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Abstract

We introduce a new approach to modeling uncertainty
based on plausibility measures. This approach is easily
seen to generalize other approaches to modeling uncer-
tainty, such as probability measures, belief functions, and
possibility measures. We then consider one application of
plausibility measures: default reasoning. In recent years,
a number of different semantics for defaults have been pro-
posed, such as preferential structures, � -semantics, possi-
bilistic structures, and � -rankings, that have been shown to
be characterized by the same set of axioms, known as the
KLM properties. While this was viewed as a surprise, we
show here that it is almost inevitable. In the framework of
plausibility measures, we can give a necessary condition for
the KLM axioms to be sound, and an additional condition
necessary and sufficient to ensure that the KLM axioms are
complete. This additional condition is so weak that it is
almost always met whenever the axioms are sound. In par-
ticular, it is easily seen to hold for all the proposals made
in the literature. Finally, we show that plausibility mea-
sures provide an appropriate basis for examining first-order
default logics.

1 Plausibility Measures

As the title suggests, this overview considers two (ap-
parently unrelated) notions: plausibility measures, which
provide a general framework for modeling uncertainty, and
default reasoning, which involves making sense of state-
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ments such as “birds typically fly”. We start by discussing
plausibility measures.

The standard approach to modeling uncertainty is prob-
ability theory. In recent years, researchers, motivated by
varying concerns including a dissatisfaction with some of
the axioms of probability and a desire to represent in-
formation more qualitatively, have introduced a number
of generalizations and alternatives to probability, such as
Dempster-Shafer belief functions [28] and possibility the-
ory [5]. Rather than investigating each of these approaches
separately, we focus on one measure of belief that gener-
alizes them all, and lets us understand their commonalities
and differences.

A plausibility measure associates with a set a plausibil-
ity, which is just an element in a partially ordered space.
Formally, a plausibility space is a tuple

�����
	��
Pl � , where�

is a set of worlds,
	

is an algebra of measurable sub-
sets of

�
(that is, a set of subsets closed under union and

complementation to which we assign plausibility) and Pl is
a plausibility measure, that is, a function mapping each set
in
	

to an element of some partially-ordered set 
 . We
use ��� to represent the partial order on 
 . We read Pl

��� �
as “the plausibility of set

�
”. If Pl

��� ����� Pl
��� � , then

�
is at least as plausible as

�
. Since ��� is a partial order,

there may be sets in
	

which are incomparable in plausibil-
ity. We assume that 
 is pointed: that is, it contains two
special elements � � and � � such that � � � ��� � � � �
for all ��� 
 ; we further assume that Pl

��� ����� � and
Pl
��� ��� � � . The only other assumption we make is

A1. If
�"!#�

, then Pl
��� �$� � Pl

��� � .
Thus, a set must be at least as plausible as any of its subsets.

Probability measures are clearly a subset of plausibility
measures, in which the plausibilities lie in [0,1]. Indeed,
every systematic approach for dealing with uncertainty of
which we are aware can be viewed as a plausibility measure.
We provide a few examples here.
% A belief function

�
on
�

is a function
�

: 2 &('*) 0 � 1 +
satisfying certain axioms [28]. These axioms certainly



imply property A1, so a belief function is a plausibility
measure.

% A fuzzy measure (or a Sugeno measure) , on
�

[31]
is a function , : 2 &.-'/) 0 � 1 + , that satisfies A1 and
some continuity constraints. A possibility measure [5]
Poss is a fuzzy measure with the additional property
that Poss

��� �0� sup 1�243 Poss
�6587 9 � .

% An ordinal ranking (or � -ranking) on
�

(as defined by
Goldszmidt and Pearl [19], based on ideas that go back
to Spohn [30]) is a function � : 2 &.';: <>= , where: <>=?�@: <BA 5DC#9 , such that � ��� �E� 0, � ��� ��� C

,
and � ��� �F� min G 243 � �H58IJ9 � if

�LK� �
. Intuitively,

an ordinal ranking assigns a degree of surprise to each
subset of worlds in

�
, where 0 means unsurprising

and higher numbers denote greater surprise. Again, it
is easy to see that a � -ranking is a plausibility measure.

Given how little structure we have required of a plausi-
bility measure, it is perhaps not surprising that plausibility
measures generalize so many other notions. However, this
very lack of structure turns out to be a significant advan-
tage of plausibility measures. By adding structure on an “as
needed” basis, we are able to understand what is required
to ensure that a plausibility measure has certain properties
of interest. This gives us insight into the essential features
of the properties in question while allowing us to prove
general results that apply to many approaches to reasoning
about uncertainty.

In previous work, we provided three examples of this
phenomenon. One of them—default reasoning—will be the
focus of this overview; we discuss default reasoning in more
detail in Section 2. The other two involve showing how
plausibility can give useful insights into notions normally
associated with probability, such as conditioning and inde-
pendence, and using plausibility as a basis for a model of
belief change. We briefly discuss these points in Section 3.

2 Default Reasoning

The material in Section 2.1 is largely taken from [10],
while the material in Section 2.2 is taken from [14]; the
reader is strongly encouraged to consult these papers for
further details.

2.1 The propositional case

There have been many approaches to default reasoning
proposed in the literature (see [15, 17] for overviews). We
assume (as is typical in the literature) that defaults are ex-
pressed in terms of an operator M , where N$MPO is read “if N
then typically/likely/by default O . For example, the default
“birds typically fly” is represented Bird M Fly. We further

assume for now that the formulas N and O that appear in
defaults come from some propositional language Q with a
consequence relation RTS .

Many of the recent approaches to giving semantics to de-
faults have the form

�����HUV�HW � , where
�

is a set of possible
worlds,

WX�Y7 � is a truth assignment to primitive propositions
for each world

7 � � , and
U

can be viewed as a “measure”
on
�

. Among these approaches are the following. (In these
descriptions, ) ) NZ+ + is the set of worlds in

�
satisfying N .)

% A possibility structure is a tuple
�����

Poss
�HW � , where

Poss is a possibility measure on
�

. It satisfies a con-
ditional N$M@O if either Poss

� ) ) NZ+ +��[� 0 or Poss
� ) ) N�\O$+ +��^] Poss

� ) ) N_\_`ZO^+ +�� [6]. That is, either N is impos-
sible, in which case the conditional holds vacuously, orNa\?O is more possible than N_\_`ZO .

% A � -structure is a tuple
����� � �
W � , where � is an ordinal

ranking on
�

. It satisfies a conditional N$M@O if either� � ) ) NZ+ +��0� C or � � ) ) N_\bO$+ +��$c#� � ) ) N_\_`ZO^+ +�� [19].

% A preference ordering on
�

is a partial order d over
�

[23, 29]. Intuitively,
7 d 7fe holds if

7
is preferred to7fe

. A preferential structure is a tuple
����� d �HW � , whered is a partial order on

�
. The intuition [29] is that

a preferential structure satisfies a conditional N$M@O if
all the most preferred worlds (i.e., the minimal worlds
according to d ) in ) ) NZ+ + satisfy O . However, there may
be no minimal worlds in ) ) Ng+ + . This can happen if ) ) NZ+ +
contains an infinite descending sequence hihjhZd 7 2 d7

1. The simplest way to avoid this is to assume thatd is well-founded; we do so here for simplicity. A yet
more general definition—one that works even if d is
not well-founded—is given in [25, 3].

% A parameterized probability distribution (PPD) on
�

is a sequence
5
Pr k : l?m 0

9
of probability measures

over
�

. A PPD structure is a tuple
�����i5

Pr k : lnm
0
9o�HW � , where

5
Pr k 9 is PPD over

�
. Intuitively, it sat-

isfies a conditional N$M@O if the conditional probabilityO given N goes to 1 in the limit. Formally, N$M@O
is satisfied if lim kqpsr Pr k � ) ) O$+ +6tu) ) Ng+ +��?� 1 [18] (where
Pr k � ) ) O^+ +6tv) ) NZ+ +�� is taken to be 1 if Pr k � ) ) NZ+ +���� 0). PPD
structures were introduced in [18] as a reformulation
of Pearl’s � -semantics [27].

Somewhat surprisingly, all of these approaches are charac-
terized by the following collection of axioms of inference
rules, which have been called the KLM properties (since they
were discussed by Kraus, Lehmann, and Magidor [23]).

LLE. If R S N>wxN e , then from NXMyO infer N e M@O
(left logical equivalence)

RW. If R S O�z{O e , then from N$M@O infer N$M@O e
(right weakening)



REF. N$M@N (reflexivity)

AND. From N$M@O 1 and NXMyO 2 infer NXMyO 1 \?O 2

OR. From N 1 MPO and N 2 M@O infer N 1 | N 2 M@O
CM. From N$M@O 1 and NXMyO 2 infer N_\bO 2 MPO 1

(cautious monotonicity)

LLE states that the syntactic form of the antecedent is
irrelevant. Thus, if N 1 and N 2 are equivalent, we can deduceN 2 M@O from N 1 M@O . RW describes a similar property of
the consequent: If O (logically) entails O e , then we can
deduce N$M@O e from N$M@O . This allows us to can combine
default and logical reasoning. REF states that N is always a
default conclusion of N . AND states that we can combine
two default conclusions. If we can conclude by default
both O 1 and O 2 from N , then we can also conclude O 1 \bO 2

from N . OR states that we are allowed to reason by cases.
If the same default conclusion follows from each of two
antecedents, then it also follows from their disjunction. CM
states that if O 1 and O 2 are two default conclusions of N ,
then discovering that O 2 holds when N holds (as would be
expected, given the default) should not cause us to retract
the default conclusion O 1.

The fact that the KLM properties characterize so many
different semantic approaches has been viewed as quite sur-
prising, since these approaches seem to capture quite differ-
ent intuitions. As Pearl [27] said of the equivalence between� -semantics and preferential structures,“It is remarkable that
two totally different interpretations of defaults yield identi-
cal sets of conclusions and identical sets of reasoning ma-
chinery.” Plausibility measures help us understand why this
should be so. In fact, plausibility measures can be used to
give a much deeper understanding of exactly what properties
a semantic approach must have in order to be characterized
by the KLM properties.

The first step to obtaining this understanding is to give
semantics to defaults using plausibility. A plausibility struc-
ture is a tuple

�����
Pl
�HW � , where Pl is a plausibility measure

on
�

. Analogously to possibility, it satisfies a conditionalNXMPO if either Pl
� ) ) NZ+ +��0�}� or Pl

� ) ) N�\~O^+ +��~] Pl
� ) ) N�\f`ZO^+ +�� .

Notice that if Pl is in fact a probability measure Pr,
then it satisfies N$MPO exactly if either Pr

� ) ) NZ+ +���� 0 or
Pr
� ) ) O^+ +6tv) ) NZ+ +���] 1 � 2. It is easy to see that plausibility struc-

tures do not satisfy the AND rule in general, since with prob-
abilities, we can have Pr

� ) ) ��+ +���] 0, Pr
� ) ) �8+ +6tu) ) ��+ +��~] 1 � 2, and

Pr
� ) ) �8+ +�tv) ) ��+ +���] 1 � 2, without having Pr

� ) ) ��\b�8+ +6tv) ) ��+ +��^] 1 � 2.
In [10], two properties are given that characterize plau-

sibility functions that satisfy the KLM properties:

A2. If
�

,
�

, and � are pairwise disjoint sets, Pl
��� A � �^]

Pl
� ��� , and Pl

��� Ab���^] Pl
��� � , then Pl

��� �^] Pl
��� A��� .

A3. If Pl
��� �0� Pl

��� ��� � , then Pl
��� A � ��� � .

A plausibility structure
�����

Pl
�HW � such that Pl satisfies A2

and A3 (in addition to A1) is called qualitative.
In [10], it is shown that a necessary and sufficient condi-

tion for a collection of plausibility structures to satisfy the
KLM properties is that they be qualitative. More precisely,
given a class � of plausibility structures, we say that a de-
fault � is entailed by a set ∆ of defaults in � , written ∆ t ��� � ,
if all structures in � that satisfy all the defaults in ∆ also
satisfy � . Let ���Z�g� consist of all qualitative plausibility
structures. We write ∆ R KLM N$M@O if N$M@O is provable
from ∆ using the KLM properties.

Theorem 2.1: [10] � ! � �Z��� if and only if for all ∆, N ,
and O , if ∆ R KLM N$MPO then ∆ t ����N$M@O .

It is easy to see that possibility structures and � -structures,
when viewed as plausibility structures, are qualitative.
Moreover, in [10], mappings are provided from preferential
structures and PPD’s to qualitative plausibility structures
that preserve the semantics of defaults. These mappings
show that preferential structures and PPD’s can be viewed
as qualitative plausibility structures as well.

Why are there no further properties (that is, why are the
KLM properties not only sound, but complete)? To show
that the KLM properties are complete with respect to a class� of structures, we have to ensure that � contains “enough”
structures. In particular, if ∆

KR KLM N$M@O , we want to
ensure that there is a plausibility structure � � � � such
that � ��t � ��� ∆ and � � Kt � ��� N$MPO . The following weak
condition on � does this.

Definition 2.2: We say that � is rich if for every collectionN 1
� hihih � N0� , ��] 1, of mutually exclusive formulas, there is

a plausibility structure � ��� ����� Pl
�HW � � � such that:

Pl
� ) ) N 1 + +��^] Pl

� ) ) N 2 + +��$]��j�i��] Pl
� ) ) N � + +�������h

The richness condition is quite mild. Roughly speak-
ing, it says that we do not have a priori constraints on the
relative plausibilities of a collection of disjoint sets. It is
easily seen to hold for the plausibility structures that arise
from preferential structures (resp., possibility structures, � -
structures, PPDs). More importantly, richness is a necessary
and sufficient condition to ensure that the KLM properties
are complete.

Theorem 2.3: [10] A set � of qualitative plausibility struc-
tures is rich if and only if for all finite ∆ and defaults N$M@O ,
we have that ∆ t � � N$M@O implies ∆ R KLM NXMyO .

This result shows that if the KLM properties are sound
with respect to a class of structures, then they are almost
inevitably complete as well. More generally, Theorems 2.1
and 2.3 explain why the KLM properties are sound and
complete for so many approaches.



2.2 First-order defaults

It has long been recognized that first-order expressive
power is necessary for a default reasoning system. How-
ever, all the approaches to conditional logic discussed in
the previous subsection are propositional. At first glance,
the extension of all the these approaches to the first-order
case is straightforward. For example, we can simply have
a preferential ordering on first-order, rather than proposi-
tional, worlds. Once we do this, we see that there are
significant differences between the various approaches that
were masked by the propositional language considered in the
previous subsection. In particular, unlike the propositional
case, the different approaches are no longer characterized
by the same axioms. There are properties valid in some
approaches that are not valid in others. Unfortunately, these
are properties that we do not want to be valid.

This issue is perhaps best illustrated by the lottery para-
dox [24]. Suppose we believe about a lottery that any par-
ticular individual typically does not win the lottery. Thus
we get ��� �

true M�` Winner
� � �H�
h �

1 �
However, we believe that typically someone does win the
lottery, that is

true M�  � Winner
� � �
h �

2 �
Unfortunately, in many of the standard approaches, such as
Delgrande’s [4] version of first-order preferential structures,
from (1) we can conclude

true M �T� � ` Winner
� � �H�
h �

3 �
Intuitively, from (1) it follows that in the most preferred
worlds, each individual � does not win the lottery. There-
fore, in the most preferred worlds, no individual wins. This
is exactly what (3) says. Since (2) says that in the most
preferred worlds, some individual wins, it follows that there
are no most preferred worlds, i.e., we have true M false.
While this may be consistent (as it is in Delgrande’s logic),
it implies that all defaults hold, which is surely not what we
want.

It can be shown [14] that the natural first-order extension
of preferential structures, � structures, and possibility stru-
tures all suffer from this or closely related problems. Indeed,
of all the approaches considered in the previous subsection,
only � -semantics and plausibility do not suffer from this
problem.

It may seem that this problem is perhaps not so serious.
After all, how often do we reason about lotteries? But, in
fact, this problem arises in many situations which are clearly
of the type with which we would like to deal. Assume, for
example, that we express the default “birds typically fly” as
Delgrande does, using the statement��� �

Bird
� � ��M Fly

� � �
�
h �
4 �

If we also believe that Tweety is a bird that does not
fly, so that our knowledge base contains the statement
true M Bird

�
Tweety ��\¡` Fly

�
Tweety � , we could similarly

conclude true M false. Again, this is surely not what we
want.

In [14], it is shown that there is a natural first-order exten-
sion of the KLM properties that provides a sound and com-
plete axiomatization of first-order plausibility structures.1

Essentially the same axiomatization is shown to be sound
and complete for the first-order version of � -semantics, but
the other approaches are shown to satisfy additional proper-
ties.

3 Discussion and Conclusions

This overview has focused on the role of plausibility
measures in default reasoning. We have reviewed results
showing how plausibility can provide a unifying framework
for understanding much of the previous research in the area,
as well as extending it to the first-order case. As we men-
tioned in the introduction, we have used plausibility in two
other contexts; we briefly discuss these here.

Probability theory offers many off-the-shelf tools,such as
a a simple and elegant mechanism of belief change, namely
conditioning and techniques, such as the use of Bayesian
networks [26] and Markov processes [22], that often allow
a succinct representation of probability distributions over
large spaces. If we are to use plausibility as a method for
reasoning about uncertainty, we need to understand to what
extent it provides similar tools. In [9], we examine what
properties a plausibility measure must satisfy to allow us
to define reasonable notions of conditioning and indepen-
dence. This type of understanding is necessary to define
plausibilistic analogues of Bayesian networks and Markov
processes, and thus allows us to extend the use of these tools
well beyond the realm of probability.

The other problem to which we have applied plausibility
is that of of belief dynamics or belief change—how an agent
should change his beliefs after making an observation or
performing an action. In the literature, there are two well-
known notions of belief change: Belief revision [2, 16]
focuses on how an agent revises his beliefs when he acquires
new information. Belief update [21], on the other hand,
focuses on how an agent should change his beliefs when
he realizes that the world has changed. Both approaches
attempt to capture the intuition that to accommodate the new
belief the agent should make minimal changes to his beliefs.
The difference between the two approaches comes out most
clearly when we consider what happens when the agent
observes something that is inconsistent with his previous

1By way of contrast, there is no (recursivelyenumerable) axiomatization
of first-order probabilistic logic; the validity problem for these logics is
highly undecidable (Π2

1 complete) [1].



beliefs. Revision treats the new observation as an indication
that some of the previous beliefs are wrong and should be
discarded. It tries to choose the most plausible beliefs that
can accommodate the observation. Update, on the other
hand, assumes that previous beliefs were correct and that
the observation is an indication that a change occurred in
the world. It tries to find the most plausible change that
accounts for the observation.

Belief revision and belief update are just two points on
a spectrum of possible belief change methods. There are
situations where neither is appropriate. To investigate the
problem of belief change more generally, it is useful to have
a good formal model. Such a model is provided in [12]. We
start with the model of knowledge in multi-agent systems
introduced in [20] (see also [7]), and add to it plausibility
to capture beliefs (where � is believed if its plausibility is
greater than that of `�� ). Knowledge captures in a precise
sense the non-defeasible information the agent has about the
world he is in, while beliefs capture defeasible information.
The resulting framework is very expressive. In particular,
it allows us to characterize belief revision and update as
each corresponding to a collection of qualitative plausibility
measures. This characterization allows us to see clearly the
assumptions underlying each [13].

One key observation is that both revision and update can
be viewed as the result of conditioning. That is, if the be-
liefs before observing ¢ are characterized by a plausibility
measure Pl, the beliefs after observing ¢ are characterized
by the conditional plausibility Pl

� �qt ¢£� . If we start with a
probability distribution Pr and condition on some observa-
tion ¢ , the resulting conditional probability Pr

� �qt ¢£� can be
viewed as the distribution that is the minimal change from
Pr and gives the observation probability 1. The fact that
belief revision and update can also be viewed as the result
of conditioning gives us a way of understanding in what
sense they too are minimal change operations. This obser-
vation suggests that we can find other interesting points on
the spectrum by considering other possible priors. We have
investigated one such approach, where the prior satisfies a
(plausibilistic) Markovian assumption; that is, successive
transitions are assumed to be independent, and the plausi-
bility of a transition at time ¤ depends only on the current
global state, and not on what has happened up to time ¤
[11, 8]. (Notice that to make sense of independence in the
plausibilistic setting, we need to use the results of [9].)

While we have applied plausibility to only a few
problems, we expect that plausbility will prove useful
whenever we want to express uncertainty and do not
want to (or cannot) do so using probability. For ex-
ample, qualitative decision theory, where both our mea-
sures of utility and probability are more qualitative, and
not necessarily real numbers, is an active area of cur-
rent research, as as the bibliography of over 290 papers

at http://www.medg.lcs.mit.edu/qdt/bib/unsorted.bib attests.
Although we have not yet explored this issue, we hope that
this discussion has convinced the reader of the potential for
plausibility measures in this arena as well.
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