Efficiency and Nash Equilibria in a Scrip System for P2P
Networks

Eric J. Friedman
School of Operations
Research and Industrial
Engineering
Cornell University

ejf27@cornell.edu

ABSTRACT

A model of providing service in a P2P network is analyzed.
It is shown that by adding a scrip system, a mechanism that
admits a reasonable Nash equilibrium that reduces free rid-
ing can be obtained. The effect of varying the total amount
of money (scrip) in the system on efficiency (i.e., social wel-
fare) is analyzed, and it is shown that by maintaining the
appropriate ratio between the total amount of money and
the number of agents, efficiency is maximized. The work
has implications for many online systems, not only P2P net-
works but also a wide variety of online forums for which scrip
systems are popular, but formal analyses have been lacking.

1. INTRODUCTION

A common feature of many online distributed systems is
that individuals provide services for each other. Peer-to-
peer (P2P) networks (such as Kazaa [30] or BitTorrent [3])
have proved popular as mechanisms for file sharing, and ap-
plications such as distributed computation and file storage
are on the horizon; systems such as Seti@home [29] provide
computational assistance; systems such as Slashdot [24] pro-
vide content, evaluations, and advice forums in which people
answer each other’s questions. Having individuals provide
each other with service typically increases the social welfare:
the individual utilizing the resources of the system derives a
greater benefit from it than the cost to the individual pro-
viding it. However, the cost of providing service can still be
nontrivial. For example, users of Kazaa and BitTorrent may
be charged for bandwidth usage; in addition, in some file-
sharing systems, there is the possibility of being sued, which
can be viewed as part of the cost. Thus, in many systems
there is a strong incentive to become a free rider and ben-
efit from the system without contributing to it. This is not
merely a theoretical problem; a 2000 study of the Gnutella
[25] network showed that almost 70 percent of users share
no files and nearly 50 percent of responses are from the top
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1 percent of sharing hosts [1]. A followup study has shown
that over time the disparity has only gotten worse [17]

Having relatively few users provide most of the service cre-
ates a point of centralization; the disappearance of a small
percentage of users can greatly impair the functionality of
the system. Moreover, current trends seem to be leading
to the elimination of the “altruistic” users on which these
systems rely. These heavy users are some of the most expen-
sive customers ISPs have. Thus, as the amount of traffic has
grown, ISPs have begun to seek ways to reduce this traffic.
Some universities have started charging students for exces-
sive bandwidth usage; others revoke network access for it
[5]. A number of companies have also formed whose service
is to detect excessive bandwidth usage [22].

These trends make developing a system that encourages
a more equal distribution of the work critical for the contin-
ued viability of P2P networks and other distributed online
systems. A significant amount of research has gone into
designing reputation systems to give preferential treatment
to users who are sharing files. Some of the P2P networks
currently in use have implemented versions of these tech-
niques. However, these approaches tend to fall into one of
two categories: either they are “barter-like” or reputational.
By barter-like, we mean that each agent bases its decisions
only on information it has derived from its own interactions.
Perhaps the best-known example of a barter-like system is
BitTorrent, where clients downloading a file try to find other
clients with parts they are missing so that they can trade,
thus creating a roughly equal amount of work. Since the
barter is restricted to users currently interested in a sin-
gle file, this works well for popular files, but tends to have
problems maintaining availability of less popular ones. An
example of a barter-like system built on top of a more tradi-
tional file-sharing system is the credit system used by eMule
[8]. Each user tracks his history of interactions with other
users and gives priority to those he has downloaded from in
the past. However, in a large system, the probability that
a pair of randomly-chosen users will have interacted before
is quite small, so this interaction history will not be terri-
bly helpful. Anagnostakis and Greenwald [2] present a more
sophisticated version of this approach, but it still seems to
suffer from similar problems.

A number of attempts have been made at providing gen-
eral reputation systems (e.g. [14, 15, 20, 32]). The basic idea
is to aggregate each user’s experience into a global number
for each individual that intuitively represents the system’s



view of that individual’s reputation. However, these at-
tempts tend to suffer from practical problems because they
implicitly view users as either “good” or “bad”, assume that
the “good” users will act according to the specified protocol,
and that there are relatively few “bad” users. Unfortunately,
if there are easy ways to game the system, once this infor-
mation becomes widely available, rational users are likely to
make use of it. We cannot count on only a few users being
“bad” (in the sense of not following the prescribed protocol).
For example, Kazaa uses a measure of the ratio of the num-
ber of uploads to the number of downloads to identify good
and bad users. However, to avoid penalizing new users, they
gave new users an average rating. Users discovered that they
could use this relatively good rating to free ride for a while
and, once it started to get bad, they could delete their stored
information and effectively come back as a “new” user, thus
circumventing the system (see [2] for a discussion and [11]
for a formal analysis of this “whitewashing”). Thus Kazaa’s
reputation system is ineffective.

This is a simple case of a more general vulnerability of
such systems to sybil attacks [6], where a single user main-
tains multiple identities and uses them in a coordinated fash-
ion to get better service than he otherwise would. Recent
work has shown that most common reputation systems are
vulnerable to such attacks [4]; however, the degree of this
vulnerability is still unclear. The analyses of the practical
vulnerabilities and the existence of such systems that are
immune to such attacks remains an area of active research
(e.g., [4, 16, 33]).

Simple economic systems based on a scrip or money seem
to avoid many of these problems, are easy to implement,
and are quite popular (see, e.g., [15, 18, 31]). However, they
have a different set of problems. Perhaps the most common
involve determining the amount of money in the system.
Roughly speaking, if there is too little money in the system
relative to the number of agents, then relatively few users
can afford to make request. On the other hand, if there is
too much money, then users will not feel the need to re-
spond to a request; they have enough money already. A
related problem involves handling newcomers. If newcomers
are each given a positive amount of money, then the system
is open to sybil attacks. Perhaps not surprisingly, scrip sys-
tems end up having to deal with standard economic woes
such as inflation, bubbles, and crashes [31].

In this paper, we provide a formal model in which to
analyze scrip systems. We describe a simple scrip system
and show that, under reasonable assumptions, for each fixed
amount of money there is a nontrivial Nash equilibrium in-
volving threshold strategies, where an agent accepts a request
if he has less than $k for some threshold k.' An interesting
aspect of our analysis is that, in equilibrium, the distribu-
tion of users with each amount of money is the distribution
that maximizes entropy (subject to the money supply con-
straint). This allows us to compute the money supply that
maximizes efficiency (social welfare), given the number of
agents. It also leads to a solution for the problem of deal-
ing with newcomers: we simply assume that new users come
in with no money, and adjust the price of service (which is
equivalent to adjusting the money supply) to maintain the
ratio that maximizes efficiency. While assuming that new

L Although we refer to our unit of scrip as the dollar, these
are not real dollars nor do we view them as convertible to
dollars.

users come in with no money will not work in all settings,
we believe the approach will be widely applicable. In sys-
tems where the goal is to do work, new users can acquire
money by performing work. It should also work in Kazaa-
like system where a user can come in with some resources
(e.g., a private collection of MP3s).

The rest of the paper is organized as follows. In Section 2,
we present our formal model and observe that it can be used
to understand the effect of altruists. In Section 3, we exam-
ine what happens in the game under nonstrategic play, if all
agents use the same threshold strategy. We show that, in
this case, the system quickly converges to a situation where
the distribution of money is characterized by maximum en-
tropy. Using this analysis, we show in Section 4 that, under
minimal assumptions, there is a nontrivial Nash equilibrium
in the game where all agents use some threshold strategy.
Moreover, we show in Section 5 that the analysis leads to
an understanding of how to choose the amount of money
in the system (or, equivalently, the cost to fulfill a request)
so as to maximize efficiency, and also shows how to handle
new users. In Section 6, we discuss the extent to which our
approach can handle sybils and collusion. We conclude in
Section 7.

2. THE MODEL

To begin, we formalize providing service in a P2P network
as a non-cooperative game. Unlike much of the modeling in
this area, our model will model the asymmetric interactions
in a file sharing system in which the matching of players
(those requesting a file with those who have that particular
file) is a key part of the system. This is in contrast with
much previous work which uses random matching in a pris-
oner’s dilemma. Such models were studied in the economics
literature [7, 21] and first applied to online reputations in
[11]; an application to P2P is found in [9]. A variant of this
model that uses the multiperson prisoner’s dilemma rather
than random matching can be found in [27]. Some work on
micropayments is similar in spirit, but it assumes random
matchings and only allows agents to decide on a rough shar-
ing level which prevents the use of more nuanced strategies
such as threshold strategies [12]

This random-matching model fails to capture some salient
aspects of a number of important settings. When a request
is made, there are typically many people in the network who
can potentially satisfy it (especially in a large P2P network),
but not all can. For example, some people may not have
the time or resources to satisfy the request. The random-
matching process ignores the fact that some people may not
be able to satisfy the request. Presumably, if the person
matched with the requester could not satisfy the match, he
would have to defect. Moreover, it does not capture the fact
that the decision as to whether to “volunteer” to satisfy
the request should be made before the matching process,
not after. That is, the matching process does not capture
the fact that if someone is unwilling to satisfy the request,
there will doubtless be others who can satisfy it. Finally, the
actions and payoffs in the prisoner’s dilemma game do not
obviously correspond to actual choices that can be made.
For example, it is not clear what defection on the part of
the requester means. In our model we try to deal with all
these issues.

Suppose that there are n agents. At each round, an agent
is picked uniformly at random to make a request. Each other



agent is able to satisfy this request with probability 5 > 0 at
all times, independent of previous behavior. The term [ is
intended to capture the probability that an agent is busy, or
does not have the resources to fulfill the request. Assuming
that ( is time-independent does not capture the intution
that being an unable to fulfill a request at time ¢t may well
be correlated with being unable to fulfill it at time ¢t+1. We
believe that, in large systems, we should be able to drop the
independence assumption, but we leave this for future work.
In any case, those agents that are able to satisfy the request
must choose whether or not to volunteer to satisfy it. If
at least one agent volunteers, the requester gets a benefit
of 1 util (the job is done) and one of volunteers is chosen
at random to fulfill the request. The agent that fulfills the
request pays a cost of @ < 1. As is standard in the literature,
we assume that agents discount future payoffs by a factor of
0 per time unit. This captures the intuition that a util now is
worth more than a util tomorrow, and allows us to compute
the total utility derived by an agent in an infinite game.
Lastly, we assume that with more players requests come
more often. Thus we assume that the time between rounds
is 1/n. This captures the fact that the systems we want
to model are really processing many requests in parallel, so
we would expect the number of concurrent requests to be
proportional to the number of users.?

Let G(n,d,a, 3) denote this game with n agents, a dis-
count factor of §, a cost of a to satisfy requests, and a
probability 3 of being able to satisfy requests. When the
latter two parameters are not relevant, we sometimes write
G(n,9).

We use the following notation throughout the paper:

e p’ denotes the agent chosen in round ¢.

e B! ¢ {0,1} denotes whether agent i can satisfy the
request in round t. B} = 1 with probability 8 > 0 and
B! is independent of B! for all t' # t.

e V! € {0,1} denotes agent i’s decision about whether
to volunteer in round ¢; 1 indicates volunteering. V'
is determined by agent i’s strategy.

e v' € {j | V/B} = 1} denotes the agent chosen to satisfy
the request. This agent is chosen uniformly at random
from those who are willing (V; = 1) and able (B} = 1)
to satisfy the request.

e u! denotes agent i’s utility in round ¢.

A standard agent is one whose utility is determined as
discussed in the introduction; namely, the agent gets
a utility of 1 for a fulfilled request and utility —« for
fulfilling a request. Thus, if i is a standard agent, then

1 if = pt and Zj;&i‘/th;>0
ul = —a ifi=1t
0 otherwise.

e Ui =372, 6/"ul denotes the total utility for agent
i. It is the discounted total of agent i’s utility in each
round. Note that the effective discount factor is 6%/™

2For large n, our model converges to one in which players
make requests in real time, and the time between a player’s
requests is exponentially distributed with mean 1. In addi-
tion, the time between requests served by a single player is
also exponentially distributed.

since an increase in n leads to a shortening of the time
between rounds.

Now that we have a model of making and satisfying re-
quests, we use it to analyze free riding. Take an altruist to
be someone who always fulfills requests. Agent ¢ might ra-
tionally behave altruistically if agent ¢’s utility function has
the following form, for some o’ > 0:

1 ifi=p: and Zj#Vthjt->0
=0 o ifi=0
0  otherwise.

Thus, rather than suffering a loss of utility when satisfying
a request, an agent derives positive utility from satisfying
it. Such a utility function is a reasonable representation of
the pleasure that some people get from the sense that they
provide the music that everyone is playing. For such altru-
istic agents, playing the strategy that sets V;' = 1 for all ¢
is dominant. While having a nonstandard utility function
might be one reason that a rational agent might use this
strategy, there are certainly others. For example a naive
user of filesharing software with a good connection might
well follow this strategy. All that matters for the follow-
ing discussion is that there are some agents that use this
strategy, for whatever reason.

As we have observed, such users seem to exist in some
large systems. Suppose that our system has a altruists. In-
tuitively, if a is moderately large, they will manage to satisfy
most of the requests in the system even if other agents do
no work. Thus, there is little incentive for any other agent
to volunteer, because he is already getting full advantage of
participating in the system. Based on this intuition, it is a
relatively straightforward calculation to determine a value
of a that depends only on «, 3, and §, but not the number
n of players in the system, such that the dominant strategy
for all standard agents i is to never volunteer to satisfy any
requests (i.e., Vi =0 for all t).

ProprosiTION 2.1. There exists an a that depends only on
a, B, and § such that, in G(n,d, a, ) with at least a altruists,
not volunteering in every round is a dominant strategy for
all standard agents.

ProOF. Consider the strategy for a standard player j in
the presence of a altruists. Even with no money, player
j will get a request satisfied with probability 1 — (1 — 3)°
just through the actions of these altruists. Thus, even if j is
chosen to make a request in every round, the most additional
expected utility he can hope to gain by having money is
S0 (1= B)%6F = (1— B)*/(1—6). If (1— B)*/(1—8) > a
or, equivalently, if @ > log; s(a(1 — J)), never volunteering
is a dominant strategy. [

Consider the following reasonable values for our parame-
ters: B = .01 (so that each player can satisfy 1% of the re-
quests), o = .1 (alow but non-negligible cost), § = .9999/day
(which corresponds to a yearly discount factor of approxi-
mately 0.95), and an average of 1 request per day per player.
Then we only need a > 1145. While this is a large number,
it is small relative to the size of a large P2P network.

Current systems all have a pool of users behaving like our
altruists. This means that attempts to add a reputation
system on top of an existing P2P system to influence users



to cooperate will have no effect on rational users. To have
a fair distribution of work, these systems must be funda-
mentally redesigned to eliminate the pool of altruistic users.
In some sense, this is not a problem at all. In a system
with altruists, the altruists are presumably happy, as are
the standard agents, who get almost all their requests sat-
isfied without having to do any work. Indeed, current P2P
network work quite well in terms of distributing content to
people. However, as we said in the introduction, there is
some reason to believe these altruists may not be around
forever. Thus, it is worth looking at what can be done to
make these systems work in their absence. For the rest of
this paper we assume that all agents are standard, and try
to maximize expected utility.

We are interested in equilibria based on a scrip system.
Each time an agent has a request satisfied he must pay the
person who satisfied it some amount. For now, we assume
that the payment is fixed; for simplicity, we take the amount
to be $1. We denote by M the total amount of money in
the system. We assume that M > 0 (otherwise no one will
ever be able to get paid).

While a decision to volunteer can in general depend on
many factors, such as the name of the agent making the
request or the history of requests, we now define a sim-
ple class of threshold strategies, where a player volunteers
if and only if he has less than some fixed threshold $%, and
show in Section 4 that, in a precise sense, we can restrict
to these strategies without loss of generality. Let K7 de-
note the amount of money agent ¢ has at time ¢t. Clearly
Kf“ = K! unless agent i has a request satisfied, in which
case Kf“ = Kf“ — 1 or agent 4 fulfills a request, in which
case K/ = K!™' 4 1. Formally,

Ki—1 ifi=p"> ., VfB; >0, and Kj >0
Ki+1 ifi:vtandK;t>O
K! otherwise.

Kt =

The threshold strategy Sy is the strategy such that

vio [l if K, >0and K; <k
* 71 0 otherwise.

Thus, with S, a player volunteers iff he has less $k (and
the requester has at least $1, so that he can actually pay to
have the request fulfilled).

The intuition behind using a threshold strategy is easy
to explain: A rational agent with too little money will be
concerned that he will run out and then want to make a
request; on the other hand, a rational agent with plenty
of money would not want to work, because by the time he
has managed to spend all his money, the util will have less
value than the present cost of working. By choosing an
appropriate threshold, a rational agent can deal with both
concerns. For the rest of the paper, we focus on threshold
strategies.

3. THE GAME UNDER NONSTRATEGIC
PLAY

Before we consider strategic play, we examine what hap-
pens in the system if everyone just plays the same strategy
Sk. Our overall goal is to show that there is some distri-
bution over money (i.e., the fraction of people with each
amount of money) such that the system “converges” to this
distribution in a sense to be made precise shortly.

Suppose that everyone plays Sk. For simplicity, assume
that everyone has at most k£ dollars. We can make this
assumption with essentially no loss of generality, since if
someone has more than k dollars, he will just spend money
until he has at most k dollars. After this point he will never
acquire more than k. Thus, eventually the system will be in
a state where everyone has at most $k. If M > kn, no agent
will ever be willing to work. Thus, for the purposes of this
section we assume that M < kn.

Rather than thinking in terms of the total amount of
money in the system, it will prove more useful to think
in terms of the average amount of money each player has.
Of course, the total amount of money in a system with n
agents is M iff the average amount that each player has is
m = M/n.

We want to understand how the distribution of money
in the system changes over time if everyone uses a fixed
threshold strategy Sk. To do this, it is helpful to think of the
system as a Markov chain, where the state of the system is
characterized by the amount of money each agent has. Note
that if everyone has at most k dollars, then the amount of
money that an agent has is an element of {0, ..., k}. If there
are n agents, then the state of the system can be described
by identifying how much money each agent has, so we can
represent it by an element of Sy, = {0, ...k} "} Since
the total amount of money is constant, not all of these states
can arise in the game. For example the state where each
player has $0 is impossible to reach in any game with money
in the system. Let ms(s) = 3_,c(;. , s(7) denote the total
mount of money in the game at state s, where s(i) is the
number of dollars that agent i has in state s. We want
to consider only those states where the total money in the
system is M = mn, namely

Sknm = {5 € Sk | Ms(s) = mn}.

Under the assumption that all agents use strategy Sk, the
evolution of the system can be treated as a Markov chain
M n,m over the state space Si,n,m. It is possible to move
from a state s to a state t in one step iff there exist agents
¢ and j such that t(3) = s(i) + 1 < k, t(5) = s(j) — 1 > 0,
and s(i') = t(i') for all i’ other than i and j. Therefore,
the probability of a transition from a state s to ¢ is 0 unless
there exist two agents i and j such that s(i') = ¢(i’) for all
i ¢ {i,j}, t(i) = s(i) + 1, and t(j) = s(j) — 1. In this case
the probability of transitioning from s to ¢ is the probability
of j being chosen to spend a dollar. It is straightforward to
calculate this probability, but we do not actually need the
transition probabilities for our results, so we do not write
them down here.

Let A* denote the set of probability distributions on {0, ...
We can think of an element of A* as describing the fraction
of people with each amount of money. This is a useful way of
looking at the system, since we typically are not interested
in exactly who has each amount of money, but just the frac-
tion of people that have each amount. As before, not all
elements of A* are possible, given our constraint that the
total amount of money is M. Let A¥, denote all distribu-
tions d € A* such that Z?:o d(y)j = m (i.e., the expected
value of d must be m). Given astate s € Sk,n,m, let d° € Ak
denote the distribution of money in s. Our goal is to show
that, if n is large, then there is a distribution d* € A¥, such
that, with high probability, the Markov chain My, will
almost always be in a state s such that d°® is close to d*.



Thus, agents can base their decisions about what strategy
to use on the assumption that they will be in such a state.

We can in fact completely characterize the distribution
d*. Given a distribution d € A*, let

H(d)=—- Y d(j)log(d(y)

{3:d(45)#0}

denote the entropy of d. If A is a closed convex set of distri-
butions, then it is well known that there is a unique distribu-
tion in A at which the entropy function takes its maximum
value in A. Since AF, is easily seen to be a closed convex
set of distributions, it follows that there is a unique distribu-
tion in A%, which we denote dj m, Whose entropy is greater
than that of all other distributions in A¥,. We now show
that, for n sufficiently large, the Markov chain My n m is
almost surely in a state s such that d® is close to dj, ,,,. The
statement is correct under a number of senses of “close”.
For definiteness, we consider the Euclidean distance. This
presents us with a problem with our use of m as the exact
average amount of money. We have no particular reason to
require m to be an integer; a system with 2000 people and
$ 3000 seems perfectly reasonable. However, there are also
m which correspond to non-integer total amounts of money.
Thus for many values of n, the set of states with n people
and mn total dollars can turn out to be @ for the trivial
reason that mn is not an integer.

The problem boils down to the assumption that the of m
to have the unwanted implication that the number of people
must be such that mn is an integer. This problem appears
in other contexts using maximum entropy (see [13]), how-
ever, we will adopt a different solution. Given € > 0, let
Sk,n,m,e denote the set of states s in Sy rmn]/n such that
Zf:o |d*(§) — dk . (4)]> < €. Note that, rather than defining
Sk,n,m,e, to be constrained to have a total of mn dollars,
we will define it to be constrained to have a total of [mn].
This clearly solves the problem of the set being empty for
the trivial reason that we wanted to have a non-integer to-
tal amount of money, but creates a new problem. Now the
average amount of money for some particular value of n
will be not be m but will instead be [mn]/n. Thus this
will give slightly different constraints and lead to a slightly
different maximum entropy distribution. However, the im-
portant point is that these differences are slight enough that
they are smaller than the noise inherent in the system. In-
tuitively, the addition of a single dollar to a large system
ought not to make any significant difference.

Given a Markov chain M over a state space S and S C
S, let X¢,,s be the random variable on executions of the
Markov chain that is 1 if M is in a state of S at time ¢ when
started in state s, and 0 otherwise.

THEOREM 3.1. Foralle > 0, all k, and all m, there exists
ne such that for all n > ne and all states s € Sk,n,m, there
exists a time t* (which may depend on k, n, m, and €) such
that for t > t*, we have Pr(Xs,5, , m..) > 1 — €

PrROOF. The proof proceeds in three steps. First, using
standard techniques, we show that the Markov chain M has
a well-defined limit distribution m on Sk n,m; that is, a distri-
bution 7 such that for all s, s" € Sk.n,m, limi—co Pr(X; s o) =
msy. We next show that 7 is uniform. Finally, we use a
relatively straighrforward combinatorial argument (which is

standard in statistical mechanics) to show that there is a
concentration phenomenon around the maximum entropy
distribution [19]. More precisely, we show that the fraction
of states not in Sk n,m,e is bounded by p(n)/e™, where p is
a polynomial. This fraction clearly goes to 0 as n gets large.
Thus, for sufficiently large n, Pr(X¢,s,5, ,,.,,..) > 1 —€ We
leave the details to the appendix. [

We performed a number of experiments that show that
the maximum entropy behavior described in Theorem 3.1
arises quickly for quite practical values of n and ¢. In the
first experiment, we took n = 1000, £k = 5, and m = 2. We
wanted to examine time to convergence, so we started out in
a state that was, intuitively, in an “extreme distribution”,
one as far from the maximum entropy distribution as pos-
sible: each agent had either $0 or $5. We averaged 10 runs
starting in a state of this type. The results are shown in
Figure 1. As we can see, after 2,000 steps, on average, the
Euclidean distance from the average distribution of money
to the maximum-entropy distribution is .008; after 3,000
steps, the distance is down to .001.
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Figure 1: Distance from maximum-entropy distri-
bution with 1000 agents.

With 1000 players, we can think of 1000 steps as tak-
ing one real time unit. Thus, with 1000 agents, we can
get within .001 of the maximum-entropy distribution within
3 time units. We considered how the time to convergence
depended on the number of players. In particular, we con-
sidered the time needed to get within .001 of the maximum-
entropy distribution. As shown in Figure 2, it seems that we
can get to within .001 of the maximum-entropy distribution
within three time units (i.e., within 3n steps, where n is the
number of players) no matter how many players we have.
We do not have an analytic proof of this fact (although the
graph is very suggestive). We suspect that the Markov chain
that arises here is rapidly mizing; perhaps some results from
the theory of rapidly mixing chains [23] may apply.

Finally, we considered how close the distribution stays to
the maximum-entropy distribution. As we would expect,
the more players there are, the smaller the variation from
the maximum-entropy point. To simplify things, we started
the system in a state whose distribution was very close to
the maximum-entropy distribution and ran it for 10° steps,
for various values of n. As Figure 3 shows, the system does
not move far from the maximum-entropy distribution once
it is close to it. For example, if n = 5000, the system is
never more than distance .001 from the maximum-entropy
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4. THE GAME UNDER STRATEGIC PLAY

We have seen that the system is well behaved if the agents
all follow a threshold strategy; we now want to show that
there is a nontrivial Nash equilibrium where they do so (that
is, a Nash equilibrium where all the agents use Sy for some
k > 0.) This is not quite true, for three reasons. First, if
0 is sufficiently small, then the prospect of getting utility in
the future does not provide much incentive for the agents
to work; all that matters is the present, and no one will
volunteer. Thus, with sufficiently small §, Sp is the only
equilibrium.

Second, we seem to be able to characterize behavior only
when the distribution of money in the system is close to the
limiting maximum-entropy distribution. Intuitively, this is
not a major problem since, as the experiments discussed
in Section 3 show, the system converges to the maximum-
entropy distribution quite quickly. To deal with what the pe-
riod of time before the system has converged to the maximum-
entropy distribution, we consider a slightly different solution
concept: not Nash equilibrium, but (multiplicative) e-Nash
equilibrium. For € > 0, we say that a strategy o for player ¢
is an (multiplicative )e-best response to a joint strategy 7 for

all players other than i if, for all strategies o’ for player i,
ui(7,0') < ui(7,0)(1+e€). A joint strategy ¢ = (01,...,0n)
is an e-Nash equilibrium if o; is an e-best response to &—;
(where &—; is the joint strategy for all players other than i
where player j plays o;). Intuitively, in an e-Nash equilib-
rium, no no player can do more than € better by choosing a
different strategy.

Finally, we cannot in general find a Nash (or e-Nash) equi-
librium where everyone plays Si for some natural number k.
We need to have strategies that, intuitively, interpolate be-
tween Sy and Siy1. More precisely, if v = k+ ', where k is
a natural number and 0 < +' < 1, let S, be the strategy that
performs Sy with probability 1 — +" and Siy1 with proba-
bility . (Note that we are not considering arbitrary mixed
threshold strategies here, but rather just mixing between
adjacent strategies.) For the remainder of the paper, when
we speak of threshold strategies, we will mean a strategy of
the form S, for some arbitrary non-negative real value ~.
We will show that, if § is sufficiently close to 1, then there is
a nontrivial Nash equilibrium where everyone plays a such
generalized threshold S5, with v > 0. Note for future refer-
ence that Theorem 3.1 applies to these generalized threshold
strategies S, (the same proof goes through without change).

As a first step, we show that, for all v > 0 there exists an
€* > 0 such that for all € < €* if everyone other than agent
1 is playing S, then there is a threshold strategy S,/ that
is an e-best response for agent i. (Of course, it may not be
the case that v =v'.)

THEOREM 4.1. Fix m,epsilon > 0, threshold strategy S-,
and an agent i. There exists 6© < 1 such that for all 0
with 0* < § < 1, there exists a threshold strategy S, such
that for all € > 0 there exists n* > 0 such that if n >
n* and M/n = m, and every agent other than i is play-
ing Sy in game G(n,?), then S,/ is an e-best response for
agent i. Moreover, either v is unique and is an integer, or
there exists an integer k' such that v can have any value in
[k, k' + 1], and these are the only possible values for ~'.

PROOF. (Sketch:) First assume that the system is char-
acterized by the maximum-entropy distribution and the dis-
tribution is not affected by the choice of strategy of one
agent. (We can always choose n sufficiently large that the
probability of having a distribution of money far from the
maximum entropy distribution, either from the influence of
the strategy of player ¢ or from the random fluctuations of
the system, is arbitrarily small. This means that agents
with a large enough ¢, using a different strategy has an ef-
fect of at most € on the payoffs.) Under these assumptions,
the probability of ¢ moving from one state (dollar amount)
to another depends only on 4’s strategy (since we can take
the probability that ¢ will be chosen to make a request and
the probability that ¢ will be chosen to satisfy a request to
be constant). Thus, from 4’s point of view, the system is
a Markov decision process (MDP), and i needs to compute
the optimal policy (strategy) for this MDP. It follows from
standard results that there is an optimal policy that is a
threshold policy. We give details in the appendix, where we
also present the uniqueness argument. []

We remark that there may be e-best responses that are
not threshold strategies. All that Theorem 4.1 shows is
that, among e-best responses, there is at least one that is



a threshold strategy. Since we know that there is an e-best
response that is a threshold strategy, we can look for an
e-Nash equilibrium in the space of threshold strategies.

THEOREM 4.2. For allm, € > 0, there exists §* < 1 such
that if 0* < § < 1, then there exists v such that for all e > 0
there exists n* > 0 such that if n > n*, and M/n = m,
then the joint strategy where all agents play S~ is an e-Nash
equilibrium of the game G(n,d).

PROOF. Let br(d,7) be the minimal best-response thresh-
old strategy if all the other agents are playing S, and the sys-

tem is in its maximum-entropy distribution—that is, br(d,v) =

~" if S, is the unique best-response threshold strategy (where,
by Theorem 4.1, 4’ is in fact an integer), and br(8,v) = k' if
all the strategies S,/ for 7' € [k, k+1] are best responses. By
Theorem 4.1, for fixed d, br(d,-) is a step function; more-
over, if we can join the “steps” by a vertical line, we get
a best-response curve. It is easy to see that everywhere
that this best-response curve crosses the diagonal y = x de-
fines a Nash equilibrium where all agents are using the same
threshold strategy, under the assumption that the system
characterized by the maximum-entropy distribution. As we
have already observed, one such equilibrium occurs at 0. If
there are only $M in the system, we can restrict to thresh-
old strategies S, where v < M + 1. Since no one can have
more than $M, all strategies S, for v > M are equivalent
to Sar; these are just the strategies where the agent always
volunteers in response to a request made by someone who
can pay. Clearly br(d, M) < M for all §, so the best re-
sponse function is at or below the diagonal at M, for all §.
If [v] < M/n, then it is easy to see that, after an initial pe-
riod, every player will have at least [+] dollars, and so will be
unwilling to work. Thus, if everyone but player ¢ plays S5,
then player ¢ should play So; i.e., br(d,v) = 0 for all § > 0.
It is not hard to show that there exists §° > 0 such that
for all 6 > 6%, br(d,k*) > k*. Thus, either br(d,k*) > k*,
in which case Si+ gives the desired e-Nash equilibrium, or
br(d, k™) > k, in which case, by continuity, the curve br(J, -)
must cross the diagonal (since it is above the diagonal at k*
and below or at it at M). In either case, we get an e-Nash
equilibrium. O

This argument also shows us that we cannot in general
expect fixed points to be unique. Indeed, if br(d,k*) >
k*, then there will be a fixed point in the interval (0, k")
and another fixed-point in the interval (k*,M). Figure 4
illustrates the situation when n = 1000 and M = 3000.

Although Theorem 4.2 shows that there is always an e-
Nash equilibrium using threshold strategies, it does not rule
it does not rule out the possibility that there may be other
equilibria that do not involve threshold stratgies. It is even
possible (although it seems unlikely) that some of these equi-
libria might be better.

the best responses to integer values are plotted (see figure
Although the v in the e-Nash equilibrium strategy S of
Theorem 4.2 can in principle be an arbitrary non-negative
real number, our simulations suggest that it is typically a
natural number. We now try to explain why.

Our simulations suggest that the best-response function
is nondecreasing (at least for a large part of its domain). As
the threshold increases, more agents will want to work, so
work will be harder to find. This means agents will try to
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Figure 4: The best response function for n = 1000
and M = 3000.

save more money for a rainy day, and thus a best response
would have a higher threshold. As we now show, if the
best-response curve is indeed nondecreasing, then we are
guaranteed to have a pure e-Nash equilibrium strategy.

THEOREM 4.3. Fiz M, n, and 6. If the threshold strat-
eqy S~ is an e-Nash equilibrium, the best-response curve is
nondecreasing in the interval [|v],7], and br(4, |v]) > |v],
then S|4 is also an e-Nash equilibrium.

ProOF. If v is an integer we are done, for then v =
|v]7v. Otherwise, suppose by way of contradiction that
S|+ is not an e-Nash equilibrium. Then br (4, [v]) > [7v]
so br(d,|v]) > [v] > v > br(6,7). The last inequality
follows since, for Sy to be an equilibrium, it must be the
case that the best-response curve crosses the diagonal at 7.
Since br(d, ) takes on only integer values, this can happen
only if there exists an integer k' such that (a) all strategies
S., with v" € [k', k" 4+ 1] are best responses to S, and (b)
v € [K',k" + 1]. But this means that br(d,v) = k¥ < ~.
It follows that br(d,v) < br(d, |v]), which contradicts the
assumption that br is nondecreasing. []

As we have observed, we can always choose § such that
br(6,[M/n]) > [M/n]. Thus, if v is the first place in the
interval [[M/n],c0] where the best-response curve crosses
the diagonal, then we must have br(d, |v]) > |v]. Thus,
if the best-response curve is nondecreasing, it follows the
smallest v > | M/n| such that S, is an equilibrium must be
an integer.

5. SOCIAL WELFAREAND SCALABILITY

Our theorems show that for each value of M and n, for
sufficiently large §, there is a nontrivial Nash equilibrium
where all the agents use some threshold strategy S, (asn)-
From the point of view of the system designer, not all equi-
libria are equally good; we want an equilibrium where as few
as possible agents have $0 when they get a chance to make a
request (so that they can pay for the request) and relatively
few agents have more than the threshold amount of money
(so that there are always plenty of agents to fulfill the re-
quest). There is a tension between these objectives. It is not
hard to show that as the fraction of agents with $0 increases
in the maximum entropy distribution, the fraction of agents



with the maximum amount of money decreases. Thus, our
goal is to understand what the optimal amount of money
should be in the system, given the number of agents. That
is, we want to know the amount of money M that maximizes
efficiency, i.e., the total expected utility if all the agents use
S’y(lvf,n) ‘3

We first observe that the most efficient equilibrium de-
pends only on the ratio of M to n, not on the actual values
of M and n.

THEOREM b5.1. There exists n™ such that for all games
G(n1,9) and G(n2,0) where ni,n2 > n*, if M1 /n1 = Ma/na2,
then Sy, ,ny) = Sy(Maz o) -

PrOOF. Fix M/n = r. Theorem 3.1 shows that the
maximum-entropy distribution depends only on k and the
ratio M/n, not on M and n separately. Thus, given r, for
each choice of k, there is a unique maximum entropy distri-
bution dg . The best response br(d, k) depends only on the
distribution dg,,, not M or n. Thus, the Nash equilibrium
depends only on the ratio . That is, for all choices of M
and n such that n is sufficiently large (so that Theorem 3.1
applies) and M/n = r, the equilibrium strategies are the
same. [

In light of Theorem 5.1, the system designer should ensure
that there is enough money M in the system so that the ratio
between M and n is optimal. We are currently exploring
exactly what the optimal ratio is. As our very preliminary
results for § = 1 show in Figure 5, the ratio appears to
be nondecreasing in §, which matches the intuition that we
should provide more patient agents with the opportunity to
save more money.
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Figure 5: Optimal average amount of money to the
nearest .25 for § = 1 as a function of the discount
factor §.

In practice, it may be easier for the designer to vary the
price of fulfilling a request rather than injecting money in
the system. This produces the same effect. For example,
changing the cost of fulfilling a request from $1 to $2 is
equivalent to halving the amount of money that each agent
has. Similarly, halving the the cost of fulfilling a request is
equivalent to doubling the amount of money that everyone

3If there are multiple equilibria, we take Sy (M,n) to be the
Nash equilibrium that has highest efficiency for fixed M and
n.

has. With a fixed amount of money M, there is an optimal
product nc of the number of agents and the cost ¢ of fulfilling
a request.

Theorem 5.1 also tells us how to deal with a dynamic pool
of agents. Our system can handle newcomers relatively eas-
ily: simply allow them to join with no money. This gives
existing agents no incentive to leave and rejoin as newcom-
ers. We then change the price of fulfilling a request so that
the optimal ratio is maintained. This method has the nice
feature that it can be implemented in a distributed fashion;
if all nodes in the system have a good estimate of n then
they can all adjust prices automatically. (Alternatively, the
number of agents in the system can be posted in a pub-
lic place.) Approaches that rely on adjusting the amount
of money may require expensive system-wide computations
(see [31] for an example), and must be carefully tuned to
avoid creating incentives for agents to manipulate the sys-
tem by which this is done.

The realization that the cost of fulfilling a request can
change can affect an agent’s strategy. For example, if an
agent expects the cost to increase, then he may want to de-
fer volunteering to fulfill a request. However, if the number
of agents in the system is always increasing, then the cost
always decreases, so there is never any advantage in waiting
to volunteer. On the other hand, there may be an advantage
to delaying a request if the agent expects the cost of fulfill-
ing a request to decrease. However, due to the discount
factor, having a request satisfied tomorrow results in less
utility than having a request satisfying today. If the rate of
growth in the number of agents is sufficiently slow relative
to 0, then there will not be an advantage to waiting. How-
ever, if an agent anticipates a short-term sudden increase in
the number of agents, there may well be an advantage to
waiting. (Related issues are discussed in [10].)

We ultimately hope to modify the mechanism so that the
price of a job can be set endogenously within the system
(as in real-world economies), with agents bidding for jobs
rather than there being a fixed cost set externally. However,
we have not yet explored the changes required to implement
this change. Thus, for now, we assume that the cost is set
as a function of the number of agents in the system (and
that there is no possibility for agents to satisfy a request for
less than the “official” cost or for requesters to offer to pay
more than it).

6. SYBILSAND COLLUSION

In a naive sense, our system is essentially sybil-proof. To
get d dollars, an agent’s sybils together still have to per-
form d units of work. Moreover, since newcomers enter the
system with $0, there is no benefit to creating new agents
simply to take advantage of an initial endowment. Never-
theless, there are some less direct ways that an agent could
take advantage of sybils. First, by having more identities
he will have a greater probability of getting chosen to make
a request. It is easy to see that this will lead to the agent
having higher total utility. However, this is just an artifact
of our model. To make our system simple to analyze, we
have assumed that request opportunities came uniformly at
random. In practice, requests are made to satisfy a desire.
Our model implicitly assumed that all agents are equally
likely to have a desire at any particular time. Having sybils
should not increase the need to have a request satisfied. In-
deed, it would be reasonable to assume that sybils do not



make requests at all.

Second, having sybils makes it more likely that one of the
sybils will be chosen to fulfill a request. This can allow a
user to increase his utility by setting a lower threshold; that
is, to use a strategy Sjs where k' is smaller than the k used
by the Nash equilibrium strategy. Intuitively, the need for
money is not as critical if money is easier to obtain. Un-
like the first concern, this seems like a real issue. It seems
reasonable to believe that when people make a decision be-
tween a number of nodes to satisfy a request they do so
at random, at least to some extent. Even if they look for
advertised node features to help make this decision, sybils
would allow a user to advertise a wide range of features.

Third, an agent can drive down the cost of fulfilling a
request by introducing many sybils. Similarly, he could in-
crease the cost (and thus the value of his money) by making
a number of sybils leave the system. Conceivably he could
alternate between these techniques to magnify the effects of
work he does. We have not yet calculated the exact effect of
this change (it interacts with the other two effects of having
sybils that we have already noted). Given the number of
sybils that would be needed to cause a real change in the
perceived size of a large P2P network, the practicality of this
attack depends heavily on how much sybils cost an attacker
and what resources he has available.

The second point raised regarding sybils also applies to
collusion if we allow money to be “loaned”. If k agents col-
lude, they can agree that, if one runs out of money, another
in the group will loan him money. By pooling their money
in this way, the k agents can again do better by setting a
higher threshold. Note that the “loan” mechanism doesn’t
need to be built into the system; the agents can simply use
a “fake” transaction to transfer the money. These appear
to be the main avenues for collusive attacks, but we are still
exploring this issue.

7. CONCLUSION

We have given a formal analysis of a scrip system and
have shown that the existence of a Nash equilibrium where
all agents use a threshold strategy. Moreover, we can com-
pute efficiency of equilibrium strategy and optimize the price
(or money supply) to maximize efficiency. Thus, our analy-
sis provides a formal mechanisms for solving some important
problems in implementing scrip systems. It tells us that with
a fixed population of rational users, such systems are very
unlikely to become unstable. Thus if this stability is com-
mon belief among the agents we would not expect inflation,
bubbles, or crashes because of agent speculation. However,
we cannot rule out the possibility that that agents may have
other beliefs that will cause them to speculate. Our analy-
sis also tells us how to scale the system to handle an influx
of new users without introducing these problems: scale the
money supply to keep the average amount of money constant
(or equivalently adjust prices to achieve the same goal).

There are a number of theoretical issues that are still open,
including a characterization of the number of equilibria—are
there usually 2?7 In addition, we expect that one should be
able to compute analytic estimates for the best response
function and optimal pricing which would allow us to un-
derstand the relationship between pricing and various pa-
rameters in the model.

It would also be of great interest to extend our analysis
to handle more realistic settings. We mention a few possible

extensions here:

e We have assumed that the world is homogeneous in a
number of ways, including request frequency, utility,
and ability to satisfy requests. It would be interest-
ing to examine how relaxing any of these assumptions
would alter our results.

e We have assumed that there is no cost to an agent
to be a member of the system. Suppose instead that
we imposed a small cost simply for being present in
the system to reflect the costs of routing messages and
overlay maintainance. This modification could have a
significant impact on sybil attacks.

e We have described a scrip system that works when
there are no altruists and have shown that no system
can work once there there are sufficiently many altru-
ists. What happens between these extremes?

e One type of “irrational” behavior encountered with
scrip systems is hoarding. There are some similarities
between hoarding and altruistic behavior. While an
altruist provide service for everyone, a hoarder will
volunteer for all jobs (in order to get more money) and
rarely request service (so as not to spend money). It
would be interesting to investigate the extent to which
our system is robust against hoarders. Clearly with
too many hoarders, there may not be enough money
remaining among the non-hoarders to guarantee that,
typically, a non-hoarder would have enough money to
satisfy a request.

e Finally, in P2P filesharing systems, there are overlap-
ping communities of various sizes that are significantly
more likely to be able to satisfy each other’s requests.
It would be interesting to investigate the effect of such
communities on the equilibrium of our system.

There are also a number of implementation issues that
would have to be resolved in a real system. For example, we
need to worry about the possibility of agents counterfeiting
money or lying about whether service was actually provided.
Karma [31] provdes techniques for dealing with both of these
issues and a number of others, but some of Karma’s imple-
mentation decisions point to problems for our model. For
example, it is prohibitively expensive to ensure that bank ac-
count balances can never go negative, a fact that our model
does not capture. Another example is that Karma has nodes
serve as bookkeepers, keeping track of other nodes’ account
balances. Like maintaining a presence in the network, book-
keeping imposes a cost on the node, but unlike maintaining
a presence, it is a cost that can be avoided with no obvious
harm. Karma suggests several ways to incentivize nodes
to perform these duties. We have not investigated whether
these mechanisms can be incorporated without disturbing
our equilibrium.
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APPENDI X
A. PROOFSOF THEOREMS

In this section we provide the details of the proofs of The-
orems 3.1, 4.1, and 4.2. We restate the theorems for the
readers’ convenience.

THEOREM 3.1. For all € > 0, all k, and all m, there
exists ne such that for all n > ne and all states s € Sk n,m,
there exists a time t* (which may depend on k, n, m, and
€) such that fort >t*, we have Pr(X¢ s, ,, ) > 1—¢.

ProOF. Given a Markov chain M over a state space S
and state s € S, let X, ; o+ be the random variable on exe-
cutions of the Markov chain that is 1 if M is in state s’ at
time ¢ (given that M is in state s at time 0) and is O other-
wise. Then lim;—co Pr(X; s = 1) is the limit probability
of being in state s’ given that the Markov chain starts in
state s. This limit may not in general exist. However, there
are well known conditions under which the limit exists, and
is independent of the initial state s. A Markov chain is said
to be irreducible if every state is reachable from every other
state; it is aperiodic if, for every state s, there exist two
cycles from s to itself such that the ged of their lengths is 1.

THEOREM A.l. [28, Corollary to Proposition 2.13.5] If M
is a finite, irreducible, and aperiodic Markov chain over state
space S, then there exists a d such that, for all s € S, we
have lim; .o Pr(X; 5 o = 1) =d.

Thus, if we can show that My n . is finite, irreducible,
and aperiodic, then the limit distribution exists and is inde-
pendent of the start state. We now show this.

LEMMA A.1. If there are at least three agents, then My
is finite, irreducible, and aperiodic and therefore has a limit
distribution .

PROOF. My n,m is clearly finite since Sk n,m is finite. We
prove that it is irreducible by showing that state s is reach-
able from state s’ by induction on the distance >, |s(z) —
s'(7)| (i-e., the sum of the absolute differences the amount of
money each person has). If the distance is 0 then s = s’ so
we are done. Suppose that d > 0 and all pairs of states that
are less that d apart are reachable from each other. Con-
sider a pair of states s and s’ such that the distance from
s to s’ is d. Since d > 0 and the total amount of money is
the same in all states, there must exist i; and i2 such that
s(i1) > §'(21) and s(i2) < §'(i2). We must have s(i1) < k+1
and s'(i2) > 0, so it is possible for iz to do work for 7; and
get paid a dollar. The resulting state s” is of distance d — 2
from s. By the induction hypothesis, s is reachable from s.
Since s’ is clearly reachable from s, s’ is reachable from s.
This completes the induction proof. Since the distance be-
tween states is finite (and, indeed, is bounded by (k 4+ 1)"),
the desired result follows.

Finally, we must show that My . .~ is aperiodic. Suppose
s is a state such that there exist three agents p1, p2, and ps
where p1 has more than 0 dollars and p2 and p3 have less
than k dollars. Clearly there is a cycle of length 2 from s
to itself: ps does work for p; and then pa does work for p;.
There is also a cycle of length 3: p2 does work for pi1, ps
does work for ps, then p1 does work for ps. If there do not
exist such agents p1, p2, and p3 in s, then it must be the case
that, in state s, all but one of the agents in s has $k. (The
remaining agent cannot have $k, given our assumption that
the total money supply is < kn). But, in that case, suppose
that p1 and p2 have $k and ps has less than $k. Then we can
have p3 doing work for p2, then p2 doing work for ps, giving
us a cycle of length 2; and ps doing work for p2, p2 doing
work for pi1, and p1 doing work for p3, giving us a cycle of
length 3. [

The next step is to show that the limit distribution 7 of
Mgn,m is in fact uniform. The following well-known result
gives a sufficient condition for the limit distribution

THEOREM A.2. [?, Theorem zzx] If Pr(X; ¢ = 1) =
Pr(Xy,s s = 1) for all states s and s', then the limit dis-
tribution is uniform.

As the following lemma shows, our chain satisfies this con-
dition.

LEMMA A.2. For all states s and s’ € Sk n,m, Pr(X1 s =
1) = Pr(les/’s = 1)

ProoFr. This says that the probability of transitioning
from s to s’ is the same as transitioning from s’ to s. If the
states are not adjacent, then both probabilities are zero and
we are done. Otherwise there must be some i and j such
that ¢ being selected to make a request and j being selected
to satisfy it results in a transition from s to s’. This means
that j being chosen to make a request and 7 being chosen to
satisfy it results in a transition from s’ to s. Thus we simply
need to check that these probabilities are the same.

The person to make a request is chosen at random, so
the probability of the required player being chosen is always
the same: 1/n. Therefore we just need to check the the
probability of j being chosen to satisfy a request in state s
is the same as the probability of ¢ being chosen to satisfy
a request in state s’. Let Vs be the set of agents in s who
are willing to volunteer to fulfill i’s request; that is, Vi =
{7’ # i :s(i') < k}; similarly, let Vi be the set of agents
in s/ who are willing to volunteer to fulfill j’s request. By
assumption, j € V;. Moreover, since ¢ has one less dollar in
s’ than s, i € V,/. Since all agents other than i and j have
the same amount of money in s and s’, it is easy to see that
Vi = Vo U{i} — {4}, and thus |Vi| = V. It easily follows
that the probability of j being chosen to satisfy a request in
s is the same as the probability of ¢ being chosen to satisfy
a request in s’. [

The next last step is to show that there is a concentration
phenomenon, so that the system is in a state in Sk, n,m, with
high probability. In order to do this, we bound the fraction
of states not in Sk,n,m, as n grows large.

LEMMA A.3. The fraction of states not in Sk, n,m,e 15 bounded

by p(n)/e™, where p is a polynomial and c is a constant de-
pendant on €



PRrROOF. The proof is essentially that of Theorem 3.13 in
[13] (though applied to a different type of constraint). Be-
cause Ay, is a closed, convex set, it has a unique point that
maximizes entropy [13]. Let d* be this point, and let p be
the entropy at the point d*. Consider the set D of points
in A¥ whose distance from d* is greater than or equal to
€. Since this is a closed set, the entropy function takes on a
maximum in D; suppose this maximum is p;. We want to
show that there is a state s € Sk n,m, such that H(d*) > p;.
Take pp, to be some value in (pi, p) (say pi + p/2). By the
continuity of the entropy function, there exists some ¢ > 0
such that if |d* — p| < €', then H(d®) > pp,. Thus it suffices
to show that for any €', there exists an n* such that, for all
n >n", Sk nm,e is nonempty.

Consider the distribution d, with d(i) = [nd*(¢)]/n. Due
to taking the floor to guarantee integers, the total amount
of money in a state that has this distribution may be less
than [mn] dollars. However, it can only differ by at most
O(k?) dollars because the rounding of the ith coordinate
loses at most ¢ dollars and one more dollar may be lost
if mn < [mn]. To find a distribution corresponding to
a state with exactly [mn] dollars, we will create a d;, by
subtracting 1/n from some d(i) and adding 1/n to d(i + 1)
for each dollar that needs to be added (this is equivalent to
picking a person to whom to give an extra dollar). Since each
coordinate of d;, is a multiple of 1/n, and the total amount
of money represented by d;, is [mn], there is a state s, in
Sk,n,m where the fraction of people with i dollars is d, (7),
fori=1,...,|m/n].

We now want to show that for n sufficiently large, s, €
Sk.n.m.e» that is, that |d;, —d*| < €'. Notice that we defined
d,, from d* by doing some rounding and then applying O(k?)
changes of 1/n. Thus |d, (i) —d*(i)| is O(k*/n). Since k is a
constant independent of n, this means that the difference in
each dimesion is O(1/n) and the total distance is O(1/y/n).
Thus for sufficently large n, the distance will always be less
than €.

To complete the proof, we use the fact shown in the proof
of Lemma 3.11 of [13] that for any d € A¥,

1 nH(d n nH(d
TR (nd(0)7...,nd(k)> < g(men ™

where f and g are polynomial in n. We know that there is
some point at which the entropy is ps. There are at least
as many total states as there are states at that point, so the
total number of states is at least

1 nH(d) — 1 e"PH

—e
f(n) f(n)

The number of states at each point of distance at least € is

at most

g(n)e™ @ = g(n)e"".

There are at most (n -+ 1)¥*! points, so the total number of
“bad” states is at most

h(n)e™”

where h(n) = g(n)(n 4+ 1)**! which is still polynomial in n.
Thus the fraction of “bad” states is at most

h(n)e™ _ f(n)h(n)
ﬁenph - en(Ph*PL)

This is a ratio of a polynomial to an exponential, so it goes
to zero in the limit. Thus far we have shown that the Markov
chain for our system has a limit distribution in which the
probability distribution on states is uniform. We have also
shown that, in the limit as n — oo, the the fraction of states
s where d® is not “close” to d* is 0. Thus, if the probability
distribution on states is exactly the limit distribtuion, then
the limit probability of being in a state at distance greater
than € from d* is 0 for any € < 0. After any fixed number
of rounds, the probability of being in a given state is not
exactly the probability given by the limit distribution, but
as the number of rounds increases, the distributions get ar-
bitrarily close. This will be enough for us to complete the
proof of Theorem 3.1

By Lemma A.2; the limit distribution of My s, is uni-
form independent of the start state. Thus, after a sufficient
amount of time, the distribution over states will be arbitrar-
ily close to uniform. In particular, for any c, there exists a t.
such that after ¢ rounds the probability of being in any par-
ticular state is within a factor of ¢ of uniform. By Lemma
A.3, the fraction of states not is Sk,n,m, is bounded by

p(n)/ecl". The probability of being in one of these states is
at most a factor of ¢ beyond the uniform probabiility. Thus
the probability of being in one of these states is bounded by
cp(n)/ec/”, which is still the ratio of a polynomial and an
exponential. Thus we simply need to choose a ¢ and n. such
that cp(ne)/ecl"e < e and take t* > t..

THEOREM 4.1. Fiz a strategy S~y and an agent i. There
exists 6* < 1 and n* such that if 6 > 6%, n > n*, and every
agent other than i is playing S in game G(n,d), then there
is an integer k' such that the best response for agent i is Sir.
Either k' is unique (that is, there is a unique best response
that is also a threshold strategy), or there exists an integer
E" such that S,/ is a best response for agent i for all v in
the interval [k, k" +1] (and these are the only best responses
among threshold strategies).

We know from Theorem 3.1 that, if all agents play a par-
ticular threshold strategy, after a sufficent amount of time
the system will be close to the maximum entropy distri-
bution for that strategy. Suppose to start with that the
distribution in the system is the maximimum entropy dis-
tribution, regardless of the strategy of a single agent. Then
the number of other agents volunteering will be constant in
every round. Thus, from the perspective of a single agent,
pu (the probability he will satisfy a request given that he
volunteers) and pq (the probability that he will have a re-
quest satisfied) are time-independent constants. Therefore
the strategy for an agent is a policy for a relatively simple
Markov descision process. There are states 0 to M repre-
senting the amounts of money he could have. In each round
he chooses either to volunteer (action 1) or not volunteer (ac-
tion 0). He then transitions to a new state and gets a payoff
based on the results of that action in our game. Condi-
tions for MDPs having optimal threshold policies have been
extensively studied (see [26]).

We define some notation that will be helpful in proving
the result.

e S ={0,...,M} is the set of possible states for the
MDP (i.e., the possible amounts of money);



A = {0,1} is the set of possible actions, where 0 de-
notes not volunteering and 1 denotes volunteering;

e 7(s,a) The (immediate) expected reward for perform-
ing action a in state s;

e p(j | s,a) The probability of being in state j after
performing action a in state s;

e q(k | s,a) =3>272, p(j | s,a) the probability of being
in a state at least k after performing action a in state
S5

e u*(s) The expected utility of being in state s (assuming
the optimal strategy is being followed);

o u(s,a) =r(s,a)+ 3272, p(j | s,a)u”(j). The expected
utility for performing action a in state s (given that the
optimal strategy will be followed after this action);

In proving that the decision problem has an optimal thresh-
old policy, we will want to make use if the fact that u*(s) is
monotone increasing. A well known sufficent condition for
this is

THEOREM A.3. [26, Proposition 4.7.3] u*(s) is monotone
increasing if

(a) r(s,a) is nondecreasing in s for all a;

(b) q(k | s,a) is nondecreasing in s for all k € S and
a € A;

Thus, to show that u* is monotone, it suffices to show
that the conditions of Theorem A.3 hold. This is straight-
forward. Since the cost of volunteering is constant and the
payoff for getting a request satisfied is constant, r(s,a) is
independent of s (except that it is less in state 0, which is
consistent) so (a) holds. Clearly the amount of money you
have after deciding wheter to volunteer is nondecreasing in
your current amount of money. Since volunteering earns you
money, and volunteering is 1 while not volunteering is a 0,
the probability of having at least k dollars is also not de-
creasing in a. Thus (b) also holds and we know that u* is
monotone.

LEMMA A.4. This MDP has an optimal threshold policy

PROOF. Suppose the optimal action for state ¢ + 1 is 0.
Then for state 4, if we always choose action 1 (volunteering)
until we get to state i« — 1, we may cycle between states
¢ and ¢ + 1 until eventually we end up in state ¢ — 1 and
then follow the optimal strategy. We can write the expected
utility of this strategy E[U. + 6 + 6*u*(i — 1)] where U.
is the utility received while cycling, and ¢. is the time until
the cycle ends by spending a dollar in state ¢. Similarly we
can write the expected utility of doing the same with action
0 as E[6% + §'u*i — 1] where t4 is the time to spend a
dollar. The difference in expected values is therefore E[Uc +
§te — ot 4 (8% — ¢*)u*i — 1]. Note that U,, t., and t4 are
constants independant of s and that §’c — §°¢ is negative.
Thus volunteering will be superior whenever v*(i — 1) is
smaller than some threshold u. The only possible action in
state M is 0. Therefore the action 0 will be optimal in every
state down from the M until the first time v* (i — 1) < wu,
at which point action 1 will be optimal for that state. So

we know that in state i, the optimal action will be 1. Now
we want to determine the optimal action for state i — 1. In
state ¢ — 1, if we choose action 0, the expected utility is
independent of the expected utility of state i. If we choose
action 1, it does depend on it. By the same argument we
used for state i, if we decided to always use action 0 in state
¢ (instead of the optimal action 1), we would still prefer to
volunteer in state i — 1 because u*(i —2) < u* (i —1) < u by
A.3. Thus performing the optimal action of 1 in state ¢ can
only improve the utility of choosing action 1 in state ¢ — 1
while leaving the utility of action 0 unchanged. Thus action
1 is optimal in state ¢ — 1. By induction, we know that 1
will be optimal for every state from ¢ down to 1. State 0 is a
special case. However note that for 1 to be optimal in state
i, Uc. > 0. Thus the value of action 1 in state 0 will be > 0
while the value of action 0 will be 0, so 1 is optimal in state
0as well. O

We have shown that, if we assume that the distribution
of money is fixed at exactly the maximum entropy distribu-
tion, there is a best response that is a threshold strategy.
However, the system will in general not be at exactly the
maximum entropy distribution. Still, as Theorem 3.1 shows,
after a sufficent amount of time the system is very unlikely
to be very far away. Intuitively, if an agent is patient enough
then all that will matter is the future state of the system,
when it will be very close to the maximum entropy distri-
bution. Similarly, we might worry that the strategy of the
agent will alter the maximum entropy distribution so that
the MDP we have examined is no longer valid. Intuitively,
if there are enough people in the system, any one will be un-
able to alter the distribution. We formalize these intuitions
in the following lemma. [[Put Lemma Here]]

‘We have observed that, when the system is stable, thresh-
old strategies are a best response. We have also noted that,
after some amount of time of agents playing threshold strate-
gies, the system will be stable with very high probability. In
section 3, we conjectured that the Markov chain is rapidly
mixing, so that we expect these periods to be relatively brief.
As a result, it seems reasonable to not worry about the in-
centives of agents during these transient time periods, espe-
cially as it is not clear how to determine what would be a
better strategy for them. We can also make this intuitive
appeal more precise using a slightly non-standard notion of
an e-Nash. The basic idea behind this is that, we can get
a finite bound on to maximum utility possible for the time
until a stable state is reached, and if § is large enough, that
becomes an insignificant portion of the utility over the course
of the infinite game. Thus our notion of an € best response
asserts that an agent cannot do better by a multiplicative
factor of € rather than an additive one as is more commonly
meant.

LEMMA A.5. Let Sk be a best response as in Theorem 4.2.
For every €, there exists a §° such that if & > 6" then Sk is
an € best response to S-.

ProOOF. We know from Theorem 3.1, that there exists
some t such that the probability of being in a state far from
the maximum entropy distribution is at more is arbitrarily
small. Since the value of a strategy is finite, we can choose
a t such that the expected loss from playing a suboptimal
strategy in this event is at more €/2. The maximum payoff



possible is a payoff of 1 each round. Thus until time ¢, an
upper bound on the maximum payoff is ZE:O 5%, or if we
desire to make it independent of § we can also simply use ¢
and ignore the discouting. Then we simply need to choose
a 0" such that ¢ is at most an €/2 fraction of the expected
future value of playing Sk in a state near the maximum
entropy distribution. Note that this value can be arbitrarily
large because in the limit as delta goes to 1, the value of any
non-zero threshold strategy is infinite. [

We now know that there is a best response that is a
threshold strategy. However, there may be multiple thresh-
old strategies that are best responses. Intuitively, an agent
with 5 dollars might be ambivalent about paying o to have
6 dollars, in which case S5 and S would both be optimal.
Similarly, any mixture of them would also be optimal. The
following lemma shows that this is the only way for the best
response to be non-unique.

LEMMA A.6. The best response is either unique or con-
sists of all v in the interval [K', k' + 1].

PrOOF. Consider the strategies Si and Siy1. Starting
with the same amount of money, an agent using Sj will
behave in the same way as an agent using Sk41, except in a
state where the agents have $k and have the opportunity to
work. In this case the agent using Sk4+1 will volunteer, but
the agent using Sj will not. Afterwards, the two agents will
behave identically, but the agent using Sy will have a dollar
less than the agent using Si41. This continues to be the case
until the agent using S runs out of money and is offered an
opportunity to spend. At this point, the agent using Sy will
not be able to take the opportunity, but the agent using Sk41
will be able to take it. Afterwards, both agents have $0, so
are in the same state again. Thus, Sk is the better strategy
iff & (the cost of working now) < E[6%*] (the expected future
payoff), where X}, is a random variable that describes the
number of steps that it takes an agent playing Sj to run out
of money, given that it has $k+1. In order to run out money
starting with k42 dollars, some number of rounds must pass
after which the agent has k + 1 dollars. Therefore E[6%*] is
strict monotone decreasing (because § < 1 and the value of
the exponent is increasing). Thus it can’t be the case that
Sk and Sy are equally good but for some k < k" < k' Sp»
is worse. [

THEOREM 4.2. For all M, there ewists 6* < 1 and n*
such that if § > 0" and n > n", there exists a Nash equilib-
rium in the game G(n,d) where all agents play S~ for some
integer v > 0.

PrOOF. It follows easily from the proof Theorem 4.1 that
if br(d, ) is the minimal best response threshold strategy if
all the other agents are playing S, and the discount factor is
0 then, for fixed §, br(d,-) is a step function. It also follows
from the theorem that if there are two best responses, then
a mixture of them is also a best response. Therefore, if we
can join the “steps” by a vertical line, we get a best-response
curve. It is easy to see that everywhere that this best-
response curve crosses the diagonal y = = defines a Nash
equilibrium where all agents are using the same threshold
strategy. As we have already observed, one such equilib-
rium occurs at 0. To show that there is another, nontrivial

equilibrium, we need to show that there is another crossing.
Since we have shown that the best response curve is con-
tinuous, it is sufficient to show that there is a point one the
curve above the line and a point on the curve below the line.
If there are only $M in the system, we can restrict to thresh-
old strategies Sy where k < M + 1. Since no one can have
more than $M, all strategies Sy for k > M are equivalent
to Sar; these are just the strategies where the agent always
volunteers in response to request made by someone who can
pay. Clearly br(d,Snm) < M for all §, so the best response
function has a point at or below the line. If k¥ < M/n, every
player will have at least k dollars and so will be unwilling
to work and the best response is just 0. Consider k*, the
smallest k such that k > M/n. We need to show that if an
agent is sufficiently patient, the curve will be above the line
at this point. That is, for k* there exists a 6™ such that for
all 6 > 6%, br(6,k™) > k™. In the proof of lemma A.6, we
showed that Sk1 is a better strategy than Sy, if a < E[(SX’“].
It follows that the optimal strategy is the minimal one such
that a > E[6;]. Each X} is independent of §. Thus by
taking a large enough 4, the expectation can be made larger
than « for any chosen k. Thus take 6* to be any value such
that o < E[(6*)%**]. This gives us a point above the line.
We have shown that there is a point above the line and
then a point below the line for sufficiently large 6. It follows
by continuity that if § > ¢*, there must be some « such that
br(d,~v) = ~. This is the desired Nash equilibrium. []

Material on Continuity

We want to show that the best response function is continu-
ous. Let Uy () be the expected utility of playing Sy given
that everyone else is playing S, and the agent currently has
zero dollars (this last is just for definiteness in the definition,
if a strategy is better with zero dollars, it is better regardless
of the amount of money). We will show that these utility
functions are continuous in v and as a result the best re-
sponse function is continuous.

LEMMA A.7. Uy () is continous in ~.

PRrROOF. Let p, be the probability of the player getting
picked to do work and ps = 1/n be the probability of the
playet getting picked to spend money (p. is just a function
of 7, so it has the nice property that it is independent both
of the strategy chosen by the player and state that the player
is currently in). Then we can give the following system of
equations for the expected payoffs (P; is the expected payoff
in state i, with U/ (v) = Po):

Py =pu(—a+dP1) + (1 —pu)dF
P, =pu(—a+6Pit1) + pa(L+0Pi—1) + (1 — pu — pa)oF;
Pit1 =pa(l +0Pk) + (1 — pa)dPri1

Since «, 0, and pg are constants, the coefficients are a con-
tinuous function of p,. Thus the value of Py is continuous
in v if py is. pu. = 1/(n — no), where no is the number of
players with zero dollars. The total number of players with
zero dollars is the sum of the players playing S|, with zero
dollars and the number of players playing Sp,7 with zero
dollars. From Theorem 3.1, we know that these numbers
will be given by the maximum entropy distribution. Using



lagrange multipliers, we can solve for the exact value:

1—~— _
fto=mn <( L'V’Jy 7|-;YJ‘) * 77+1 L;”A i )
Zi:o € Lt Zi:o € 2 ’YJ
Here A1 and A2 are constants chosen to satisfy the con-
straint on the amount of money. We are still missing a piece
to show that the As are continuous in 7, but once that is
done this proof is complete. [

LEMMA A.8. The best response curve is continous

PROOF. The best response to v is argmazy Ui (), so
Lemma A.7 tells us we are taking an argmax of continous
functions. We also know from Theorem 4.1 that this argmax
is either unique or consists of two consecutive values of k’
(and all the <s in between them). Suppose the best re-
sponse discontinuously switches from k' to k. Then Uy (7)
goes from strictly greater than Uy () to strictly less than
it without crossing, which contradicts their continuity. [
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