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The modal logic LL was introduced by Halpern and Rabin as a means of doing qualitative reasoning about likelihood.
Here the relationship between LL and probability theory is examined. It is shown that there is a way of translating
probability assertions into LL in a sound manner, so that LL in some sense can capture the probabilistic interpretation
of likelihood. However, the translation is subtle; several more obvious attempts are shown to lead to inconsistencies.
We also extend LL by adding modal operators for knowledge. This allows us to reason about the interaction between
knowledge and likelihood. The propositional version of the resulting logic LLK is shown to have a complete axiomatization
and to be decidable in exponential time, provably the best possible.

Key words: qualitative reasoning about likelihood, relating probability and likelihood, combining knowledge and
likelihood, modal logic.

La logique modale LL a été proposée par Halpern et Rabin comme moyen de procéder a un raisonnement qualitatif
a propos de la vraisemblance. Dans cet article, la relation entre la logique modale LL et la théorie des probabilités
est examinée. Les auteurs démontrent qu’il existe une fagon de bien traduire des assertions probabilistiques en logique
modale LL de fagon & ce que cette derniére puisse saisir I’interprétation probabilistique de la vraisemblance. Cepen-
dant, cette traduction est subtile; plusieurs tentatives plus évidentes ont entrainé des incohérences. Des opérateurs modaux
ont été ajoutés a la logique modale LL afin de permettre un raisonnement sur I’interaction de la connaissance et de
la vraisemblance. On a constaté que la version propositionnelle de la logique résultante possédait une axiomatisation
compléte et s’avérait un facteur décisif en temps exponentiel.
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connaissance et vraisemblance, logique modale.
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1. Introduction

Reasoning in the presence of incomplete knowledge plays
an important role in many Al expert systems. One way of
representing partially constrained situations is with sentences
of first-order logic (cf. McCarthy and Hayes 1969; Lipski
1977; Reiter 1984). A set A of first-order sentences specifies
a set of possible worlds (first-order models). Intuitively, this
is the set of all possible worlds that satisfy the constraints
in the first-order statements.

While such assertions can deal with partial knowledge,
they cannot adequately represent knowledge about relative
likelihood. This would suggest that we should attach prob-
abilities to sentences and/or possible worlds. Indeed, that
approach has been taken by many authors, going back to
Carnap (1950). More recently, this approach has seen renewed
study (Bacchus 1988; Fagin er a/. 1988; Halpern 1989;
Nilsson 1986).

However, the use of probability is not always appropriate.
Philosophers have spent years debating the situation (see
Nutter (1987) and Shafer (1976) for some interesting discus-
sion of this issue, and Cheeseman (1985) for a spirited defence
of probability). The epistemological problems with the use
of probability in Al were first noted by McCarthy and Hayes
(1969), who made the following comments:

!This is an expanded version of a paper with the same title that
appears in the Proceedings of the National Conference on Artificial
Intelligence, Austin, TX, 1984.
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[Traduit par la revue]

We agree that the formalism will eventually have to allow
statements about the probabilities of events, but attaching
probabilities to all statements has the following objections:

1. Itis not clear how to attach probabilities to statements con-
taining quantifiers in such a way that corresponds to the
amount of conviction that people have.

2. The information necessary to assign numerical probabilities
is not ordinarily available. Therefore, a formalism that
required numerical probabilities would be epistemologically
inadequate.

There have been a number of proposals for numerical
representations of likelihood where a numerical estimate,
or certainty factor, is assigned to each bit of information
and to each conclusion drawn from that information (see
Davis ef al. (1977), Shafer (1976), and Zadeh (1978) for
examples). But none of these proposals have been able to
adequately satisfy the objections raised by McCarthy and
Hayes. It is never quite clear where the numerical estimates
are coming from; nor do these proposals seem to capture
how people approach such reasoning. While people seem
quite prepared to give qualitative estimates of likelihood,
they are often notoriously unwilling to give precise numerical
estimates to outcomes (cf. Szolovits and Pauker 1978).

Halpern and Rabin (1987) introduce a logic LL that is
designed to allow qualitative reasoning about likelihood
without the requirement of assigning precise numerical prob-
abilities to outcomes. Indeed, numerical estimates and prob-
ability do not enter anywhere in the syntax or semantics of
LL.
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Despite the fact that no use is made of numbers, LL is
able to capture many properties of likelihood in an intuitively
appealing way by using a modal operator L to capture the
notion of likelihood. For example, consider the following
chain of reasoning: if P; holds, then it is reasonably likely
that P, holds, and if P, holds, it is reasonably likely that
P; holds. Hence, if P; holds, it is somewhat likely that P,
holds. (Clearly, the longer the chain, the less confidence we
have in the likelihood of the conclusion.) In LL, this essen-
tially becomes ‘‘from P, = LP, and P, = LP;, conclude
P, = L2P,.”’ Note that the powers of L denote dilution of
likelihood.

While LL is meant to capture a nonprobabilistic approach
to reasoning about likelihood, given the prevalent usage of
probability theory, it is important to understand relationship
between LL and probability theory. This is especially so,
since one reasonable way of understanding likelihood is via
probability theory. To quote Halpern and Rabin (1987),
‘““We can think of likely [the modal operator L] as meaning
‘with probability greater than «’ (for some user-defined «).”
The exact relationship between LL and probability theory
is not studied in Halpern and Rabin (1987). However, a close
examination shows that it is not completely straightforward.
Indeed, as show below, if we simply translate ‘“P holds with
probability greater than «’’ by LP, we quickly run into
inconsistencies. Nevertheless, we confirm the sentiment in
the quote above by showing that there is a way of translating
numerical probability statements into LL in such a way that
inferences made in LL are sound with respect to this inter-
pretation of likelihood. Roughly speaking, this means that
if we have a set of probability assertions about a certain
domain, translate them (using the suggested translation) into
LL, and then reason in LL, any conclusions we draw will
be true when interpreted as probability assertions about the
domain. However, our translation is somewhat subtle, as
is the proof of its soundness; several more obvious attempts
fail. These subtleties also shed some light on nonmonotonic
reasoning.

In many situations, it does not suffice to reason about
likelihood alone. We also have to reason about the subtle
interplay between knowledge, belief, and likelihood. Work
in the modal logic of knowledge and belief goes back to
Hintikka (1962); more recent work can be found, for
example, in Moore (1985), Fagin et al. (1984), and Halpern
and Moses (1985) (see Halpern (1986) for an overview). It
is clearly important to be able to reason simultaneously
about knowledge and likelihood; there are many cases in
which knowledge is heuristic or probabilistic. For example,
suppose I know that Mary is a woman, but I have never
met her and therefore do not know how tall she is. Under
such circumstances, I consider it unlikely that she is over
six feet tall. However, suppose that I am told that she is
on the Stanford women’s basketball team. My knowledge
about her height has now changed, although I still don’t
know how tall she is. I now consider it reasonably likely that
she is over six feet tall. Recently, a logic for reasoning simul-
taneously about knowledge and probability has been pro-
posed (Fagin and Halpern 1988). Here we provide a logic
for reasoning simultaneously about knowledge and likeli-
hood, by enriching LL with modal operators for knowledge
to get the modal logic LLK. LLK is shown to have a com-
plete axiomatization, which is essentially obtained by com-
bining the complete axiomatization of LL with that of the

modal logic of knowledge. In addition, we show that there
is a procedure for deciding validity of LLK formulas which
runs in deterministic exponential time, the same as that for
LL. This is provably the best possible.

The rest of the paper is organized as follows. In the next
section, we review the syntax and semantics of LL. In Sect. 3,
we discuss the translation of English sentences into LL and
show that there is a translation which is sound with respect
to the probabilistic interpretation of L. In Sect. 4, we add
knowledge to the system to get the logic LLK, and state some
technical results on decision procedures and axiomatizations
for LLK. We conclude in Sect. 5 with some further direc-
tions for research.

2. Syntax and semantics

We briefly review the syntax and semantics of LL here,
referring the reader to Halpern and Rabin (1987) for more
details.

LL is a logic which extends standard propositional logic
by the addition of two modal operators, L and G.? Roughly
speaking, a formula of the form Lp should be viewed as
saying ‘‘p is likely,”” while Gp should be viewed as saying
“‘necessarily p.”’ The syntax of LL is quite straightforward.
Starting with a set, ® = {P, Q, R, ...}, of primitive proposi-
tions, we build more complicated LL formulas using the
propositional connectives — and A and the modal operators
G and L. Thus, if p and g are formulas, then so are —p,
(p A q), Gp (necessarily p), and Lp. We omit parentheses
if they are clear from context. We also use the abbreviations
pVgq for =(-pA —q),p=gqfor -pVg, p=gq for
(@ = q) A (g = p), Fp (possible p) for ~G-p, and L'p for
L...Lp (i Ls). Thus a typical LL formula is L>GQ, which
can be read ‘‘it is somewhat likely that G is necessarily the
case.”’ Note that the syntax allows arbitrary nestings and
alternations of Ls and Gs.

We give semantics to LL formulas by means of Kripke
structures. An LL model is a triple M = (S, <, ), where
S is a set of states, ¢ is a reflexive binary relation on S
G.e., foralls € S, wehave(s,s) € f,andr: P X S —
{true, false}. Thus = tells us for each primitive proposition
P € & and each state s € S whether P is true in s.

Intuitively, a state is a complete and consistent set of
““working hypotheses’’ concerning the situation under con-
sideration, which we take to be ‘‘true for now.”’ The likely
successors of a state s (i.e., those states ¢ such as (s, 1) € &)
are those states that describe a set of hypothesis that is
reasonably likely, given our current hypotheses.>

We can think of (S, &) as a graph with vertices S and
edges <. If (s, f) € < then we say that ¢ is an $f-successor
of s. We will say ¢ is reachable (in k steps) from s if, for

The choice of the modal operator L is perhaps somewhat unfor-
tunate, since it has been used in other papers (e.g., McDermott
1982) to denote necessity, and still others (e.g., Levesque 1984)
to denote implicit belief. Nevertheless, we stick with L for con-
sistency with Halpern and Rabin (1987) and because it suggests
likelihood.

3In Halpern and Rabin (1987), besides likely successors there
were also conceivable successors. For ease of exposition, we have
omitted ‘‘conceivable’’ relation here, thus identifying the operator
L* of Halpern and Rabin (1987) with the F operator, which is the
dual of G. We leave it to the reader to check that all our results
also hold if we reinstate the conceivable relation.
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FIG. 1. A representation of a doctor’s view.

some finite sequence s,, ..., S, we have sy = s, 5, = £, and
(s, 8, +) €ELfori < k.

We define M, s = p, read p is satisfied in state s of model
M, by induction on the structure of p:

e M,s = Pfor P € & iff n(P, s) = true,

*M,s = —piff (M, s & p),

M, seEpAgiff M,s = pand M, s = g,

e M, s = Gpiff M, t = p for all f reachable from s,
e M,s = LPiff M, t = p for some ¢t with (s, /) € <.

Definitions

A formula p is valid (resp. satisfiable) iff for all (resp.
some) M = (S, &, «) and all (resp. some) s € S we have
M, s = p. It is easy to check that p is valid iff — p is not
satisfiable. If L is a set of LL formulas, we write M, s = L
iff M, s = p for every formula p € L.

Note that while we require L be reflexive, we do not take
it to be transitive or symmetric. There are good reasons for
this. The fact that & is reflexive guarantees us thatp = Lp
will be valid. This says that if p is true, then it is likely to
be true. On the other hand, if & were transitive, then it is
easy to see that L'p & Lp would be valid for all i > 0.
This would not be desirable, since we would like to capture
the diminution of likelihood using powers of L. If & were
symmetric, then L~ Lp = — Lp would be valid; again, this
does not seem to be an appropriate property for likelihood.
We remark that in Halpern and Rabin (1987) a complete
axiomatization is provided for LL, which completely charac-
terizes the properties of the L operator. (The axioms are
described in Sect. 4, where we give a complete axiomatiza-
tion for LLK.)

3. The probabilistic interpretation of likelihood

Lp is supposed to represent the notion that ‘“‘p is reasonably
likely.”” Certainly one way of interpreting this statement is
“‘p holds with probability greater than or equal to «.”’ How-
ever, as already noted in Halpern and Rabin (1987), there
are problems with this interpretation of Lp. Suppose we take
a = Y, and consider a situation where we toss a fair coin
twice. If Prepresents ‘‘the coin will land heads both times”’
and Q represents ‘‘the coin will land tails both times,”’ then
we clearly have L(P v Q), as well as - LP and = LQ. But,
for any LL model, L(P Vv Q) is true iff LP v LQ is true,
giving us a contradiction.

We solve this problem by changing the way we translate
statements of the form ‘‘p is reasonably likely’’ into LL.
Note that if a state s satisfies the formula p (i.e., M, s = p),

this does not imply that p is necessarily true at s, but simply
that p is one of the hypotheses that we are taking to be true
at this state. We must use Gp to capture the fact that p is
necessarily true at s, since M, s = Gpiff M, t = p for all
t reachable from s, and thus in no state reachable from s
is it the case that — p is true. The English statement ‘“The
coin is likely to land heads twice in a row’’ should be inter-
preted as ‘It is likely to be (necessarily) the case that the
coin lands heads twice in a row’’ and thus should be
translated as LGP rather than LP. Similarly, ‘‘the coin is
likely to land tails twice in a row’’ is LGQ, while “‘it is likely
that the coin lands either heads or tails’’ is LG(P Vv Q). With
these translations, we do not run into the problem described
above, for LG(P v Q) is not equivalent to LGP v LGQ.
These observations suggest that the only LL formulas that
describe real-world situations are (Boolean combinations of)
formulas of the form L'GC, where C is a Boolean com-
bination of primitive propositions. We will return to this
point later.

Having successfully dealt with that problem, we next turn
our attention to translating statements of conditional prob-
ability: “if P, then it is reasonably likely that Q’’ or *“‘Q
is reasonably likely given P.”’ Again, the obvious translation,
GP = LGQ, runs into trouble.

Consider a doctor making a medical diagnosis. His view
of the world can be described by primitive propositions
which stand for diseases, symptoms, and test results. The
relationship between these formulas can be represented by
a joint probability distribution, or a Venn diagram where
the area of each region indicates its probability, and the basic
regions correspond to the primitive propositions.

For example, the Venn diagram shown in Fig. 1 might
represent part of the doctor’s view, where P; and P,
represent diseases and P; and P, represent symptoms. The
diagram shows (among other things) that (1) disease P, is
reasonably likely given symptom P;; (2) P; is always a
symptom of P,; (3) if a patient has P,, then it is not
reasonably likely that he also has P;; and (4) P, and P,
never occur simultaneously.

The second statement is clearly G(P, = P;), from which
we can deduce GP, = GP;. Now suppose that we repre-
sented the first and third statements, as suggested above,
by GP; = LGP, and GP, = - LGP, respectively. Then
simply using propositional reasoning, we could deduce that
GP, = LGP; A =~ LGP, surely a contradiction.

The problem is that when we make such English
statements as ‘‘P, is reasonably likely given P;’’ or “‘the
conditional probability of P; given P, is greater than one
half,”’ we are implicitly saying ‘‘given P, and all else being
equal’”’ or ‘“‘given P, and no other information,” P; is
likely. We cannot quite say ‘‘given P; and no other infor-
mation’’ in LL. Indeed, it is not quite clear precisely what
this statement means (cf. Halpern and Moses 1984). However,
we can say ‘‘in the absence of any information about the
formulas P, ..., P, which would cause us to conclude other-
wise,”’ and this suffices for our applications. In our present
example, P, is reasonably likely given P;, as long as we are
not given - P, or P, or P,. Thus, a better translation of
““P; is reasonably likely given P;3”’ is

_'G_|P1 A _|GP2 A _|GP4/\ GP3 = LGP]

Similarly, ¢‘if a patient has P,, then it is unlikely that he
has P,”’ can be expressed by
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ﬂ(;1)1 A GP2 = ﬂLGPl

In general, we must put all the necessary caveats into the
precondition to avoid contradictions.

This translation seems to avoid the problem mentioned
above, but how can we be sure that there are no further
problems lurking in the bushes? We now show that, in a
precise sence, there are not.

Fix a finite set of primitive propositions & = {Py, ..., P,}.
An atom of & is any conjunction Q; A ... A Q,, where each
Q; is either P; or - P;. Note that there are 2" such atoms.
Let AT(®) be the set of atoms of &, and let LIT(P)
= {P, = P|P € &} be the set of literals of &; thus LIT(®)
consists of all the primitive propositions and their negations.
Let CON(®) be the set of all possible conjunctions of literals
in LIT(®). We identify the empty conjunction with the for-
mula frue; thus, true is always a member of LIT(®). Finally,
let PROP(®) be the set of all propositional formulas that
can be formed using the propositions in ®. If C, C’ is an
element of PROP(®), we write C < C’ if C = C’ is a prop-
ositional tautology.

We say a function Pr : AT(®) — [0, 1] is a probability
assignment on & if L ar@) Pr(4) = 1. Intuitively, Pr
assigns a probability to all the atoms in At(®) in such a way
that the total probability is 1. We can extend Pr to PROP(®)
by defining Pr(C) = L4<c, acat@) Pr(4). (Since A < true
for every atom A, this means that Pr(frue) = 1, as expected.)
If Pr(C') # 0, we define the conditional probability of C
given D, written Pr(C|C’), as Pr(C A C')/Pr(C'). Note that
Pr(Cltrue) = Pr(C).

Define a propositional probability space W to be a pair
(®, Pr), where Pr is a probability assignment on . We now
consider a restricted class of probability statements about
W. Fix a with 0 < a< 1. A probability assertion about W
is a formula of the form Pr(C|D) = «' or Pr(C|D) < o/,
where i = 0, C € PROP(®), D € CON(®), and Pr(D) > 0.
(Closure under negation is built into these formulas since,
for example, = Pr(C|D) = o' iff Pr(C|D) < «'.) The lan-
guage is powerful enough to express assertions such as Pr(C)
2 o', since we can take D = true in the formula Pr(C|D)

o' . By taking i = 0, we can assert that a certain state-
ment holds with probability 1.

It may seem that taking D to be in CON(®) in a statement
such as Pr(C|D) = «'is a rather powerful restriction, but
this is not so. If we wish to talk about the conditional prob-
ability of C with respect to an arbitrary formula D, we can
simply extend ® by adding one more primitive proposition,
say Pp, extend Pr so that Pr(Pp, = D) = 1 (this can be done
easily), and write Pr(C|Pp) instead of Pr(C|D). In fact, this
observation shows that we could have restricted to condi-
tional probability statements of the form Pr(C|D), where
D is a primitive proposition. There are two reasons not to
do so. The first is pragmatic: we would like to keep ¥, the
set of primitive propositions, small since, as we shall see,
this keeps the set of possible ‘‘caveats’’ small. Second, we
think of D as representing the collection of facts that the
agent has learned or observations that the agent has made
so far; in practice, this can often be represented as a con-
junction of literals.

Corresponding to these probability assertions about W,
we consider standard LL formulas over ®. These are formed
by taking formulas of the form L'‘GC and ~L'GC, i = 0,
where C € PROP(®), and closing off under conjunction

and disjunction. By the observations above, these are, in
some sense, exactly those LL formulas that describe a ‘‘real
world”’ situation involving the primitive propositions of ®.

We want to translate probability assertions about W into
standard LL formulas over ®. As discussed above, a con-
ditional probability assertion of the form Pr(C|D) = &’ will
be translated into a formula of the form = GQ; A ... A
GOy AN GD = L'GC, where Qy, » Q are the
‘‘necessary caveats.”” We now make the notion of a
‘“‘necessary caveat’’ precise. Given C € PROP(®), D €
CON(®), and Q € LIT(®), we say Q has negative (resp.
positive) impact on C given D with respect to (w.r.t.) Pr if

Pr(DA Q) > 0 and Pr(C|D A Q) < Pr(C|D)
(resp. Pr(C|D A Q) > Pr(C|D))

Thus Q has negative (resp. positive) impact on C given D
w.r.t. Prif discovering Q lowers (resp. increases) the prob-
ability of C given D. We say Q has potential negative (resp.
positive) impact on C given D w.r.t. Prif forsome D' < D
with Pr(D’) > 0, Q has negative (resp. positive) impact on
C given D' w.r.t. Pr. (In the sequel, we omit the phrase
““w.r.t. Pr”’ if Pr is clear from context.)

Intuitively, if D’ < D, then D' represents more informa-
tion than D. Thus, if Q does not have potential negative
impact on C given D, then once we know D, no matter what
extra information we get, finding out Q will not lower the
probability that C is true. Similar remarks hold for potential
positive impact. We define

PNI(C, D) = {Q € LIT(®)|Q has potential negative
impact on C given D}
PPI(C, D) = {Q € LIT(®)|Q has potential positive

impact on C given D}

Now using the idea of potential positive and negative
impact, we give a translation ¢ — g' from probability asser-
tions about W to standard formulas over ®. We define

[Pr(CID) = o' = |
. ((Agepnic,p) 7GQ) A GD) = L'GC

[PH(C|D) < af]* = |
((Agerpic,p) 7 GQ) AGD) = —L'GC

Again we note that the term Agepnic,p)@ (resp A
gerpic,p)@) in the translation of Pr(C|D) = o' (resp.
Pr(ClD) < o) is intended to capture the idea of “puttmg
in all the necessary caveats in order to avoid contradictions.”’
With these definitions in hand, we can now state the
theorem which asserts that there is a translation from prob-
ability assertions about W into LL which is sound.

Theorem 1

Let £ be a finite set of probability assertions true in W,
and L' the conjunction of the standard LL formulas that
result from translating the formula in L into LL (via p — p?).
If g is a probability assertion such as L' = ¢'is valid, then
q is true about W.

We prove the theorem by constructing, for every propo-
sitional probability space W, an LL model My, = (S, <,
«) which we call the canonical model corresponding to W.
The set S of states consists of countably many copies of each
C € PROP(®) with Pr(C) > 0. Successive copies are con-
nected by &£, as well as a state you are likely to move to as
your knowledge increases. More formally,
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S
Eé

{((Cli = 0, C € PROP($), Pr(C) > 0}
{(Ci, C), (C, Civy) i 2 0J U _
{(C;, CHIC’ =< C, Pr(C'|0) = 'Y}

We define = as follows. For each C € PROP(®) such that
Pr(C) > 0, choose some atom A € AT(®) such that 4 <
C and Pr(A) > 0 (such an atom must exist, since Pr(C) =
EASC,AEAT@)) PI'(A)). Call this atom AT(C). We then
define n(P, C}) = true iff P is one of the conjuncts in
AT(C). Note that this definition guarantees that My, C;
= C. In fact, for any propositional formula C’, we have
M,, C;, = C' iff AT(C) = C'.

The result now follows from three lemmas. We just state
the lemmas here, leaving their proof to the appendix.

Lemma 1
Suppose C, C' € PROP(®) and Pr(C) > 0. Then
(a) If £ = 1, then Cj is reachable from C; in & steps iff
C' =< Cand Pr(C'|C) = of*/;
(b) My, C; = GC' ifft Pr(C'|C) = 1in W,
(¢) My, C, & L*GC' iff Pr(C’|C) = o* in W.

Lemma 2
If g is a probability assertion true about W, then
My, Dy = g for all D € CON(®).

Lemma 3 ) )
If g is of the form Pr(C|D) = o' or Pr(C|D) < «' and
My, Dy = q', then g is true in W.

Proof of Theorem 1

Suppose I is a finite set of probability assertions true in
W, My is the canonical model for W constructed above,
and g is a probability assertion about W such that L' = g*
is valid. Assume that g is of the form Pr(C|D) = «'. (The
case that g is of the form Pr(C|D) < «'is similar.) By
Lemma 2, since each formula g’ € X is true in W, we have
My, Dy = L'. Since E' = ¢'is valid, we have My, D,
= ¢'. Now by Lemma 3, it follows that g is true in
w. n

Roughly speaking, Theorem 1 says that if an agent reasoning
about a situation has some probabilistic information about
how likely certain events are and translates this information
into LL using the translation described above, then every
conclusion he can draw in LL that can be given a probabil-
istic interpretation will be true about the underlying situa-
tion. Thus it can be viewed as a soundness result, in that
it indicates that doing probabilistic reasoning in LL will not
lead to any contradictory results.

The following example should give the reader a feel of
how the translation might work.

Example

Suppose that we are told that a randomly selected Stanford
student is likely (with probability at least «) to be both
intelligent and athletic. This statement implies that a ran-
domly selected jock is likely to be smart. More specifically,
if S stands for the proposition *‘x is a Stanford student,”’
I stands for the proposition ““x is intelligent,”’ and A stands
for the proposition ‘‘x is athletic.”” We are told that
Pr(I A A|S) = a. We leave it to the reader to check that the
laws of probability allow us to conclude Pr(ZJ[A A S) = a.
We now show that this conclusion can be derived in LL.

We must first translate the assertion Pr(Z A A4|S) = a.
To translate this into LL we need to consider a particular

probability space. Assume that & includes the primitive
propositions 7, A, and S, and fix some propositional prob-
ability space W = (&, Pr). We assume that Pr(4A A S) > 0,
otherwise the assertions we are interested in are not legitimate
probability assertions about W. We want to show that

(1] (Prd A AlS) = &) = (PrZ]A A S) = a)

is valid.

To compute these translates, we first need to compute
PNI{I A A, S) and PNI(I, A A S), i.e., the literals which
have potential negative impact on I A A given S and those
which have potential negative impact on 7 given A A S,
respectively. In the special case where & = {/, 4, S} and
W assigns positive probability to all atoms, then it is easy
to see that PNI(I, A A S) = {—1} and PNI(J A A4, S) =
{1, - A}. Note that in this case we have PNI(I, A A S)
< PNI{ A A, S). It turns out that this relationship holds
in general. Suppose Q € PNI(/, A A S). Then there exists
some D € CON(®) such that Pr(A ASA DA Q) > 0and
Pr({JAASA DA Q) < Pr(Z]A A S A D). Note that for any
conjunction D' € CON(®), we have Pr(ll[A A D') =
Pr(I A AJA A D'). Thus, Pr(f A AISAAADAQ) <
Pr(/ A A|S A A A D). It immediately follows that Q €
PNI(I A A, S). This shows that PNI(/, A A S)
C PNI( A A, S), as desired.

Now

Prf A AlS) =2 o) =

((Ngepnigna,s) " GQ) A GS) = LG A A)

and

Prll[AAS) =z o)t =
((Ngepniy, ans) TGO A G(A A S)) = LGI

Since PNI(/, AAS) € PNIJAA,S)and GA A S) = GS
is valid, if the precondition of (Pr(/]JA A S) = )" holds,
then so does the precondition of (Pr(/ A A[S) = «)'. Since
LG A A) = LGI is clearly valid, it is easy to see that [1]
is valid as well.

Remarks

1. Note that the translation given in Theorem 1 depends
on W, the underlying propositional probability space. Thus,
we should really write g"® rather than ¢! to denote the
translate of the probability of assertion g. Intuitively, the
reason for this dependence on W is that the translation can
thereby take into account background knowledge about the
situation the agent finds himself in. This background knowl-
edge comes up in the computation of PNI and PPI.

In practice, it is of course not always possible to compute
PNI(C, C’) or PPI(C, C'). The probabilistic information
required may not be available, or it may be available but
hard to compute, perhaps in part because the set of primitive
propositions ® may be large. In the examples discussed in
McCarthy (1980), & is viewed as being essentially infinite.
If we take P to be ‘“Tweety is a bird’’ and Q to be ‘“Tweety
can fly,”” then Q is likely given P as long as Tweety is not
an ostrich, Tweety in not a penguin, Tweety is not dead,
Tweety’s wings are not clipped, .... The list of possible
disclaimers is endless. However, our assumption of having
only a finite (and reasonably small) number of primitive
propositions does seem to be both epistemologically and
practically reasonable in many natural applications. It
amounts to restricting oneself to considering only a small
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set of relevant events, which is something that seems to be
frequently done in practice. For example, in medical
diagnosis, we could take ¥ to consist of relevant symptoms,
diseases, and possible treatments, where the symptoms are
qualitative (his temperature is very high) rather than quan-
titative (his temperature is 104°F.).

In any case, if we cannot compute PNI or PPI, we can
always “‘play it safe’’, by replacing PNI(C, C’) (resp.
PPI(C, C’)) wherever it occurs in the translation by a
superset. It is straightforward to modify the proof of
Theorem 1 to show that the resulting translation is still
sound. More precisely, given a finite set £ of probability
assertions true about W, let £’ be the result of replacing
each LL formula p' in ' by a formula p’, where instead
of PNI or PPI, we use some superset of caveats. Then it
is still the case that if L' = ¢, then g is true about W.*
However, since putting extra caveats limits the applicability
of a rule, this is not always a good strategy to follow.

If, on the other hand, we use a subset of PNI or PPI in
the translation, then our reasoning may be unsound (in the
sense of Theorem 1). This may help to explain where the
nonmonotonicity comes from in certain natural language
situations. People often use a type of informal default
reasoning, saying ‘‘P is likely given Q,’’ without specifying
the situations where the default Q may not obtain. Of
course, this means that the conclusion Q may occasionally
have to be withdrawn in the light of further evidence.

2. Our translation is somewhat sensitive to the set of
allowable probability assertions. We could easily extend the
set of probability assertions about W to allow conjunctions
and still prove an analogue of Theorem 1. However, if we
further extend the set of probability assertions about W so
that it is closed under disjunction (so that Pr(C|D) = a V
Pr(C'|D') < a? would be a typical assertion), and extend
the translation ¢ — ¢' to deal with disjunctions by taking
(p V gt = p*Vv g, then Theorem 1 no longer holds. For
an example, let & = {P}, and take £ = {Pr(P) = «,
Pr(-P) = a}and ¢ = Pr(P|-P) =2 a V Pr(=P|P) = a.
Let W be any probability space such that the assertions in
L are true in W. Since Pr(P| - P) and Pr( - P|P) must both
be 0, it is clear that q is false in W. However, it is easy to
see that L' = (-G~ P = LGP) A (-GP = LG~ P) and
q¢' = (G-P = LGP) V (GP = LG-P), from which it
follows by propositional reasoning that L' = g' is valid.

3. We have viewed Theorem 1 as a soundness result. It
is natural to ask if there is a complementary completeness
result. Ideally, we would like to prove that if £ is a collection
of probability assertions true about W and g is a probability
assertion that follows from I, then Z'® = ¢'™ is valid.®
However, this is too much to expect.

For example, suppose that & = {P, Q}, L consists of the
assertions Pr(P|true) = «, Pr(— P|true) = a, and Pr(Q|true)
< «, and q is the assertion Pr{— Q|true) = «. The first two
assertions in I are true precisely in situations where o < 2.

“Note that in order to ensure soundness, we cannot replace PNI
or PPI by a superset in the conclusion ¢' of the implication. In
fact, soundness is preserved only if we use a subset, rather than
a superset, of the caveats specified in the definition of g'.

SWe say ¢ follows from T if, for any interpretation of a with
0 < a < 1, if I is true of a propositional probability space W
under this interpretation of «, then so is q.

Thus, if Wis a space where all the assertions in I are true,
then ¢ must also be true in W, no matter what the inter-
pretation of «. But it is easy to construct a W such that
LW A = g'™ s consistent.

There are other examples of probabilistic information that
is lost as a result of our translation. For one thing, there
are some valid deductions in probability theory, such as the
axiom Pr(p Vv q@) = Pr(p) + Pr(q) — Pr(p A g), that cannot
even be expressed in LL (since LL has no means of expressing
addition). Another example is provided by the following
““chain rule.”” It is easy to see that Pr(R|P) > a? follows
from Pr(Q|P) > « and Pr(R|P A Q) > . However, we
leave it to the reader to check that we cannot deduce
[Pr(R|P) > o' from [Pr(Q|P) > o' A [PrR|P A Q) > af'.

So where does this leave us? We have shown that some
probabilistic reasoning can be done within LL, while some
cannot. We do not have a precise characterization of how
much probabilistic reasoning can be done in LL; providing
such a characterization seems to be a difficult task (although
the decision procedure stated in Theorem 3 in the next sec-
tion at least gives us a procedure for checking whether a fact
is deducible). In fact, it seems that the issue of how much
probabilistic reasoning can be captured within LL is perhaps
not the right issue to be worrying about. LL is not meant
as a replacement for probability theory in cases where prob-
ability theory is applicable. In such cases, it is best to just
stick to probability theory, without bothering to translate
into LL.

However, as has been pointed out by many authors (see
the discussion in the introduction, as well as the papers cited
there and in Halpern and Rabin (1987)), there are many
situations where probability theory is not immediately
applicable or precise numerical probabilities are not avail-
able. In such situations, an agent may still have some
qualitative information (or subjective feelings) about the
likelihood of various events. In fact, often this information
is of the form ‘P is reasonably likely given Q.”” What
Theorem 1 shows is that care must be taken in order to cap-
ture this information in LL in a way that is reasonably con-
sistent with probabilistic intuitions and that, if such care is
taken, there is a way of capturing it in LL.

4. Reasoning about knowledge and likelihood

We can augment LL in a straigthforward way in order
to accommodate reasoning about knowledge. The syntax of
the resulting language, which we call LLK, is the same as
that of LL except that we add unary operators K|, ..., K,
one for each of the ‘‘players’’ or ‘‘agents’’ I, ..., n, and
allow formulas of the form K;p (which is intended to mean
“‘agent i knows p’’). Thus, a typical formula of LLK might
be K{GQ A LGP): agent i knows that Q is actually the case
and it is likely that P is the case. Again we allow arbitrary
nesting and alternation of Ks, Ls, and Gs. It is very different
for agent i to know that P is likely (i.e., K;LGP) and for
it to be likely that agent i knows P (LK;GP).

We assume that our knowledge operator satisfies the
axioms of the classifical modal logic S5 (cf. Halpern and
Moses 1985). In particular, we know only true things and

®On the other hand, Pr(R|P) > o does not follow Pr(Q|P) > «
and Pr(R|Q) > «. It is easy to construct examples to show that
this is not a valid probabilistic inference.
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we know exactly what we know and do not know. Thus we
have

Kp=p
Kip = KiK;p
- Kip = Ki~Kip

We remark that it is easy to change the semantics for knowl-
edge given below so that each of these axioms can be dropped
(and possibly replaced by others). We omit further details
here (see Halpern and Moses (1985) for more discussion of
this point).

A model for LLK is a tuple M = (S, &, K|, ..., K,, 1),
where, just as before, S is a set of states, < is a reflexive
binary relation describing likely successors, and « assigns
truth values to the primitive propositions at every state. For
each i, K; is an equivalence relation on S: it is reflexive
(s, s) € K, for each s € S), symmetric (if (s, £} € K, then
so is (¢, 5)), and transitive (if (s, 1), (¢, u) € K,, then so is
(s, u)). As we shall see, the IX; will be used to give semantics
to the K;p formulas; making it an equivalence relation
guarantees that it satisfies the three axioms above.

We can think of a state and all the states reachable from
it via the ¢ relation as describing a “‘likelihood distribution.”’
Two states are joined via the X relation iff agent i views
them as possible likelihood distributions (rather than just
possible worlds in Hintikka (1962), McCarthy et al. (1979),
and Moore (1985)) given his/her current knowledge. Thus,
once agent i knows that Mary is on the women’s basketball
team, he/she would presumably consider it likely that Mary
is over six feet tall, so that in all the likelihood distributions
joined by <K; where there is no information to the contrary,
LG(Mary is over six feet tall) would hold.

As before, we define M, s = p by induction on the struc-
ture of p. The only new clause is

M, s = K;piff M, t = p for all ¢ such that (s, f) € K;

We now state some technical results for LLK. They essen-
tially parallel the corresponding results for each of LL and
S5 alone, showing that combining likelihood and knowledge
does not lead to any special complications. The proofs use
standard techniques of modal logic, so are omitted here. The
reader is referred to Emerson and Halpern (1985), Fischer
and Ladner (1979), Halpern and Moses (1985), Halpern and
Rabin (1987), and Kozen and Parikh (1981) for further
details.

Definition

The size of a formula p, written |p|, is its length as a string
over the alphabet # U {-, A, G, L, Ky, ..., K,,, ), (. The
size of a model M is the number of states in S (and thus
could be infinite).

Theorem 2
An LLK formula fD is satisfiable iff it is satisfiable in a
model of size < 2.

Theorem 3

There is a procedure for deciding if a formula p is
satisfiable ﬂrespectively, valid) which runs in deterministic
time OQ2°P!) for some ¢ > 0.

This is the best we can do, as the following shows:

Theorem 4
The problem of deciding satisfiability (validity) of LL for-
mulas is complete for deterministic exponential time.

Theorem 5
The following axiom system is sound and complete for
LLK:

Axion schemes

AX]1. All (substitution instances of) tautologies of proposi-
tional logic.

AX2. Gp = p

AX3. Gp > GGp

AX4.Gp » ~L-p

AXS5.p= Lp

AX6. L(pvg)=E(Lp V Lg)

AX7. G(p = q) = (Gp = Gq)

AX8.G(p = q) = (Lp = Lg)

AX9. Gp = - L-p)= (p = Gp)

AX10. K;p = p

AXI11. K,p = K,‘Kip

AX12. _lKlp = K,‘_|K,'p

AX13. K{p = @) = (Kip = Ki9)

Rules of inference

R1. From p and p = gq infer g (modus ponens)
R2. From p infer Gp (generalization)

R3. From p infer K;p (knowledge generalization)

The axiom system given here is simply a combination of
the axiom systems for LL (AX1-9, R1, R2) and S5 (AX1,
AX10-13, R1, R3). The axioms for LL presented in Halpern
and Rabin (1987) differ slightly due to the presence of the
‘“conceivable’’ relation in the semantics. Had we reinstated
the conceivable relation, we would have to modify AX9
accordingly (cf. Halpern and Rabin 1987).

5. Conclusions

We have examined the relationship between the logic LL
and probability theory. We have shown that there is a precise
sense in which a restricted class of probabilistic assertions
about a domain can be captured by LL formulas. However,
the translation from probabilistic assertions to LL is subtle;
translations more naive than the one we use turn out not
to be sound. In particular, in order to correctly deal with
statements of conditional probability, we must specifically
list all the situations in which the conclusion may not hold.
The failure to do so in informal human reasoning is frequently
the cause of the nonmonotonicity so often observed in such
reasoning. (However, we note here in passing that a number
of the problems that McDermott (1982) suggests can be dealt
with by nonmonotonic logic can also be dealt with by LL,
in a completely monotonic fashion. See Halpern and Rabin
(1987) for further discussion on this point). The need to
explicitly list all caveats can be viewed as a discipline which
forces a practitioner to list explicitly all the exceptions to
his rules. Of course, this method does not guarantee correct-
ness. If an exception is omitted, then any conclusion made
using that rule may be invalid. But, whenever a conclusion
is retracted, it should be possible to find the missing excep-
tion and correct the rule appropriately.

The fact that we have a translation from probability asser-
tions to LL does not necessarily make LL a good language
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for probabilistic assertions. Not all probabilistic assertions
can be captured in LL, and even for the ones that can, some
information can be lost in the process of translating into
LL. This suggests that LL may not be an appropriate lan-
guage to use when we really have probabilistic data.

In retrospect, this conclusion is perhaps not too surprising.
LL is designed to deal with situations where likelihood is
interpreted as being something other than just probability.
While a given LL formula may be true of any situation where
L is interpreted as meaning ‘‘with probability =«,’’ it may
not be true for some other interpretation of L. We could,
for example, take LGp to mean ‘‘the agent has belief (in
the sense of the Dempster-Shafer notion of belief (Shafer
1976) at least « in p.”” With this interpretation, the formula
g™ in the third remark after Theorem 1 (which we used
to show why we could not get a completeness result) would
not follow from L"), This may provide some intuition as
to why we cannot get a completeness result of analogues to
Theorem 1.

On the other hand, it is also possible that the lack of a
completeness result is an artifact of the particular translation
we used from probability assertions to LL. It may be worth
investigating whether there is a different translation from
probability theory to LL for which a soundness and com-
pleteness result in the spirit of Theorem 1 is provable.
Perhaps this translation would give a reasonable probabilistic
interpretation to nonstandard LL formulas (which do not
correspond to probabilistic assertions under our present
translation).

Since LL can express some notions of likelihood other
than probability, this may make it applicable in contexts
where probability theory is not. It would be interesting to
know whether LL is able to capture other notions of reasoning
about uncertainty, such as possibility theory (Zadeh 1978,
1981) or belief functions (Shafer 1976). (See the survey paper
by Prade (1984) for a thorough discussion of various
approaches to modelling reasoning about uncertainty.) It
would be interesting to investigate for these other approaches
whether an analogue of Theorem 1 is provable. Perhaps
when we consider these other approaches, there will be a
need to use nonstandard LL formulas.

It would also be interesting to understand the relationship
between LL and the logic QP (Qualitative Probability) intro-
duced by Girdenfors (1975). In QP, we can say “‘p is more
likely than q”’, but not *“p is likely.”” The axioms of QP seem
more complicated than those of LL, and although QP is
decidable, it seems that the decision procedure would be
quite complex. It is not clear how easy it would be to combine
the approaches taken in LL and QP to construct a logic
where one can both make absolute and relative statements
about likelihood.

Finally, a rich area for further work is simultaneous
reasoning about knowledge and likelihood. LLK provides
a first step, but clearly there is more work to be done in order
to find a truly appropriate logic that is both formally and
epistemologically adequate.

Acknowledgements

We would like to thank Daniel Hunter for his useful
criticisms of both our explanation of the soundness result
and our translation into LL. We also thank the referees for
the constructive criticism of an earlier version of this paper.

BaccHus, F. 1988. Representing and reasoning with probabilistic
knowledge. Ph.D. thesis, University of Alberta, Edmonton, Alta.
Also issued as Technical Report CS-88-31, University of
Waterloo, Waterloo, Ont.

CARNAP, R. 1950. Logical foundations of probability. University
of Chicago Press, Chicago, IL.

CHEESEMAN, P. 1985. In defense of probability. Proceedings of
the Ninth International Joint Conference on Artificial
Intelligence, Los Angeles, CA, pp. 1002-1009.

Davis, R., BUCHANAN, B., and SHORTLIFFE, E. 1977. Production
rules as a representation for a knowledge-based consultation sys-
tem. Artificial Intelligence, 8: 15-45.

EMERSON, E.A., and HALPERN, J.Y. 1985. Decision procedures
and expressiveness in the temporal logic of branching time.
Journal of Computer and System Sciences, 30(1): 1-24.

FAGIN, R., and HALPERN J.Y. 1988. Reasoning about knowledge
and probability: preliminary report. Proceedings of the Second
Conference on Theoretical Aspects of Reasoning about Knowl-
edge, Monterey, CA, pp. 277-293. Edited by M.Y. Vardi.
Morgan Kaufmann, San Mateo, CA.

FAGIN, R., HALPERN, J.Y., and VARDI, M.Y. 1984. A model-
theoretic analysis of knowledge: preliminary report. Proceedings
of the 25th IEEE Symposium on Foundations of Computer
Science, Singer Island, FL, pp. 268~278. A revised and expanded
version appears as IBM Research Report RJ 6641, IBM Research
Division, Almaden Research Center, San Jose, CA. 1988.

FAGIN, R., HALPERN, J.Y., MEGIDDO, N. 1988. A logic for
reasoning about probabilities. Proceedings of the Third Symposium
on Logic in Computer Science, Ithaca, NY, pp. 277-291.
A revised and expanded version appears as IBM Research Report
RJ 6190, IBM Research Division, Almaden Research Center,
San Jose, CA. April 1988.

FISCHER, M.J., and LADNER, R.E. 1979. Propositional dynamic
logic of regular programs. Journal of Computer and System
Sciences, 18(2): 194-211.

GARDENFORS, P. 1975. Qualitative probability as an intensional
logic. Journal of Philosophical Logic, 4: 171-185.

HALPERN J.Y. 1986. Reasoning about knowledge: an overview.
In Theoretical aspects of reasoning about knowledge: Proceedings
of the 1986 Conference. Edited by J.Y. Halpern. Morgan
Kaufmann, San Mateo, CA, pp. 1-17. Reprinted in Proceedings
of the National Computer Conference, Las Vegas, NV,
pp. 219-228.

1989. An analysis of first-order logics of probability. Pro-
ceedings of the Eleventh International Joint Conference on
Artificial Intelligence, Detroit, MI.

HALPERN, J.Y., and MOSES, Y. 1984. Towards a theory of knowl-
edge and ignorance. Proceedings of the American Association
for Artificial Intelligence Workshop on Non-monotonic Logic,
Mohonk, NY, pp. 125-143. Reprinted in Logics and models of
concurrent systems. FEdited by K. Apt. Springer-Verlag,
New York, NY, pp. 459-476. 1985.

1985. A guide to the modal logics of knowledge and belief.
Proceedings of the Ninth International Joint Conference on
Artificial Intelligence, Los Angeles, CA, pp. 480-490.

HALPERN, J.Y., and RABIN, M.O. 1987. A logic to reason about
likelihood. Artificial Intelligence, 32(3): 379-405.

HINTIKKA, J. 1962. Knowledge and belief. Cornell University
Press, Ithaca, NY.

KozEN, D., and PARIKH, R. 1981. An elementary proof of the
completeness of PDL. Theoretical Computer Science, 14(1):
113-118.

LEVESQUE, H. 1984. A logic of implicit and explicit belief. Pro-
ceedings of the National Conference on Artificial Intelligence,
Austin, TX, pp. 198-202.

Lipski, W. 1977. On the logic of incomplete information. Pro-
ceedings of the 6th International Symposium on Mathematical
Foundations of Computer Science, Lecture Notes in Computer
Science, Vol. 53, pp. 374-381. Springer-Verlag, New York, NY.




HALPERN AND MCALLESTER 159

MCcCARTHY, J. 1980. Circumscription — a form of non-monotonic
reasoning. Artificial Intelligence, 13: 1,2.

MCcCARTHY, J.M., and HAYES, P.J. 1969. Some philosophical
problems from the standpoint of artificial intelligence. Machine
intelligence 4. Edited by D. Michie. American Elsevier,
New York, NY. pp. 463-502.

MCCARTHY, J., SATO, M., and HAYASHI, T., and IGARISHI, S.
1979. On the model theory of knowledge. Technical Report
STAN-CS-78-657, Stanford, CA.

McDERMOTT, D.V. 1982. Nonmonotonic logic II: nonmonotonic
model theories. Journal of the ACM, 29(1): 33-57.

NILSSON, N. 1986. Probabilistic logic. Artificial Intelligence,
28: 71-87.

NUTTER, J.T. 1987. Uncertainty and probability. Proceedings of
the Tenth International Joint Conference on Artificial
Intelligence, Milan, Italy, pp. 373-379.

PRADE, H. 1984. Quantitative methods in approximate and
plausible reasoning: the state of the art. Technical Report,
Université Paul Sabatier, Toulouse, France.

REITER, R. 1984. Towards a logical reconstruction of relational
database theory. In Conceptual modelling: perspectives from
artificial intelligence, databases, and programming languages.
Edited by M.L. Brodie, J. Mylopoulos, and J. Schmidt.
Springer-Verlag, New York, NY. pp. 191-233.

SHAFER, G. 1976. A mathematical theory of evidence. Princeton
University Press, Princeton, NJ.

SzoLovits, P., and PAUKER, G. 1978. Categorical and prob-
ablistic reasoning in medical diagnosis. Artificial Intelligence,
11: 115-144,

ZADEH, L.A. 1978. Fuzzy sets as a basis for a theory of
possibility. Fuzzy Sets and Systems, 1: 3-28.

1981. Possibility theory and soft data analysis. Jn Mathe-

matical frontiers of the social and policy sciences. Edited by

L.M. Cobb and R.M. Thrall. American Association for the

Advancement of Science Selected Symposium, Vol. 54. Westview

Press, Boulder, CO. pp. 69-129.

Appendix. Proof of lemmas 1, 2, and 3

For easy reference, we repeat the statements of the lemmas
here.

Lemma 1
Suppose C, C’ € PROP(®) and Pr(C) > 0. Then
(a) If k = 1, then C{ is reachable from C; in & steps iff
C' < Cand Pr(C’'|C) = o**/,
(b) My, C; & GC' iff Pr(C’'|C) = 1 in W,
(¢) My, Cy = L¥GC' iff Pr(C'|C) = o* in W.

Proof

For part (a) we proceed by induction on k. Thecase k = 1
is immediate from the definition of <. Suppose k > 1. If
C} is reachable from C; in k steps, then there exists a state
D such that D is reachable from C; in one step and Cj is
reachable from D in k — 1 steps. By the definition of <,
D is of the form C;, C;,y, or E;, where E < C and
Pr(E|C) = a'*'. If one of the first two possibilities holds,
then we get C' < C and Pr(C’|C) = o**’ immediately
from the inductive hypothesis. If the third case holds, by
the inductive hypothesis we have C' < E and Pr(C'|E) =
a*~!. Since C' < Eand E < C, we have C' < C. This
also means that for any atom A4, if A < C’' then 4 < E
and if 4 < Ethen A < C. As a consequence, we must have
Pr(C’) = Pr(C’' AE) = Pr(C’' A C) and Pr(E A C) = Pr(E).
Easy manipulations now show that Pr(C’|C) = o *I, For
the converse, if C' < C and Pr(C’|C) = a**i, then
(Ciii-1, Cy) € Y, so it follows immediately from the
definition of < that Cj§ is reachable from C; in k steps.

For part (b), first suppose Pr(C’|C) < 1 in W. Thus
Pr(~C’|C) > 0, so there must be some atom A4 such that
A = - C'" and Pr(4|C) > 0. From part (a) it follows that
Ay is reachable from C;. From the definition of =, it
follows that My, Ay, = A and hence that My, Ay = - C’.
Thus, My, D; = - GC’. For the converse, suppose that
Pr(C’'|C) = 1. We want to show that My, C; = GC'.
Suppose not. Then there must be some state E reachable
from C; such that My, E = —C’. But if E is reachable
from C,, then E is of the form C/ where C" < C and
Pr(C”) > 0. Thus, from the definition of 7, we must have
AT(C") <= - C’. But, again by definition, AT(C") = C”,
so AT(C") < C. It follows that AT(C") <= C A -C'.
Moreover, since Pr(AT(C")) > 0, we have Pr(-~C'|C) > 0.
But this contradicts our assumption that Pr(C'|C) = 1.
Hence we have My, C; = GC', as desired.

For part (¢), note that if Cy = L¥GC’, then there exists
a state E which is reachable from C, in k steps such that
My, E = GC'. By part (b), it follows that Pr(C' |E) = 1
and, by part (a), we have that E < C and Pr(E|C) = o*.
Using standard probabilistic reasoning, we get that
Pr(C’|C) = a*. For the converse, note that the case & = 0
follows immediately from part (b). If £k > 0, since
Pr(C'|C) = a*, clearly Pr(C' A C|C) = o*. But
(C’' A O) < C, so (C' AC) is reachable from C; in &
steps. Since My, (C' A C)y = GC' by part (b), it follows
that My, C, = L¥KGC'. n

Lemma 2
If g is a probability assertion true about W, then

My, D, = ¢* for all D € CON(®).

Proof _

Suppose q is of the form Pr(C|D’) = a'. (The proof if
q is of the form Pr(C|D’) < o' is similar and left to the
reader.) By definition, we have

q' = ((Agernic,py 7 GQ) A GD') = L'GC

Suppose My, Dy = (Agepnic,p) 2 GQ) A GD'. Our goal
is to show that Pr(C|D) = «'in W, for then by part (c) of
Lemma 1, we have My, Dy, = L'GC, as desired. To see
this, first observe that by part (b) of Lemma 1, we have
Pr(D'|D) = 1. Easy calculations now show that Pr(D’ A D)
= Pr(D) and Pr(C|D' A D) = Pr(C|D). Thus it suffices to
show that Pr(C|D’ A D) = o'. Next observe that none of
the conjuncts that make up D can be in PNI(C, D') (for
if Q € PNI(C, D’) were one of the conjuncts in D, the
definition of = would guarantee that My, D, = GQ, con-
tradicting our assumption). It follows that D’ A D is of the
form D' A Q) A ... O, where Q; ¢ PNI(C, D’). Now using
the definition of PNI(C, D’), we can show, by induction

on j,
Pr(CID' AQ/A...ANQ) 2 Pr(CID' AQyA... AQ;_)
> ... =z Pr(C|D")

Since Pr(C|D) = Pr(C|D’ A D) = Pr(CID’' A Q, A ... Q),
and Pr(C|D’) = o' in W (since g is true in W, by assump-
tion), we have that Pr(C|D) = «', as desired. ]
We remark that Lemma 2 does not hold for arbitrary
C € PROP(®). That is, there exists a probability assertion
true ¢ about W and a C € PROP(®) such that
My, C, i ¢'. (We can find a counterexample by taking
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= (P, Q, ] (PANQ)VPAR),adgqg =
Pr( Q|P) = «. omit details here.)
Lemma 3

If g is of the form Pr(C|D) = o’ or Pr(C|D) < «' and
My, D, = ¢', then q is true in W.

Proof _

Assume that g is of the form Pr(C|D) = o' and My, D,
= q'. (Again, the case where g is of the form Pr(C|D) < o'
is similar and left to the reader). It is easy to check that if

Q € PNI(C, D) then we must have My, D, = —GQ. (For
if My, Dy = GQ, then by part (c) of Lemma 1, we must
have Pr(Q|D) = 1, from which it follows that if D' < D,
we also have Pr(Q|D’) = 1, and Pr(C|D’ A Q) = Pr(C|D"),
so that Q ¢ PNI(C, D).) Thus we have My, D, &=
(/\QePNI(c p) 7GQ) A GD. Since, by assumption, My, D,
= q', it follows that My, D, = L‘GC. By part (c) of
Lemma 1, we have that ¢ = Pr(C|D) = o' in W, as
desired. [





