Pr(r(p2) = 2minuteg = .9, and
e Pr(r(p2) = 3minuteg = .1.

It is easyto checkthatthe expectedrunningtime of p;

is 1.45 minutes,which is lessthanthe expectedrunning
time of ps (2.1 minutes). Thus, an optimizerthat min-

imizes expectedrunningtime will pick p;. But is this

necessarilythe “right” choice?A usercouldgetupsetif

a querythat usually takes 30 secondsvereto suddenly
take 10 minutes. So while thereis no deadlineto meet
in this case,it is not so clearthat minimizing expected
runningtimeis theright thingto do. il

The LEC approachdeals naturally with situations
whereour goal is not necessarilyto minimize running
time. All thatis requiredis thatthe userspecifya func-
tion characterizinghe “cost” of eachpossiblerunning
time. For example,in Example3.1, we can take the
“cost” of gettingan answerin lessthan 10 minutesto
be 1, andthe “cost” of gettingit in morethan 10 min-
utesto be 1,000,000.0ncewe have a costfunction, we
simply choosehe planof leastexpectedcost. Of course,
thereis no reasonto assumehat the costof a plan de-
pendsonly onrunningtime. For example,it may matter
whethertheplanis blockingor producesesultsatacon-
stantrate. Sometimeshe orderof theresultsmaymatter
for display purposes.All of thesefactorscan be taken
into accountin the costfunction. As long astheplanin-
ducesa probability on eachof the relevant eventsanda
costfor eachof them(e.g.,aprobabilityof blockinganda
costfor blocking),we canstill sensiblydefinethenotion
of a planof leastexpectedcost. We focusfor simplicity
hereon caseswvherethe costfunction dependnly on
runningtime. Although this is someavhat restrictive, it
doesseemo cover mary caseof interest.

Formally, we assumethat thereis a plan-costfunc-
tion that takes as input a plan p and returnsa random
variable c(p), the costof plan p as a function of the



parametersettings. Up to now, we have assumedhat
c(p) = r(p). Now weinsistonly thatc(p) beafunction
of r(p). However, we do notrequirethatc(p)(s) depend
only onr(p)(s), wheres is a parametesetting. We al-
low c(p)(s) to dependon global propertiesof r(p), such
asits variance. Our goal is still to find LEC plans,but
with respecto a costfunctionthatis moregeneralthan
r(p). We write EL*(p) to denotethe expectedvalue of
c(p) (giventheunderlyingdistribution Pr on the param-
eterspace).

Oneobvious way to geta plan-costfunctionis to de-
fine a time-costfunction thatis, a function that charac-
terizethe costof runningfor ¢ time units.

Example 3.3: ConsidelExample3.1. As we saidabove,
onetime-costfunction that captureshe costof time to
theinvestoris

)= { 1o

Given a time-costfunction ¢, we candefinea plan-cost
functionc by takingc(p)(s) = c(r(p)(s)).

With sucha plancostfunction,it is easyto checkthat
El"(p) =Y, c(t) Pr(r(p) = t). Thus,in thiscase,

if ¢ <10 and
if t > 10.

EL"(p1) =1 < 0.5(10%) 4 0.5 = EL*(po).

Soif the optimizer minimized expectedcostinsteadof
expectedrunningtime, it would pick p; insteadof ps. Il

Of course,oncethe costfunctionis no longerlinearin
runningtime, the expectedcostof a planis not the cost
of the expectedrunningtime of the plan, sowe canno
longerusejust onebucketin general.

Therealquestions often“Wherearethecostscoming
from?” In asituationlike Example3.1,they clearlyneed
to be obtainedsomehwav from the user This is a non-
trivial problem. In a casesuchas Example3.1, it may
be quite possiblefor the userto provide a costfunction.
Moreover, in this case,even a qualitative descriptionof
the costfunctionmay be enoughto provide usefulguid-
ancein choosinga plan (and, in particular to steerthe
systemaway from theobviousplanwhichjustminimizes
expectedrunningtime). However, in Example3.2,it is
not immediatelyclearhow to choosea plan-costfunc-
tion that capturesusers’anng/anceregarding variation
in runningtime. We could, of course just take the plan
costto bethevariance.Thentheplanof leastcostwould
certainlybe the oneof minimum variance.However, in
thatcasepne“optimal” planwould beto justslov down
the computationto that of the worst case* While this

“While we may not alwaysknow the worst case aslong asthere
is someupperboundon runningtime, we canusethat.

will minimize variance,it will probablynot make users
thathappy. While not perfect,oneway of capturingboth
preference®f the users(i.e., minimizing runningtime

and minimizing variance)is to usea plan-costfunction
basedon a time-costfunction thatis exponentialin the
runningtime. In Example3.2,thiswill have theintended
effect. To seethis, let ¢(x) = 2% andc be basedon c.

Then

0.9(2%5) +0.1(21°)
0.9(22) + 0.1(23)
Esr(p2)>

so the optimizerwould pick p, insteadof p, if it mini-
mized expectedcost. (Alternatively, we could just have
the plan-costfunction take the varianceof r(p) into ac-
count;we considetthis approachn Sectior4.2.)

E*(p1)

|IAVANI

4 Least Expected User Cost Query Op-
timization

As we saw in theprevious section the plan-cosfunction
c(p)(s) = r(p)(s) doesnot always adequatelycapture
the preference®f the user If the plan-costfunctionis

linear in runningtime (i.e., c(p)(s) = f(r(p)(s)) for

somelinear function f), thena dynamicprogramming
algorithm(DPA) ala SystemR would producean LEC

plan. Suchanalgorithmdoesnot, however, produceLEC

plansin generalasthefollowing exampleshaws.

Example 4.1: Suppos¢hatwe adopttheplan-cosfunc-
tion from Example3.3. Considera two-staggoin. Sup-
posethatwe have two possibleplans,p; andps, for the
first stageandonepossibleplan, ps, for thesecondstage.
Supposdurtherthat

e Pr(r(p1) = 1 minute) = 0.9,
e Pr(r(p1) = 11minuteg = 0.1, and
e Pr(r(p2) = 9minuteg = 1.
Notethatthis translateso EL™(p;) = 0.9(1) + 0.1(10°)

andEL"(py) = 1, soit seemdike we shouldpick p, at
thefirst stage.

Now supposehatPr(r(ps) = 2 minuteg = 1. Then

e Pr(r(p1;p3) = 3minuteg = 0.9,
e Pr(r(p1;p3) = 14 minuteg = 0.1, and
e Pr(r(p2;p3) = 11minuteg = 1.
SOE." (p1;p3) = 0.9(1)+0.1(10%) while E¢" (p2; p3) =

10%. The upshotis that, althoughp, is the LEC plan at
thefirst stage p1; p3 is theglobal LEC plan.ii



Thus, in general,a (nave) DPA a la SystemR will
not work, sincekeepingonly a local LEC plan at each
level mightnot give aglobal LEC plan. Oneway around
this problemis to restrictour searchspaceby usingthe
“black box” approachof [CHS99]. The key ideathere
is to generatea relatvely small set of candidateplans,
in the hopethatthis setincludesthe optimal plan (or, at
least,a plan closeto optimal). We thencomputethe ex-
pectedcostof eachof the plansgeneratedand choose
thebestone. Theapproacho generatingandidateplans
usedin [CHS99]wasto run a standard_SC queryopti-
mizerasa black box, for a setof possiblevaluesof the
parameter®f interest. (Thatis, for eachsettingof the
parameterswe computethe optimal LSC plan for that
setting.) This approactcanclearly be appliedwith more
generatostfunctionsaswell. Anotherapproachstoun-
derstandvhendynamicprogrammingwill produceLEC
plans. We considerthis issuein the remainderof this
section.

41 When Doesthe DPA Produce LEC Plans?

Let p be a left-deepplan that computeghe join A;
Ay > --- 1 A,. (As is standardin the literature,
we restrict to left-deepplans.) Let p.sp be the sub-
plan of p that computes4; o --- =< A,_1, let p.ap
be the methodusedto accessA,,, andlet p.jm be the
top-level join methodof p (i.e., the methodusedto join
Ay -1 A,_1 with 4,,). Notethat

r(p) = r(p.sp) + r(p.ap) + r(p.ym).

A plan-costfunctionc is additiveiff for all p; andps,

c(p1;p2) = c(p1) + c(p2),

wheretheadditionontherightis pointwiseaddition(that
is, (c(p1) +c(p2))(s) = c(p1)(s)+c(p2)(s)). Of course,
if we identify the costwith the runningtime, thenthe
plan-costfunctionis certainlyadditive. Denotethe plan
picked by the DPA the DPA plan.

Theorem 4.2: If ¢ is additive thenthe DPA planis an
LEC plan.

The plan-costfunctionin Example4.1 is not additive,
which is why the DPA doesnotwork. Sincein [CHS99]
the plan-costfunctionis r(p), we were ableto usethe
DPA to obtainLEC plans. Giventhat plan-costfunction
arenotadditive in generaltherearetwo questions.

Q1. How non-optimalis the DPA plan?
Q2: How dowegetLEC plansin general?

To answetrthefirst question)et

Ae(p1,12) 2 c(p1; p2) — (c(p1) + c(pa)).

Notethat Ac(p1, p2), like c(p1) andc(pz), is arandom
variable,whosevaluedepend®n the settingsof the un-
derlyingparametersAs the next theoremshaws, we can
boundthe non-optimalityof the DPA planby aboundon

Ac(plap2)-

all p1, p2, ands. Letp, bethe DPA planfor a (k + 2)-
way join and let p. be an LEC plan for that join; then

Ecpr(pd) - Esr(pe) < 2k(C* - C*)

Now consideiQ2. Thekey problemis that,in general,
we could have EL*(p1;p) < EL(p2;p) even though
EL"(p1) > EL*(po); this meanghatif we prunep; be-
causeEL*(p1) > EL(po), thenwe will not consider
p1; p, Which is betterthan p,; p. The following propo-
sition shaws that, if EL*(p1) — EL*(ps) is big enough,
thenthereversalcannothappen.

Theorem 4.3: Supposehat ¢, < EX! (p;,p2) < ¢* for

Proposition 4.4: For all py, p2, andp,

1. EL(p1;p) > EL (po; p) iff
2. EX*(p1) — E¢"(p2) > EXE (p2,p) — EXE (p1, D).

Hereis aneasycorollary of Propositiord.4.

Corollary 4.5: Supposehat¢. < EX' (p1,pa) < ¢* for
all p; andps. ThenEg* (p1) —E¢" (p2) > ¢*—(. implies
E¢"(p1;p) > EZ¥(p2;p) for all py, p2, andp.

Corollary 4.5 suggests modificationof the DPA that
will yield a global LEC plan. Supposethat the set of
tablesin thejoinis S = {T1,...,T,}. ForeachU C S,
let ¢y bethe expectedcostof the LEC plansfor U. For
eachU, keepall plansp suchthatEL™ (p) — cpy < (|S] —
|U|)(¢* — ). An easyinductionshavs thatin factwe do
have thatfor eachsetU, the setof plansthatwe keepfor
U includesan LEC plan. Thefollowing exampleshavs
how themodifiedalgorithmworksfor atwo-staggoin.

Example 4.6: Supposehat

C(t):{ §+10

Let ¢ bethe plan-costfunctionbasedon c. It is easyto
checkthat —10 < Ac(p1,p2) < 10 for all p; andps.
Considera two-stagejoin. Supposethat we have three
possibleplans,py, ps, andps for thefirst stageand

if t <10 and
if ¢ > 10.



e Pr(r(p;) = 5minuteg = 1.0,

e Pr(r(p2) = 2minuteg = 0.5,

e Pr(r(p2) = 11minuteg = 0.5,

e Pr(r(ps) = 20minuteg = 0.9, and

e Pr(r(ps) = 7minuteg = 0.1.
Thenwe have

5
o El(p2) = 2(0. 5) + 21(0 5) = 11.5, and
30 0.1) = 27.7.

Thus,p; is the LEC plan at stagel andthat EL* (p3) —
El'(p1) = 22.7 > 20, sowe maydropps.

Supposehat thereis only oneplan p at stage2 and
Pr(r(p) = 6 minuteg = 1. Then

e Pr(r(p1;p) = 11 minuteg = 1.0,

e Pr(r(ps;p) = 8 minuteg = 0.5,

e Pr(r(p2;p) = 17minuteg = 0.5,

e Pr(r(ps;p) = 26 minuteg = 0.9, and

e Pr(r(ps;p) = 13minuteg = 0.1.
Sowe have that

e EL"(p1;p) = 21(1.0) = 21,
o El(py;p) = 8(0.5) + 27(0.5) = 17.5, and
o EP*(pg;p) = 26(0.9) + 7(0.1) = 27.7.

Note that we indeedhave EL*(p1;p) < EL(ps;p), so
we canindeedpruneps (sincethis is a two-level join).
However, EL™ (po; p) < EL(p1;p), sowe cannotprune
po andstill obtamaglobalLEC plan.l

We have seerhow we candealwith non-additve plan-
costfunctionsin this section.However, dependingpnthe
sizesof ¢* and(,, we might have to keepa lot of plans
for eachsubset. If we have someinformation abouta
non-additve ¢, canwe do better? In the next section,
we investigatethe caseof a costfunction of particular
interestvariance.

4.2 Variance Minimization

As we have amgued,usersmight preferplanswith more
stablebehaior, so usersmight prefer plans with low
variance(seeExample3.2). As we have seen just tak-
ing the plan-costfunctionto be the varianceof the run-
ning time leadsto a preferenceorderingover plansthat

would almost certainly not satisfy most users. How-
ever, anotherapproachto dealingwith variancemight
be to considera plan-costfunction ¢ thattakesinto ac-
countboththerunningtime andthe variance for exam-
plec(p) = ar(p) + SV (r(p)), whereV(z) denoteghe
varianceof randomvariablez. Theusercanthenchoose
«a andg toreflectherrelative preferencdor runningtime
vs.variance If thisis in factthe users plan-costfunc-
tion, thenthereis still the problemof choosingthe LEC
plan. In this sectionwe shav how to exploit the proper
tiesof varianceto getapproximationgo the LEC plan.

RecallthatV(z) = E(2?) — E(x)2. Let the covari-
anceof p; andp, bedenotedby A(p1, p2). Recallthat
A(z,y) = E(zy) — E(z)E(y). Two randomvariablesr
andy are

e uncorelatediff A(z,y) =0,
e positivelycorrelatediff A(z,y) > 0, and
¢ negativelycorrelatediff A(z,y) < 0.

Note that V(z + y) = V(x) + V(y) + 2A(z,y),
soV(z +y) = V(z) + V(y) for uncorrelatedandom
variablesz andy. Let El*cy(p) = V(r(p)) (which
meanghatcy (p) is a constanfunction,independenotf
the parametersetting). The randomvariablesthat we
encountein doing queryoptimization(i.e., the running
timesof subplan®f aparticularplanp) aretypically non-
negativelycorrelated(i.e., A(z,y) > 0). For example at
ary particularstagethesizeof theresultandtherunning
time bothdependntheinputsizesandthebiggerthein-
put sizes,thelongerthe runningtime andthe biggerthe
result.A biggerresultmeandongerrunningtime for the
next stage,so the runningtime of the currentstageand
the next stagearealso (non-ngatively) correlated. For
the restof this section,we will assumeahat all random
variablesarepairwisenon-ngatively correlated.

Recall that Theorem 4.3 gives a bound on how
non-optimal a DPA plan could be that dependson
EPArc (p1,p2). As the following theoremshaws, we can
give atight boundfor cy thatdoesnotdependon A,

Theorem 4.7: If ELY (p1) < EEX (p2), then

EL! (p1;p)
EP‘“ T (p2;p)

andtheboundis tight.

<2

Theorem4.7 shaws that the DPA is off by at most
a factor of two for two-stagejoins. The next theorem
shaws that the error grows only linearly with respecto
thedepthof thejoin.



Theorem 4.8: If ECY (p;j,) < ELL (pis—j,) forall 1 <
i<mnandl <j<2thenforall 1 <kq,..., k, <2,

s Pnjn)
;pn,kn)

P .
EC\r] (pl,j1 y Tt
ECY (Prp -

<n.

Essentially Theorem4.8 shavs thatthe DPA planis
no morethanafactorn away from ary plan,soin partic-
ular, the DPA planis no morethanafactorn awvay from
anLEC plan.

Theseboundsapproximationarestill novherenearas
goodaswe wouldlike. We expectthatin practice things
will bemuchbetter After all, Justbecausehereis some
sequencgoin for which the DPA plan hasvariancea
factorof n timesthatof the optimal plan doesnot mean
thatthatis whatwill typically happenOurinitial experi-
mentsbearthis out. We arecurrentlytrying to find some
additionalassumptionshat guaranteghatwe will geta
betterapproximatiorusingthe DPA.

5 Conclusions

We have investigatedhe extentto which we canusespe-
cific parametessettings(i.e., LSC optimization)to pro-
duceLEC plans. Somavhat surprisingly we found that
in mary casesof interest,LSC optimizationcould pro-
duceLEC plans.However, we mustbe carefulto choose
the parameterandtheir settingsappropriately This may
involve transforminga distribution on (say) userinput
values,to a distribution on selectvity, so that we can
computethe expectedselectvity with respecto this dis-
tribution. Currentimplementationsf query optimizers
do not seemto take advantageof probabilisticinforma-
tion, even whenit is readily available, so that even in
caseswvherethereis a reasonablepecificsettingof the
parametershatcanbeused thisis notthe settingthatis
actuallyusedin the computation(For example,it seems
that for the DBMS we tested,the settingit usesis the
first onegiven.) In casesvhereone plan dominatesall
othersno matterwhatthe parametewalue(asis the case
in someof the examplesin Section2.1.1),thenthe spe-
cific valuechoserdoesnot matter Otherwise pf course,
it couldmake a big difference.We seeoneof the contri-
butions of this paperasclarifying exactly whenwe can
useLSC optimization(andwhatparametesettingto use
in thesecases).

Ontheotherhand,particularlyin the casewhererun-
ning time is not the appropriatecostmeasure.EC op-
timization becomesparticularly important. It can be
usedto capturethings like deadlines,a preferencefor
minimizing variance,and featuresunrelatedto running

time, like the issue of whetheror not thereis block-

ing [HHW97]. However, consideringmoregeneralcost
functionsopensup a hostof new issuesFor onething, it

requiresconstructinganappropriateostfunction, either
from informationprovided by users(which may be dif-

ficult to get) or throughan understandingf the applica-
tion domain. Secondlyit requiresdesigningalgorithms
that can take adwantageof this informationto produce
high-quality plans. We are currently investigatingboth
problems.
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