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Abstract

Thestudy of belief change hasbeen an active area
in philosophy and Al. In recent years, two specia
cases of belief change, belief revision and belief
update, have been studied in detail. Roughly
speaking, revision treats a surprising observation
as asign that previous beliefs were wrong, while
update treats a surprising observation as an indi-
cation that the world has changed. In general, we
would expect that an agent making an observa-
tion may both want to revise some earlier beliefs
and assume that some change has occurred in
the world. We define a novel approach to be-
lief change that allows us to do this, by apply-
ing ideas from probability theory in a qualitative
settings. The key idea is to use a qualitative
Markov assumption, which says that state tran-
sitions are independent. We show that a recent
approach to modeling qualitative uncertainty us-
ing plausibility measures allows us to make such
a qualitative Markov assumption in a relatively
straightforward way, and show how the Markov
assumption can be used to provide an attractive
belief-change model.

1 INTRODUCTION

The question of how an agent should change hisbeliefsafter
making an observation or performing an action hasattracted
agreat deal of recent attention. Therearetwo proposalsthat
have received perhaps the most attention: belief revision
[Alchourron, Gardenfors, and Makinson 1985; Gardenfors
1988] and belief update [Katsuno and Mendelzon 1991].
Belief revision focuses on how an agent changes his be-
liefs when he acquires new information; belief update, on
the other hand, focuses on how an agent should change
his beliefs when he realizes that the world has changed.
Both approaches attempt to capture the intuition that to
accommodate a new belief, an agent should make mini-
mal changes. The difference between the two approaches
comes out most clearly when we consider what happens
when an agent observes something that isinconsistent with
hispreviousbeliefs. Revision treatsthe new observation as

Joseph Y. Halpern
IBM Almaden Research Center
650 Harry Road
San Jose, CA 95120-6099
hal pern@al maden.ibm.com

an indication that some of the previous beliefs were wrong
and should be discarded. It tries to choose the most plausi-
ble beliefs that can accommodate the observation. Update,
on the other hand, assumes that the previous beliefs were
correct, and that the observation is an indication that a
change occurred in the world. It then tries to find the most
plausible change that accounts for the observation and to
predict what else has changed as a result.

In general, we would expect that an agent making an ob-
servation may want both to revise some earlier beliefs and
to assume that some change has occurred in the world. To
seethis, consider the following example (which isavariant
of Kautz's stolen car example [1986], and closely resem-
bles the borrowed-car example in [Friedman and Halpern
1994b]): A car is parked with a full fuel tank at time O; at
time 2, the owner returnstofind it parked where heleft it. If
the owner believesthat parked carstend to stay put, then he
would believe that no changes occurred between time 0 and
2. What should he believewhen, at time 3, hediscoversthat
the fuel tank is empty? Update treats this observation as
an indication of a change between time 2 and 3, for exam-
ple, agasleak. Revision, on the other hand, treats it as an
indication that previous beliefs, such as the belief that the
tank was full at time 2, were wrong. In practice, the agent
may want to consider a number of possible explanations
for histime-3 observation, depending on what he considers
to be the most likely sequence(s) of events between time 0
and time 3. For example, if he has had previous gas leaks,
then he may consider a gas leak to be the most plausible
explanation. On the other hand, if his wife also has the
car keys, he may consider it possible that she used the car
in his absence. Is there a reasonable approach that lets us
capture these considerations in a natural manner? In this
paper, we show that thereis and, indeed, we can get one by
applying straightforward ideas from probability theory in a
qualitative setting.

To understand our approach, it is helpful to review what a
probabilist would do. Thefirst step isto get an appropriate
model of the situation. As was argued in [Friedman and
Halpern 1995a; Friedman and Halpern 1994b], to capture
belief change appropriately, we need a model of how the
system changes over time. We assume that at each point
in time, the system isin some state. A run of the system
is a function from time (which we assume ranges over



the natural numbers) to states; thus, a run is essentially a
seguence of states. A run can be thought of as a description
of how the system changes over time. Weidentify a system
with aset of runs. Intuitively, we are identifying the system
with its possible behaviors.

The standard probabilistic approach woul d be to put a prob-
ability on the runs of the system. Thisis the agent’s prior
probability, and captureshisinitial beliefsabout therelative
likelihood of runs. As the agent receives information, he
changes his beliefs using conditioning.

One obvious problem with this approach is that, even if
there are only two possible states, there are uncountably
many possible runs. How can an agent describe a prior
probability over such a complex space? The standard so-
[ution to this problem isto assume that state transitions are
independent of when they occur, that is, that the probability
of the system going from state s to state s’ is indepen-
dent of the sequence of transitions that brought the system
to state s. This Markov assumption significantly reduces
the complexity of the problem. All that is necessary is to
describe the probahility of state transitions. Moreover, the
Markov assumption hasbeen shownto bewidely applicable
in practice [Kemeny and Snell 1960; Howard 1971].

Another problem with a straightforward use of probability
is that, in many situations, an agent may not know the ex-
act probability of various state transitions, although he may
have some more qualitative information about them. Inthe
literature, there are many approachesto representing quali-
tative beliefs: preferential structures[Kraus, Lehmann, and
Magidor 1990], possibilistic measures [Dubois and Prade
1990], -rankings [Spohn 1988; Goldszmidt and Pearl
1992], and logicsof extreme probabilities[Pearl 1989]. We
represent beliefs here using plausibility measures [Fried-
man and Halpern 1995b], an approach that generalizes all
the earlier approaches. A plausibility measure is a quali-
tative analogue of a probability measure; it associates with
every event its plausibility, which is just an element in a
partially ordered space.

As shown in [Friedman and Halpern 1995g], we can de-
fine a natural notion of belief using plausibility, where a
proposition is believed exactly if it is more plausible than
its complement. It is also easy to define a notion of con-
ditioning in plausibility spaces (as done in [Friedman and
Halpern 1995h]). Once we apply conditioning to the notion
of belief, we get a notion of belief change. Interestingly,
it can be shown that belief revision and belief update both
can be viewed asinstances of such belief change [Friedman
and Halpern 1994b]. That is, we can get belief revision and
belief update when we condition on the appropriate plausi-
bility measures. Not surprisingly, the plausibility measures
that capture belief revision are ones that consider plausible
only runswhere theworld never changes over time. Onthe
other hand, the plausibility measures that capture belief up-
date are ones that make plausible those runsin which, in a
precise sense, abnormalitiesare deferred aslate as possible.

The plausibility measures that give us belief revision and
belief update are fairly special, and do not capture many
typical situations. We would like to specify a prior plausi-

bility measure over runsthat captures our initial assessment
of the relative plausibility of runs. Asin the probabilistic
settings, such a prior can be quite complex. We can use (a
gualitative analogue of ) the Markov assumption to simplify
the description of the prior plausibility.

Making a (qualitative) Markov assumption gives us awell-
behaved notion of belief change, without making the occa-
sionally unreasonable assumptions made by belief revision
and update. In particular, it allows auser to weigh therela-
tive plausibility that a given observation is due to a change
in the world or due to an inaccuracy in previous beliefs. In
the car example, this means that the agent can decide the
relative plausibility of a gas leak and his wife's taking the
car, without making the commitment to one or the other, as
required by update and revision.

This paper is organized as follows. In Section 2, we re-
view the probabilistic approach. Then, in Section 3, we
review the definition of plausibility and discuss conditional
plausibility. In Section 4, we introduce Markovian plausi-
bility measuresand show how they can be used toinduce an
interesting notion of belief change. In Section 5, we exam-
ine the situation where the user is willing only to compare
the plausibility of transitions, without committing to their
magnitude. We characterize what beliefs follow from such
a partial specification. In Section 6, we compare our ap-
proach to othersin the literature. We end with adiscussion
of these results and directions of future research in Sec-
tion 7.

2 PROBABILISTIC BELIEF CHANGE

To reason about a space W probabilistically, we need a
probability measure on 1//. Formally, that means we have
a probability space (W, F, Pr), where F is an algebra of
measurable subsets of W (that is, a set of subsets closed
under union and complementation, to which we assign
probability) function mapping each event (i.e., a subset
of W) in F to a number in [0, 1], satisfying the well-
known Kolmogorov axioms (Pr(#) = 0, Pr(W) = 1, and
Pr(AU B) = Pr(A) + Pr(B) if A and B aredigoint).!

Probability theory also dictates how we should change our
beliefs. If the agent acquires evidence E, his beliefs af-
ter learning F are specified by the conditional probability
Pr(-|E'). Note that by using conditioning, we are implic-
itly assuming that the information £ is correct (since we
assign E—the complement of F—probability 0), and that
discovering E istelling us only that £ is impossible; the
relative probability of subsets of E' isthe same before and
after conditioning.

We want to reason about a dynamically changing system.
To do so, we need to identify the appropriate space W
and the events of interest (i.e,, ). We assume that the
system changes in discrete steps, and that after each step,
the system is in some state. We denoted by S the set of
possiblestates of the system. Aswesaidin theintroduction,

!For ease of exposition, we do not make the requirement that
probability distributions be countably additive here.



arunisafunctionfrom the natural numbersto states. Thus,
arun r describes a particular execution that goes through
the sequence of states r(0), r(1), . . .. Weidentify asystem
with a set of runs, and take 1/ to consist of these runs.

There are various events that will be of interest to us;, we
always assume without comment that the events of interest
arein F. Onetype of event of interest is denoted S; = s;
thisisthe set of runs r such that r(i) = s.2 A time-n event
is a Boolean combination of events of theform S; = s, for
i < n. We are particularly interested in time-n events of
theform (Sp = so)N---N (S, = sp), whichweabbreviate
[s0, - ., sn]; thisistheset of all runsin W withinitial prefix
s0,--.,S,. We call such an event an n-prefix. Note that
any time-n event isaunion of n-prefixes.

As discussed in the introduction, describing a distribution
Pr on runs can be difficult. Even when S contains only
two states, W is uncountable. In the probabilistic litera-
ture, this difficulty is often dealt with by making a Markov
assumption.

Definition 2.1:: A Markov chain [Kemeny and Snell 1960]
over S1, 5>, ...isameasure Pron IV that satisfies

L4 Pr(Sn+l = Sp41 | EaSn = Sn) = Pr(Sn+l = Sn+1 |
Sn = sp), Where E isany time-n event,

o Pr(Smy1=5"| Sm =5) = Pr(Sp41 = §'|Sh = 35).

We say that Pr is a Markovian measure if it is a Markov
chainover Sy, S1,.. .. 1

The first requirement states that the probability of S, 11 =
Sn+1 IS independent of preceding states given the value
of S,: The probability of going from state S, = s, to
Sn+1 = Sn41 IS independent of how the system reached
S, = sn. The second regquirement is that the transition
probabilities, i.e., the probabilities of transition from state s
to state s’, do not depend on thetimeof thetransition. Many
systems can be modeled so as to make both assumptions
applicable.

If weassumethat thesystemhasauniqueinitial state sg (that
is, 7(0) = so for al runsr € W), and specify transition
probabilities p; ,/, with )", s ps s+ = 1, foreach s € S,
then it is easy to show that there is a unique Markovian
measure Pr on the algebra generated by events of the form
S; = s suchthat Pr(S,4+1 = §'|S, = s) = ps,s». Wecan
define Pr on the n-prefixes by induction on n. The case of
n = 0isgiven by Pr([sg]) = 1. For the inductive step,
assuming that we have defined Pr([so, . . ., sn—1]), we have

Pr([so, ..., sn])
= Pr(Sn = snllso, .-, sn—1]) x Pr([so, - .., sn—-1]))
= Psp_1,5qa X Pf([S(),...,Sn_]_.

An easy induction argument now shows

Pf([s(), B 5”]) = Pso,s1 X " X Psy_1,85-

2Technically, S; is arandom variable taking on valuesin S,
the set of states.

Since a time-n event is a union of n-prefixes, this shows
that Pr is determined for all time-n events.

If S is finite, this gives us a compact representation of
the distribution over 1¥/. Of course, even if we do not
have a unique initial state, we can construct a Markovian
probability distributionfrom thetransition probabilitiesand
the probabilities Pr([s]) for s € S. For ease of exposition,
throughout this paper, we make the following simplifying
assumption.

Simplifying assumption: S containsthe state sg
and IV isaset of runsover S, al of which have
initial state sq.

Obvious analogues of our results hold even without this
assumption.

3 PLAUSIBILITY MEASURES

Our aim is to find analogues of probabilistic belief change
in situations where we do not have numeric probabilities.
We do so by using notion of a plausibility space, which is
anatural generalization of probability space [Friedman and
Halpern 1995b]. Wesimply replacethe probability measure
Pr by aplausibility measure P, which, rather than mapping
sets in F to numbers in [0, 1], maps them to elements in
some arbitrary partially ordered set. Weread PI(A) as“the
plausibility of set A”. If PI(A) < PI(B), then B isat least
asplausible as A. Formally, a plausibility spaceis atuple
S = (W, F,D,P), where W is a set of worlds, F isan
algebraof subsetsof 1, D isadomain of plausibility values
partially ordered by arelation <p (sothat <p isreflexive,
transitive, and anti-symmetric), and Pl maps the setsin F
to D. Weassumethat D ispointed: that is, it contains two
special elements Tp and Lp suchthat 1L p<p d <p Tp
for al d € D; we further assume that PI(WW) = Tp and
PI(0) =Lp. Theonly other assumption we make is

Al If A C B, thenPI(4) < PI(B).

Thus, aset must be at least as plausible as any of its subsets.
Asusua, we definethe ordering < p by takingdy <p d» if
d1 <p dyand d1 # d2. We omit the subscript D from <p,
<p, Tp,and Lp whenever it is clear from context.

Clearly plausibility spaces generalize probability spaces.
They also are easily seen to generalize Dempster-Shafer
belief functions [Shafer 1976] and fuzzy measures [Wang
and Klir 1992], including possibility measures [ Dubois and
Prade 1990]. Of moreinterest to ushereisanother approach
that they generalize: An ordinal ranking (or x-ranking) on
W (as defined by [Goldszmidt and Pearl 1992], based on
ideasthat go back to [Spohn 1988]) isafunction s : 2% —
IN*,where N* = IN U {oo}, suchthat x(W) = 0, k() =
oo, and k(A) = mingea k({a}) if A # 0. Intuitively, an
ordinal ranking assigns a degree of surprise to each subset
of worlds in W, where O means unsurprising, and higher
numbers denote greater surprise. Again, it is easy to see
that if x isarankingon W, then (W, IN*, k) isaplausibility
space, wherez <y« yif andonly if y < z under theusual
ordering on the ordinals.



Conditioning plays a central role in probabilistic belief
change. In [Friedman and Halpern 1995b], we define an
analogue of conditioning for plausibility. Just as a con-
ditional probability measure associates with each pair of
sets A and B a number, Pr(A|B), a conditional plausi-
bility measure associates with pairs of sets a conditional
plausibility. Formally, a conditional plausibility measure
maps maps a pair of sets A and B to a plausibility, usually
denoted PI(A|B), where for each fixed B # 0, PI(:|B)
is a plausibility measure, satisfying a coherence condi-
tion described below. A conditional plausibility space is
atuple (W, F, D, M), where Pl is a conditional plausibil-
ity measure. In keeping with standard practice in prob-
ability theory, we aso write PI(A4, B|D, E) rather than
Pl(A N B|D N E). The coherence condition is

Cl P(AIC,E) < PH(B|C,E) if and only if
Pl(A, C|E) < PI(B,C|E).

C1 captures the relevant aspects of probabilistic condition-
ing: after conditioning by C', the plausibility of setsthat are
digoint from C' becomes L, and the relative plausibility of
sets that are subsets of C' does not change.

As we mentioned in the introduction, we are interested
herein plausibility measuresthat capture certain aspects of
gualitative reasoning. We say that an event A is believed
given evidence E according to plausibility measure P if
Pl(A, E) > PI(A, E), that is, if A is more plausible than
its complement when £ is true. Notice that, by C1, thisis
equivalent to saying that PI(A|E) > PI(A|E). Moreover,
note that if Pl is a probability function, this just says that
Pr(A|E) is greater than 1/2. Probabilistic beliefs defined
thisway are, in general, not closed under conjunction. We
may believe A and believe A’ without believing A N A’.
In [Friedman and Halpern 1996], we show that a necessary
and sufficient condition for an agent’s beliefs to be closed
under conjunction is that the plausibility measure satisfies
the following condition:

A2. If A, B, and C arepairwisedigoint sets, Pl(AU B) >
PI(C),andPl(AUC) > PI(B), thenPI(A) > PI(BU
C).

Plausibility measuresthat satisfy A2 are called qualitative.®
We can now state precisely the property captured by A2.
Given a plausibility measure P, let Belp(E) = {4 :
PI(A|E) > PI(A|E)}. Wethen have:

Theorem 3.1: [Friedman and Halpern 1996]“ Pl isa qual-
itative plausibility measure if and only if, for all events A
B,and E,if A, B € Belp(E) then AN B € Belp(E).

3In [Friedman and Halpern 1996], we also assumed that
qualitative plausibility measures had an additional property: if
Pl(A) = PI(B) = L,then Pl(AU B) = L. This property plays
no role in our results, so we do not assume it explicitly here. (In
fact, it follows from assumptions we make in the next section
regarding decomposability.)

4Thisresult isaimmediate corollary of [Friedman and Halpern
1996, Theorem 5.4]. The same result was discovered indepen-
dently by Dubois and Prade [1995].

It is easy to show that possibility measures and «-rankings
define qualitative plausibility spaces. In addition, as we
show in [Friedman and Halpern 1996], preferentia or-
derings [Kraus, Lehmann, and Magidor 1990], and PPDs
(parameterized probability distributions, which are used in
defining e-semantics [Pearl 1989]) can be embedded into
qualitative plausibility spaces. On the other hand, proba-
bility measures and Dempster-Shafer belief functionsarein
genera not qualitative. Sinceour interest hereisin qualita-
tive reasoning, we focus on qualitative plausibility spaces
(although some of our constructionshold for arbitrary plau-
sibility measures).

Using qualitative (conditional) plausibility spaces we can
model belief change in dynamic systems. Both revision
and update are concerned with beliefs about the current
state of the world. We follow this tradition, although most
of our results also apply to richer languages (which allow,
for example, beliefs about past and future states). Suppose
(W, F, D,H) isaplausibility space, where IV is a system
consisting of all the runs over some state space S. Infor-
mally, wewant to think of alanguage that makes statements
about states. That means that each formulain such alan-
guage can be identified with a set of states. In particular,
a proposition (set of states) A in such a language is true
atimen inarun rif r(n) € A. Using the notion of
belief defined earlier, A is believed to be true at time n if
the plausibility of the set of runs where A istrue at time
n is greater than the plausibility of the set of runs where
it isfase. To make this precise, if A isaset of states, let
A = {r € W :r(n) € A}. Thus, A®) isthe set of runs
where A istrue at timen. Then we define

Belfy () =as {AC S| P(A™|E) > P(A™|E)).

We can think of Beljy(E) as characterizing the agent’s be-
liefs about the state of the world at time n, given evidence
E. (Weomit the subscript Pl from Bel, whenever itisclear
from the context.)

This construction—which essentially starts with a prior on
runs and updates it by conditioning in the light of new
information—is anal ogousto the probabilistic approach for
handling observations.

We can also relate our approach to the more standard ap-
proaches to belief change [Alchourron, Gardenfors, and
Makinson 1985; Katsuno and Mendelzon 1991]. In these
approaches, it is assumed that an agent has a belief set K,
consisting of a set of formulas that he believes. K x A
represents the agent’s belief set after observing A. We can
think of Bel®(S) as characterizing the agent’s initial belief
set K. For each proposition A, we can identify Bel'(A)
with K x A. In this framework, we can also do iterated
change: Bel” (A(Y A ... A A isthe agent's belief state
after observing A1, then Ay, ..., and then A,,.

Aswe have shown in previouswork [1995a, 1994b], condi-
tioning capturestheintuition of minimal changethat under-
lies most approaches to belief change. In particular, both
belief revision and belief update can be viewed asinstances
of conditioning on the appropriate prior. As expected, the
prior plausibility measures that correspond to revision as-



sign plausibility only to runs where the system does not
change, but are fairly unstructured in other respects. Onthe
other hand, the prior plausibility measures that correspond
to update allow the system to change states, but put other
constraints on how change can occur. Roughly speaking,
they prefer runs where surprising events occur as late as
possible.

4 MARKOVIANBELIEF CHANGE

As we said in the introduction, we would like a notion
of belief change that allows us both to revise our previous
beliefsabout theworld andto allow for achangeintheworld
occurring. Moreover, we need to address the question of
representing the plausibility measure on runs. Can we get
measures with reasonable belief-change properties that can
be represented in a natural and compact manner? In the
probabilistic framework, the Markov assumption provides
a solution to both problems. As we now show, it is aso
useful in the plausibilistic setting.

The definition of Markovian probability measures general-
izes immediately to plausibility measures. A conditional
plausibility space (W, F, D, Pl) isMarkovian if it satisfies
the same conditionsasin Definition 2.1, with Pr replaced by
Pl. GivenaMarkovian plausibility space (W, F, D, Pl), we
definethetransition plausibiliti esanalogously to the transi-
tion plausibilities: that is, ¢, ;» = Pl(Sp41 = 5" | Sp = s).

In the probabilistic setting, the Markov assumption has
many implications that can be exploited. In particular, we
can easily show the existence and uniqueness of a Marko-
vian prior with a given set of transition probabilities. Can
we get asimilar result for Markovian plausibility spaces?
In general, the answer isno. To get this property, and the
other desirable properties of Markovian plausibility spaces,
we need to put more structure on plausibility measures.

In showing that there is a unique Markovian measure de-
termined by the transition probabilities, we made use of
two important properties of probability: The first is that
Pr(A, B) is determined as Pr(B|A) x Pr(A). (We used
this to calculate Pr([so,...,s,]).) The second is that
Pr(AU B) = Pr(4) + Pr(B), if A and B are digoint.
(This was used to get the probability of an arbitrary time-
n event from the probability of the time-n prefixes.) We
would like to have analogues of + and x for plausibility.

To get an analogue of +, we need to assume that the plausi-
bility of the union of two digoint sets A and B isafunction
of the plausibility of A and the plausibility of B. Wecall a
plausibility measure Pl decomposableif thereis afunction
@ that is commutative, monotonic (so that if d < d’, then
dPe < d @e), and additive (so that d @ L. = d and
d@T = T)suchthat Pl(AU B) = PI(A)®P(B) if Aand
B are digoint. In [Friedman and Halpern 1995b], natural
conditions are provided that guarantee that a plausibility
measure is decomposable. Note that probability measures
are decomposable, with @ being +, possibility measures
are decomposable with @ being max, and «-rankings are
decomposablewith @ beingmin. By way of contrast, belief
functions are not decomposablein general.

We next want to get an analogue of x, to make sure that
conditioning acts appropriately. More precisely, we want
there to be a function () that is commutative, associative,
strictly monotonic (so that if d > d’ and e # L, then
d®e > d'Xke), andbottom-preserving (sothat d®L = L)n
suchthat PI(A|B, C) QPI(B|C) = PI(A, B|C).

An algebraic domain is a tuple (D, ®, ®) where D is a
partially-ordered pointed domain, and @ and X are bi-
nary operations on D satisfying the requirements we de-
scribed above, such that ) distributes over . Algebraic
domains aretypically used in quantitative notions of uncer-
tainty. For example, ([0, 1], +, x) is used for probability
and (IN*, min, +) isusedfor x-rankings.> The standard ex-
amples of algebraic domainsin the literature are totally or-
dered. However, itisnot hard to construct partially-ordered
algebraic domains. For example, consider ([0, 1], P, ),
where @ and (X) are defined pointwise on sequences, and
(Z1, ..., 2n) 2 (Y1, ..., yn) ifz; <y forl<i < n. This
isclearly a partially-ordered algebraic domain.

In this paper, we focus on plausibility spacesthat are based
on algebraic domains. A structured plausibility space
(W, F,D,H) is one for which there exist &) and @ such
that (D, &), @), is an algebraic domain, and Pl is such that
Pl(AUB|E) = PI(A|E) @PI(B|E) for disoint A and B,
and PI(A|B,C) Q PI(B|C) = PI(A, B|C). (We remark
that Darwiche[1992] and Weydert [1994] consider notions
similar to structured plausibility spaces; we refer the reader
to [Friedman and Halpern 1995b] for a more detailed dis-
cussion and comparison.)

From now on we assume that that Markovian plausibility
spaces are structured. In the probabilistic setting, Marko-
vian priors are useful in part because they can be described
in a compact way. Similar arguments show that thisisthe
case in the plausibilistic setting as well.

Theorem 4.1:: Let (D, @, K) beanalgebraic domain, and
let {t; s+ : t; s+ € D} beaset of transition plausibilities
such that @, sts,»» = Tp for all s € S. Then thereis
a unique Markovian plausibility space (W, F, D, Pl) such
that PI(Sp41 = ¢’ | Sn = s) = ¢, . for all statess and s’
and for all timesn.

Proof: (Sketch) Define Pl so that

Pl([s0, .., 5n]) = tsps: @ @ts,_ 15,

Itis straightforward to show, using the properties of & and
&), that Pl isuniquely defined. Il

Since we want to capture belief, we are particularly inter-
ested in qualitative plausibility spaces. Thus, itisof interest
to identify when this construction results in a qualitative
plausibility measure. It turns out that when the domain is
totally ordered, we can ensure that the plausibility measure
is qualitative by requiring @ to be max.

SFor possibility, (R, max, min) is often used; thisis not quite
an algebraic domain, since min is not strictly monotonic. How-
ever, al our results but one—Theorem 5.3—holdsaslong as ® is
monotonic, even if it isnot strictly monotonic.



Proposition 4.2:: Let (D, ®, ®) be an algebraic domain
such that <p, istotally ordered and d @ d’ = d whenever
d’" <p d. Then the plausibility space of Theorem 4.1 is
qualitative.

It remains an open question to find natural sufficient condi-
tionsto guaranteethat the plausibility space of Theorem 4.1
isqualitative when D isonly partially ordered.

We now have the tools to use the Markov assumption in
belief change. To illustrate these notions, we examine how
wewould formalize Kautz's stolen car example [1986] and
the variant discussed in the introduction.

Example4.3:: Recall that in the origina story, the car is
parked at time O and at time 3 the owner returnsto find it
gone. In the variant, the car is parked with a full fuel tank
at time 0, at time 2 the owner returnsto find it parked where
he left it, but at time 3 he observes that the fuel tank is
empty. To model these exampleswe assumethere are three
states: sps, spe, aNd sge. 1N s, the car is parked with afull
tank; in spe, the car is parked with an empty tank; andin sge
the car is not parked and the tank is full. We consider two
propositions. Parked = {spz, spe} and Full = {sys, spe}-

In the original story, the evidence at time 3 is captured by
Esolen = Parked® n Full®  Parked ", since Parked 1

Full isobserved at time 0, and Parked is observed at time 3.
Similarly, the evidence in the variant at time 2 is captured

by B2, oneq = Parked® n Full® 0 Parked®, and at time
3by Eg’orrmved = Egorrowed N Parked® n W(S)'

We now examine one possible Markovian prior for this
system. The story suggests that the most likely transitions
are the ones where no change occurs. Suppose we attempt
to capturethisusing x-rankings. Recall that k-rankingsare
based on the algebraic domain (IN*, min, +). We could,
for example, taketspé,spé = tspe,spe = tsp_evsp_e = 0. If we
believe that the transition from sgg to spe isless likely than
the transition from s,z t0 spe @nd from sge tO spe, We can
taketspéyspe = 3’t5pé75p_e =1, and tsp—e,b’pe =1

Suppose we get the evidence Egoen, that the car is parked
at time O but gone at time 3. It is easy to verify that
there are exactly three 3-prefixes with plausibility O after
we condition on Esolen: [Spe, Spe; Spe, Spe)s [Spe, Spe: Spe, Spe)
and [spe, Spe, Spe, spe)- Thus, the agent believes that the car
was stolen before time 3, but has no more specific beliefs
asto when.

Suppose we instead get the evidence EZ,,.,cq 1€, that
the car is parked and has a full tank at time 0, and is till
parked at time 2. In this case, the most plausible time-
2 prefix is [sge, sps, spe); the expected observation that the
car is parked does not cause the agent to believe that any
change occurred. What happens when he observes that
the tank is empty, i.e, EZ. owea? There are two possible
explanations. Either the gas leaked at some stage (so that
there was a transition from sz to spe before time 3) or the
car was “borrowed” without the agent’s knowledge (so that
there was a transition from sys t0 sgs and then from sgg
to spe). Applying the definition of ) we conclude that

Pl([sge, spe, spe]) = 2 and Pl([sps, spe, spe]) = 3. Thus, the
agent considers the most likely explanation to be that the
car was borrowed.

It is worth noticing how the agent’s beliefs after observing
E3 rowed depend on details of the transition plausibilities
and the ) function. For the x-ranking above, we have
tspé,s,)e > tspévsp_e @tsp—e,spei with this choice, the most

likely explanation is [sps, sge, spe]- If, instead, we had used
aff-rankmg suchthattspé,spe < tsp@sp—e@)tsp—eyspe (for exam-
ple, b)_/ taking tspé,s,?e = tspévsp_e = tsp—e,spe = 1), then the
most likely explanation would have been PI([sgs, sge, Spe])-
Finally, if we had used a x-ranking such that tspé,s,)e =
tsp@sp—e ®tsp_e,spe (for example, by taking tspé,s,)e =2 a_nd
ts gsop = tsomspe = 1), then the agent would have consid-
pe: *pe pe:*pe ]

ered both explanations possible. i

Asthisexample shows, using qualitative Markovian plausi-
bilities, the agent can revise earlier beliefs as revision does
(for example, the agent may revise his beliefs regarding
whether the car was parked at time 1 once he sees that the
fuel tank is no longer full), or he may think that a change
occurred in the world that explains his current beliefs (the
gas tank leaked). Of course, the agent might also consider
both explanationsto be likely.

It isinteresting to comparethe behavior of Markovian plau-
sibility measures in this example to that of Katsuno and
Mendelzon's update [1991]. As Kautz [1986] noted, given
Egolen, We should believe that the car was stolen during
the period we were gone, but should not have more spe-
cific beliefs. Markovian measures give us precisely this
conclusion. Update, on the other hand, leads us to believe
that the car was stolen just before we notice that it is gone
[Friedman and Halpern 1994b]. To see this, note that any
observation that is implied by the agent’s current beliefs
does not change those beliefs (this is one of Katsuno and
Mendelzon's postulates). Combined with the fact that up-
date never revises beliefs about the past, we must conclude
that the agent believes that the car was not stolen at time 1
or 2. In the second variant, the differences are even more
significant. Using update, we conclude that there was a
gas leak. Update cannot reach the conclusion that the car
was borrowed, since that involves changing beliefs about
the past: For the agent to consider it possible at time 3 that
the car was borrowed, he has to change his belief that the
car was parked at time 2. Moreover, update does not allow
us to compare the relative plausibility of a gas leak to that
of the car being borrowed. (See [Friedman and Halpern
1994b] for further discussion of update’s behavior in this
example.)

This discussion shows that Markovian priors are useful for
representing plausibility measures compactly. Moreover,
they give the user the right level of control: by setting
the transition plausibilities, the user can encode his pref-
erence regarding various explanations. Markovian priors
have computational advantages as well, as we now show.

Given () and the transition plausibilities, the Markov as-
sumption allows us to compute the plausibilities of every



n-prefix; then using @, we can compute whether an event
Alisin Belj(F). When n islarge, this procedure is un-
reasonable. We do not want to examine all n-prefixes in
order to evaluate our beliefs about time n. Fortunately, the
Markov assumption allows us to maintain our beliefs about
the current state of the system in an efficient way.

Suppose that the agent makes a sequence of observations
01,03, . ... Each observation is a proposition (i.e., a set
of states). The evidence at time n is ssimply the accumu-
lated evidence: E, = 0(11) Nn...noM. We are inter-
ested in testing whether A(™) ¢ Beljy(E,). According to
C1, this is equivalent to testing whether PI(A™) E,,) >
Pl(A(), E,).

It is easy to see that the plausibilities PI(S,, = s, Ey),
s € 8, suffice for determining whether the agent believes
A. Thisfollows from the observation that

PI(A™ E,) = @,e aPI(Sn = 5, En),

and similarly for P(A™, E,).

In addition, it is straightforward for an agent who has the
plausibilitiesPI(S, = s, E,,), s € S, to update them when
he makes a new observation. To seethis, observe that

Pl(Sn41 =5, Bng1) = Pl(Sny1 = 5, By, 0§;3r+11>).

Thus, PI(Sp+1 = s, Eny1) = Lif s ¢ Op41; otherwise, it
isPI(Sp+1 = s, Fy). In agebraic domains, we can com-
pute the latter plausibility using much the same techniques
asin probabilistic domains:

PI(Sn+]_ =s5N En)
= @uesPl(Snps = 8IS = 5, En) QPIS, = 5, E,)

Using the Markov assumption, PI(S,4+1 = s|S, =
s’ Eyn) = Pl(Spy1 = s|Sn, = §') = ty,. Thus, we
can compute PI(S, 1 = s, Epy1) using PI(S, = ', Ep)
and the transition plausibilitiest, ,.

To summarize, thereisasimpletwo-stage procedurefor up-
dating beliefs given new observations. Inthefirst stage, we
compute the plausibility of the current states using our be-
liefsabout the previous state. 1n the second stage, we prune
states that are inconsistent with the current observation.

Again, itisinteresting to compare this approach to Katsuno
and Mendelzon's belief update. One of the assumptions
made by update is that the agent maintains only his beliefs
about the current state of the system. Roughly speaking, this
amountsto tracking only the states of the system that have
maximal plausibility given past observations. Thus, update
can require less information to update beliefs. This, how-
ever, comes at the price of assuming that abnormalities are
delayed as much as possible. This, aswe saw in the case of
the borrowed car example, may lead to unintuitive conclu-
sions. We conjecture that to avoid such conclusions, agent
must keep track of either information about past events or
degrees of plausibilitiesof all possible states of the system
at the current time.

4.1 Characterizing Markovian Belief Change

Our formalization of belief change is quite different from
most in the literature. Most approaches to belief change
start with a collection of postulates, argue that they are rea-
sonable, and prove some consequences of these postulates.
Occasionadly, a semantic model for the postulatesis pro-
vided and a representation theorem is proved (of the form
that every semantic model correspondsto some belief revi-
sion process, and that every belief revision process can be
captured by some semantic mode!).

We have not discussed postulates at all here. There is a
good reason for this: Markovian belief change does not
satisfy any postulates of the standard sort beyond those of
any other notion of belief change. To makethis precise, as-
sume that we have some language £ that includesthe usual
propositional constructs (i.e., V,A,— and =). A plausi-
bility structure (over £) isatuplePL = (W, F, D, P, x),
where (W, F, D, Pl) isaconditional plausibility space, and
7 is a truth assignment that associates with each world in
W a complete consistent set of formulas in £. Given a
plausibility structure, we can associate with each formula
@ in L the set of states where ¢ istrue: [¢]p = {s €
S 1 w(s)(p) =true}. Observing the sequence ¢, ..., ¢n
a times 1,...,n amounts to conditioning on the event
Ept gy, o, = [ 0.0 [pals). Similary, ¢ is
believed at timen, given E, if [¢]pL € Belp(E).

We now definetwo classes of structures. Let P9F” consist
of all qualitative plausibility structures, and let pPRFPLM
consist of al qualitative plausibility structures with a
Markovian plausibility measure. Since PRFLM - pePL
any formulavalid in P@FE (that is, truein every plausibil-
ity structure in P@PL) must also be valid in PeFLM | As
we now show, the converse holds as well.

Theorem 4.4:: Let PL = (W, F, D, Pl, =) be a plausibility
structurein P9FL andlet n > 0. Then thereisa plausibil-
ity structure PL' = (W', 7', D', PI', 7'} in PYPLM gych
that for all sequences of formulas ¢y, . . ., ¢m, m < n and
all formulas+, [¢]pL € Belp (EpL gy,....0,.) if and only if
[¥]e € By (EpLr oy, o0 )-

Proof: (Sketch) Define &' = {{s1,...,8m)
S1,...,8m € Sm < n} and 7'((s1,...,5m)) =
7(sm). We can then construct a Markovian plausi-
bility measure over W' that simulates Pl up to time
n, in that P'([(so), (s0,51),--,(50,81,--.,8m)]) =
Pl([s0, 51,--.,5m]) fordl m < n. 1l

It follows from Theorem 4.4 that for any Markovian plau-
sibility structure PLy, thereisanon-Markovian plausibility
structure PL, such that, for every sequence 1, . . ., ¢, Of
observations in £, the agent has the same beliefs (in the
language £) after observing ¢1, . . ., ¢,, NO matter whether
his plausibility is characterized by PL; or PL,. Thus, there
are no specia postulates for Markovian belief change over
and abovethe postulatesthat hold for any approachto belief
change.



5 PARTIALLY SPECIFIED
TRANSITIONS

Up to now, we have implicitly assumed that when the user
specifies transition plausibilities, he has some underlying
algebraic domain in mind. This assumption is quite strong,
since it assumes that the user knows the exact plausibility
value of the transitions, and the functions x) and @ that
relate them.

In this section, we focus on situations where the user only
specifiesapartia order ontransitions. Thisisanatural form
of knowledge that can be specified/assessed in arelatively
straightforward manner. Given aset S of states, consider
transition variables of the form z, ., for s,s' € §. We
think of z, ,» as a variable representing the plausibility
of the transition from s to s’. Assume that we are given
constraints on these transition variables, specified by a par-
tial order <, on the variables, together with constraints of
the form z, o <, 1.5 These can be thought of as con-
gtraints on the relative plausibility of transitions, together
with constraints saying that some transitions are impossi-
ble. z, ,» = L. We areinterested in plausibility measures
that are consistent with sets of such constraints.

We say that aset C of constraintsis safeif thereis no vari-
able y and state s such that the z, ,» <; y isin C for dl
s’ € 8. Thereisno qualitativeplausibility measurethat sat-
isfiesan unsafe set of constraints. To seethis, note that, for
agivens, t, . represent the plausibilities of digoint events
for different choices of s’. If we are dealing with qualita-
tive plausibility, if ¢, » < t forall s', then @,,csts 0 < 1.
However, we also have @,/ st,,» = T, and we cannot
havet > T. Thus, no qualitative plausibility measure can
satisfy an unsafe set of constraints. However, any safe set
set of constraints is satisfiable.

Theorem 5.1:: Given a safe set C' of constraints on the
transitionsover S asabove, thereisa qualitative Markovian
plausibility space (W, F, D, Pl) consistent with C'.

Note that this theorem guarantees the existence of a quali-
tative prior. Unlike the situation described in the previous
section, where transition plausibilitieswere fully specified,
there is not in general a unique (qualitative) plausibility
measure Pl consistent with <;. Thisis dueto the fact that
we can choose variousplausibility values aswell asvarious
operators () and @ in the algebraic domain, while remain-
ing consistent with <;. To see this, consider the following
variant of Example 4.3.

Example5.2:: Using the notation of Example 4.3, con-

sider the constraints s gspe <t Tz =t Lsggspe <4

?‘spé’spé = 'rsp_@_sp_e =t xspezspe' One way of wtisfy-
ing these constraints is by using the standard «-ranking
described in Example 4.3, for which we have tspé,s,)e =
3’t5p§’sp_e = tsp_e,spe =1,andt, , = Ofor @l states s. If P

50f course, we take z =, y to be an abbreviation for z <, y
andy <:; z, and z <; y to be an abbreviation for z < ¢y and

not(y <; z).

isthe plausibility function generated by this x-ranking, we
have Pl([spz, sge, spe]) = 3 and Pl([sgs, spe, spe]) = 2, since
X is+ for k-rankings.

However, now consider another way of satisfying the same
constraints, again using «-rankings. Let Pl beaMarkovian
plausibility measure with the following transition plausibil-
ites: ¢/, _ . =3¢ . =t._ =2 andt,, =0for
spe,spe spe,spe spe,spe 5,8

all statess. Itiseasytoverify that Pl satisfiestheconstraints
we described above. However, it is easy to check that we
have Pl'([spe, spe, spe]) = 4 and PI'([spe, spe, spe]) = 3.
This means that Pl([spe. sge, spe]) > PI'([spe, spe, 5pel)
while PlI'([spe, spe, spe]) < Pl([spe, spe, spe])-  Thus, al-
though Pl and P’ satisfy the same constraints on transi-
tion plausihilities, they lead to different orderings of the
3-prefixes, and thus to different notions of belief change. iI

Constraints on the relative order of transition plausibilities
do give rise to some constraints on the relative plausibility
of n-prefixes. It is these constraints that we now study.
We start with some notation. Let C' be a safe set of con-
straints on transition variables, and let Pl be a Markovian
measure consistent with these constraints. Aswe observed,
Pl([so,...,8n]) = tsos, @ Qts,_,.5, ONCe We fix the
transition plausibilitiesand X). Thus, the plausibility of a
seguence is determined by the transitions involved. The
constraints in C' determine an ordering < on n-prefixes as
follows:

[s0, $1, - - -, Sn] < [s0,87, ..., s,]if thereissome
constraint of the form Tt = L inC (where
we take s; = sp), or if there is some permu-
tation o over {0,1,...,n} such that ¢(0) = O
and x5, 5, <t Ty, (i),00i+1) 1SN C, fori =
0,...,n—17

We define < and = using < in the standard manner. If
[s0,81,...,8n] & [s0,8],...,s},] we say these two n-
prefixes are equivalent. Intuitively, < captures what is
forced by all Markov plausibility measures consistent with
<4, since it captures what is true for all choices of %) in

normal conditional plausibility spaces.

Theorem 5.3:: Let Pl be a Markovian plausibility measure
consistent with some constraints C, and let < be defined as

above intermsof C. If [so, 51,...,8n] = [S0,87, .-, Shls
then Pl([so,s1,...,5,]) < P([so,s),...,s,]). More
over, if [so,s1,...,n] =< [So0,81,...,s,], then
Pl([s0, 51, - - -, 8n]) < PI([s0, s%, - - -, $4,])-

The converse to Theorem 5.3 does not hold in general.
A Markovian plausibility measure consistent with C' may
introduce more comparisons between n-prefixes than those
determined by the < ordering.

Example 5.4: Consider again the setup of Example4.3, us-
ing the constraints on transitions considered in Example5.2.
Applying the definition of <, we find that [sps, sge, Spe] <

"Note that we take so = s§ and #(0) = 0 because we are only
interested in n-prefixeswith initial state so.



[spe, Spe, spe] and similarly [sg, spe, spe] < [Spe, Spe, Spel-
It is easy to verify that the plausibility measure Pl de-
scribed in Example 5.2 satisfies these constraints. How-
EeVer, [Sge, Spe, Spe] IS iNcomparable to s, sps, spe] accord-
ing to <, but, as we calculated in Example 5.2, we have
Pl([sge, spe, spel) < PI([spe, Spe, spel)- I

Although, in general, aMarkovian plausibility measurewill
place more constraints than those implied by <, we can use
the construction of Theorem 5.1 to show that thereisin fact
aplausibility measure that precisely captures <.

Theorem 5.5:: Given a safe set of constraints C, thereisa
gualitative Markovian plausibility measure Pl, consistent
with C' such that [so, s1, ..., sn] = [s0, 51, .., s, if and
only if Pl.([so, 51, - - -, sn]) < Pl([s0, 87, - - -, 8L])-

These results show that examining the relative plausibility
of transitions allows to deduce the relative plausibilities of
some n-prefixes. We can use this knowledge to conclude
what beliefsmust hold in any Markovian measurewith these
transition plausibilities. We need an additional definition:

MAX" (E) =def U{[50,51,.--,8n] C F|
V[so, 81, .-, 8] C E, [so, 51, - -

MAX?" (E) is the event defined as the union of n-prefixes
in E that are maximal according to <. It easily follows
from axiom A2 that in any qualitative Markovian measure
consistent with <;, the plausibility of MAX" (E) given E
is greater than the plausibility of MAX™(F) given E. Asa
conseguence, we have the following result.

Theorem 5.6:: Suppose Pl isa qualitative Markovian mea-
sure consistent with some set C' of constraints, 7~ is a
timen event, and A C S. If MAX"(E) C A, then
A€ Bd"(E).

Thus, by examining the most plausible (according to <)
n-prefixes, we get a sufficient condition for a set A to be
believed. The converse to Theorem 5.6 does not hold: the
agent might believe A even if someof the n-prefixesare not
in A("), However, the n-prefixesin MAX™ (E) are equally
plausible, then the converse does hold.

Proposition 5.7:: Suppose Pl is a qualitative Markovian
measure consistent with some set C' of constraints, £ is a
time-n event, and A C S. If all the n-prefixesin (i.e, the
ones that are subsets of) MAX™(FE) are equivalent, then

MAX™(E) C A ifand onlyif A € Be™(E).

Example5.8:: We now examine the setup of Example 4.3
using partially specified transition plausibilities. To cap-
ture our intuition that changes are unlikely, we require that
Ty <¢xg o fordls, s’ s" € {sp, spe, spe}. Wealsoas
sume that s g 5per T 570 and s m5pe areal strictly less
likely than T 5 but are not comparable to each other.

Finally, we assume all other transitions are impossible.
Suppose we get the evidence FEggen, that the car is

parked at time O but gone at time 3. It is easy to
verify that MAX3(Ego|en) consists of the three 3-prefixes

. 8n] £ [so, Y, -, shl}-

[Spé, Spe; Spes Sp—e], [Spé, Spe, Spe; Sp—e], and [Spé, Spe; Spe; Sp_e]-
Moreover, it easy to check that these three 3-prefixes are
equivalent. From Proposition 5.7, it now follows that if
Pl is a qualitative Markovian measure, then MAX3(Ego|en)
characterizes the agent’s beliefs. The agent believes that
the car was stolen before time 3, but has no more specific
beliefs as to when. This proves that all Markovian priors
that are consistent with <; generate the same beliefs as the
r-ranking described in Example5.2, giventhis observation.

Supposeweinstead get theevidence E2 . .. that thecar is
parked and hasafull tank at time O, andisstill parked at time
2. Inthiscase, we have MAX?(E2 romed) = [5pe: Sper Spal—
the expected observation that the car is parked does not
cause the agent to believe that any change occurred.
What happens when he observes that the tank is empty,
i.e, B2 rowed? Asnoted in Example 4.3, there are two pos-
sible explanations: Either the gasleaked or the car was* bor-
rowed”. Without providing more information, we should
not expect the agent to consider one of these cases to be
more plausible than the others. Indeed, it is easy to verify
that MAX3( E3,oweq) CONtains all the 3-prefixes that corre-
spond to these two explanations. Unlike the previous case,
some of these 3-prefixes are not equivalent. Thus, differ-
ent qualitative Markovian plausibility measures may lead
todifferent beliefsat time 3, evenif they are consistent with
the specifications.

If we add the further constraint Tsmspm <t Lspe (so that

agasleak ismore plausible than atheft), then themost likely
3-prefixes are the ones where there is agas leak. However,
if we specify that 25 5 5pe islesslikely than both %5 50 and

T 55550 (sothat agasleak isless plausiblethanthe car being

taken or returned), then MAX3(ES, ) will still contain
both explanations. Even with this additional information,
< cannot compare [sps, Spe, Spe; Spel 10 [Sps, Spe; Spe, Spel, DE-

cause athough tspé,spe < tspé'sp_e and tspé,spe < tsp—e,spe- it

might be that tspé,s,)e ®t5p§,sp§ £ tspévsp_e ®tsp—e,spe- Our
specification, in general, does not guarantee that one expla-
nation is preferred to the other. il

We note that we can use the procedure described above to
maintain an estimate of the agentsbeliefsat each time point.
Thisinvolvesusing the Markovian plausibility space P, of
Theorem 5.5. We discuss the detailsin the full paper.

6 RELATED WORK

We now briefly compare our approach to othersin the liter-
ature.

Markovian belief change provides an approach for dealing
with sequences of observations. Iterated belief revision,
which also deals with sequences of observations, has been
the focus of much recent attention (see [Lehmann 1995]
and the references therein). Conditioning a prior plausi-
bility measure provides a general approach to dealing with
iterated belief revision. By using conditioning, we are im-
plicitly assuming that the observations madeprovide correct
information about the world. We cannot condition on an



inconsistent sequence of observations. Thisassumption al-
lows us to avoid some of the most problematic aspects of
belief revision, and focus our attention instead on putting
additional structureintothe prior, so asto be ableto express
in astraightforward way natural notions of belief change.

One of the goals of Markovian belief change is to be able
to combine aspects of revision and update. Recent work
of Boutilier [1995] is similarly motivated. Essentialy,
Boutilier proposesconditioning on sequencesof lengthtwo,
using x-rankings. While he does not pursue the probabilis-
tic analogy, his discussion describes the belief change op-
eration as a combination of beliefs about the state of the
system, i.e,, PI(S1 = s) and beliefs about the likelihood
of trangitions, i.e,, PI(S2 = s'|S1 = s). Boutilier pro-
poses a two-stage procedure for updating belief which is
similar to the one we outlined in Section 4. It is impor-
tant to note that we derived this procedure using standard
probabilistic arguments, something that Boutilier was not
able to do in his framework. Our work, which was done
independently of Boutilier's, can be viewed as extending
his framework. We have arbitrary sequences of states, not
just one-step transitions. In addition, because our approach
is based on plausibility, not x-rankings, we can deal with
partially-ordered plausibilities.

Finally, we note that the Markov assumption has been used
extensively in theliterature on probabilistic reasoning about
action. Papers on this topic typically represent situations
using dynamic belief networks[Dean and Kanazawa 1989].
Dynamic belief networks are essentially Markov chains
with additional structure on states: A state isassumed to be
characterized by the values of a number of variables. The
probability of atransition is described by a belief network.
Belief networksallow us to express more independence as-
sumptions than just those characterizing Markovian prob-
abilities. For example, using a belief network, we can
state that the value of variable X, at time n + 1 is inde-
pendent of the value of X at time n given the value of
X, at time n. Darwiche [1992] showed how qualitative
Bayesian networks could be captured in his framework; it
should be straightforward to add such structure to the plau-
sibility framework as well, once we restrict to structured
plausibility spaces.

7 DISCUSSION

This paper makes two important contributions. First, we
demonstrate how the Markov assumption can be imple-
mented in a qualitative setting that allows for a natural
notion of belief. While similar intuitions regarding inde-
pendence may have guided previous work on belief change
(e.g., [Katsuno and Mendelzon 1991]), we are the first to
make an explicit Markovian assumption. We believe that
this approach provides a natural means of constructing a
plausibility assessment over sequences given an assessment
of theplausibility of transitions. Moreover, aswehave seen,
thisassumption al so leads to computational benefits similar
to these found in the probabilistic setting.

Second, we examined what conclusions can bedrawn given

only an ordering on the transition plausibilities. Starting
with aspecification of constraintsontherelative plausibility
of transitions, we describe properties of the belief change
operation. Since all we consider are comparisons between
plausibilities of transitions, our conclusions are not always
that strong. Of course, it is reasonable to consider richer
forms of constraints, that might also constrain the behavior
of and @. With more constraints, we can typically prove
more about how the agent’s beliefs will change. In future
work, we plan to examine the consequences of using richer
constraints.

One of the standard themes of the belief change literatureis
the effort to characterize a class of belief-change operators
by postulates, such asthe AGM postulates for belief revi-
sion[Alchourron, Gardenfors, and Makinson 1985] and the
Katsuno-Mendel zon postulates for belief update [Katsuno
and Mendelzon 1991]. As the discussion in Section 4.1
shows, characterizing Markovian belief change with such
postul ates does not provide additional insight. The trouble
is that such postulates do not let us reason about relative
likelihoods of transitions and independence of transitions.
But thisis precisely thekind of reasoning that motivatesthe
use of Markovian plausibility (and probability) measures.
Such reasoning clearly plays a key role in modeling the
stolen car problem and its variants. If the language is too
weak to allow us to express such reasoning (as is the case
for the language used to expressthe AGM postul ates), then
we cannot distinguish the class of Markovian plausibility
measures from the class of all plausibility measures.

This suggests that the right language to reason about belief
change should allow us to talk about transitions and their
relative plausibility. As our examples show, applications
are often best described in these terms. This observation
has implications for reasoning about action as well as be-
lief change. Typical action-representation methodologies,
such as the situation calculus [M cCarthy and Hayes 1969],
describe the changes each action brings about when ap-
plied in various states. Such a description talks about the
most likely transition, given that the action occurred. Most
approaches, however, do not explicitly deal with the less
likely effects of actions. In a certain class of problems
(called predictive problems in [Lin and Shoham 1991)), it
sufficesto specify only themost likely transitions. Roughly
speaking, inthese problemswe are given information about
the initial state, and we are interested in the beliefs about
the state of the world after some sequence of actions. In
such theories, we never get a surprising observation. Thus,
only the most likely transitions play arole in the reasoning
process. Problems appear when surprising observationsare
allowed. Kautz's stolen car problem is a canonical exam-
ple of a situation with a surprising observation. As our
example illustrates, in order to get reasonable conclusions
in such theories, we need to provide information about the
relative likelihood of all transitions, instead of identifying
just the most likely transitions. We believe that alanguage
for reasoning about actions and/or beliefs that change over
time should allow the user to compare the plausibility of
transitions (and sequences of transitions), giving as much
or aslittle detail as desired. We believe that our approach



provides the right tools to deal with these issues. We hope
to return to thisissue in future work.

ftpfromstarry. st anf ord. edu/ pub/ ni r or
viaWWW at http://robotics. stanford.
edu/ users/nir.
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