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Abstract

The standard approach in AI to knowledge representation is
to represent an agent’s knowledge symbolically as a collec-
tion of formulas, which we can view as a knowledge base. An
agent is then said to know a fact if it is provable from the for-
mulas in his knowledge base. Halpern and Vardi advocated
a model-theoretic approach to knowledge representation. In
this approach, the key step is representing the agent’s knowl-
edge using an appropriate semantic model. Here, we model
knowledge bases operationally as multi-agent systems. Our
results show that this approach offers significant advantages.

Introduction

The standard approach in AI to knowledge representation,
going back to McCarthy ?, is to represent an agent’s knowl-
edge symbolically as a collection of formulas, which we can
view as a knowledge base. An agent is then said to know
a fact if it is provable from the formulas in his knowledge
base. Halpern and Vardi ? advocated a model-checking
approach. In this approach, theorem proving is replaced by
evaluating queries against an appropriate semantic model of
the agent’s knowledge. This can be viewed as a knowledge-
level approach to knowledge bases (?). Such a semantic
model was in fact provided by Levesque ?; he associates
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with a knowledge base a set of truth assignments. We de-
scribe here a different semantic approach. We show that
an operational semantics for knowledge bases, based on
the model of multi-agent systems from (?) (which in turn,
is based on earlier models that appeared in (?; ?; ?; ?;
?)), offers a clean and intuitive knowledge-level model.
The basic idea of this approach is to model the system as
a set of possible behaviors. Knowledge is then ascribed to
agents according to the possible-worlds principle: a fact � is
known to an agent 	 if � holds in all the states of the system
that 	 considers possible. Thus, in our approach knowledge
“falls out” of the operational model of the system. We argue
that this approach offers significant advantages compared to
previous approaches to modeling knowledge bases.

Knowledge in multi-agent systems

We briefly review the framework of (?) for modeling
multi-agent systems. The basic idea of this approach is to
model systems operationally (in the spirit of the operational-
semantics approach to programming languages (?; ?)). We
assume that at each point in time, each agent is in some local
state. Informally, this local state encodes the information
the agent has observed thus far. In addition, there is also an
environment state, that keeps track of everything relevant to
the system not recorded in the agents’ states. The way we
split up the system into agents and environment depends on
the system being analyzed.

A global state is a tuple 
���
���� 1 ��������������� consisting of the
environment state � 
 and the local state ��� of each agent � .
A run of the system is a function from time (which, for ease
of exposition, we assume ranges over the natural numbers)
to global states. Thus, if � is a run, then ��
 0 ������
 1 ���������
is a sequence of global states that, roughly speaking, is
a complete description of what happens over time in one



possible execution of the system. We take a system to
consist� of a set of runs. Intuitively, these runs describe all
the possible sequences of events that could occur.

Given a system � , we refer to a pair 
 ����!"� consisting
of a run �$#%� and a time ! as a point. If ��
 !"�'&

 � 
 �(� 1 ����������� � � , we define � 
 
�!)�*&+� 
 and ����
 !"�*&,��� ,
for �-& 1 ����������. ; thus, ��
�
�!)� is the environment state and
����
 !"� is process � ’s local state at the point 
 ���(!)� . We say
that two points 
 ���(!)� and 
 ��/0��!*/1� are indistinguishable to
agent � , and write 
 ���(!)�324�3
 ��/ �(!5/6� , if ����
 !"�3&7��/� 
 !*/1� ,
i.e., if agent � has the same local state at both points. Finally,
we definean interpreted system to be a pair 
1�8��9:� consisting
of a system � and a mapping 9 that associates a truth
assignment to the primitive propositions at each global state.

An interpreted system can be viewed as a Kripke struc-
ture: the points are the possible worlds, and 2 � plays the
role of the accessibility relation. We give semantics to
knowledge formulas in interpreted systems just as in Kripke
structures: Given a point 
�����!"� in an interpreted system; &<
1�8��9:� , we have 
 ; �����(!)�>= &@?A��� (that is, the formula
?A��� is satisfied at the point 
�����!"� of

;
) if 
 ; ��� / ��! / �B= &C�

for all points 
 ��/0��!*/1� such that 
���/D�(!5/1�E24�F
 ���(!)� . Notice
that under this interpretation, an agent knows � precisely
if � is true at all the situations the system could be in,
given the agent’s current information (as encoded by its lo-
cal state). Since 2 � is an equivalence relation, knowledge
in this framework satisfies the S5 axioms.

The major application of this framework has been in pro-
viding a knowledge-level analysis of distributed protocols
(?). It is often relatively straightforward to construct the
system corresponding to a given protocol. The local state
of each process can typically be characterized by a number
of local variables (which, for example, describe the mes-
sages received and the values of certain local registers).
The runs describe the behavior of the system as a result of
running the protocol. (See (?) for detailed examples of the
modeling process.) Here we examine how this framework
can be used to model knowledge bases.

Knowledge bases as multi-agent systems

Following Levesque ?, we view a KB as a system that
is told facts about an external world, and is asked queries
about that world.1 The standard approach in AI to modeling
knowledge bases is just to identify a KB with a formula,
or set of formulas, that can informally be thought of as
describing what the KB knows. When the KB is asked a
query G , it computes (using some computational procedure)
whether G holds. Levesque takes a more semantic approach,
associating with the KB the set of truth assignments that the
KB considers possible at any time, as a function of what it
has been told.

We now show how knowledge bases can be modeled as
multi-agent systems. As we shall see, doing so gives us
a number of advantages. Basically, since we are model-
ing knowledge bases operationally, we can easily capture

1Levesque models this in terms of TELL and ASK operations.

aspects that are hard to capture in a symbolic model or
even in Levesque’s knowledge-level model. For one thing,
we can capture assumptions about how the KB obtains its
knowledge and show how these assumptions affect the KB’s
knowledge. Furthermore, the model allows us to study
how the KB’s knowledge evolves with time. Generally, the
model is very flexible and can easily be adapted to many
applications.

The first step in modeling the KB in our framework is
to decide who the agents are and what the role of the envi-
ronment is. The KB is clearly an agent in the system. In
addition, we choose to have another agent called the Teller;
this is the agent that tells the KB facts about the exter-
nal world. We use the environment to model the external
world. It is possible to use the environment to also model
the Teller, but, as we shall see later on, our approach of-
fers certain advantages. We want to view the environment’s
state as providing a complete description of (the relevant
features of) the external world, the local state of the KB as
describing the information that the KB has about the exter-
nal world, and the local state of the Teller as describing the
information that the Teller has about the external world and
about the KB. This allows us to distinguish what is true (as
modeled by the environment’s state) from what is known to
the Teller (as modeled by the Teller’s state) and from what
the KB is told (as modeled by the KB’s state).

That still gives us quite a bit of freedom in deciding
how to model the global states. If we can describe all the
relevant features of the external world by using a set Φ of
primitive propositions, then we can take the environment
to be just a truth assignment to the primitive propositions
in Φ. If, instead, we need to use first-order information to
describe the world, then we can take the environment to be
a relational structure.

What about the KB’s local state? We want it to represent
all the relevant information that the KB has learned. We can
do this by taking the local state to consist of the sequence of
facts that the KB has been told and queries that it has been
asked. If we assume that the sequence of queries does not
carry any information about the external world, then we can
simplify this representation by including in the local state
only the sequence of facts that the KB has been told, and
ignoring the queries. This is in fact what we do.

Finally, the Teller’s state has to describe the Teller’s in-
formation about the external world and about the KB. We
assume that the Teller has complete information about the
KB, since the Teller is the sole source for the KB’s informa-
tion. Thus, the Teller’s local state contains a description of
its information about external world as well as the sequence
of facts that the KB has been told.

What does the KB know after it has been told some fact � ?
Assuming that what it has been told is true, it may seem
reasonable to say that the KB knows � . This is clearly
false, however, if the external world can change. It might
well be the case that � was true when the KB was told
it, and is no longer true afterwards. For definiteness, we
assume that the external world is stable. As we shall see,
even with this assumption, if � can include facts about the



KB’s knowledge, then � may be true when the KB is told
it, but

H
not afterwards.

To get a feel for some of the issues involved, we focus
first on modeling a fairly simple concrete situation. We later
consider what happens when we weaken these assumptions.
We assume that:

1. the external world can be described propositionally, using
the propositions in a finite set Φ,

2. the external world is stable, so that the truth values of
the primitive propositions describing the world do not
change over time, at least for the intervals of time we are
analyzing,

3. the Teller has complete information about the external
world and about the KB,

4. the KB is told and asked facts only about the external
world, and not facts about its own knowledge, and these
facts are expressed as propositional formulas,

5. everything the KB is told is true, and

6. there is no a priori initial knowledge about the external
world, or about what the KB will be told.

The first assumption tells us that we can represent the
environment’s state as a truth assignment I to the primi-
tive propositions in Φ. The second assumption tells us that
in each run � , the environment’s state � 
 
�!)� is independent
of ! ; the environment’s state does not change over time. As
observed by Katsuno and Mendelzon ?, this is the assump-
tion that distinguishes belief revision from belief update.
The third assumption tells us that the Teller’s state includes
the truth assignment I , which describes the external world.
Given that we are representing the KB’s local state as a se-
quence of facts that it has been told, the fourth assumption
tells us that this local state has the form J0� 1 ���������(�LK�M , N)O 0,
where � 1 �������(���LK are propositional formulas. We assume
that the Teller’s local state has a similar form, and consists of
the truth assignment that describes the real world, together
with the sequence of facts it has told the KB. Thus, we take
the Teller’s local state to be of the form 
�IF��J0� 1 �����������PK�MQ� ,
where I is a truth assignment and � 1 ����������� K are proposi-
tional formulas. Since the Teller’s state is simply the pair
consisting of the environment’s state and the KB’s state,
we do not represent it explicitly, but rather denote a global
state by 
�IF��J0� 1 ���������(� K M���RS� . The fifth assumption tells us
that everything that the KB is told is true. This means that
in a global state of the form 
 I>��J0� 1 �����������LK�M���R � , each of
� 1 �������(��� K must be true under truth assignment I . The
part of the sixth assumption that says that there is no initial
knowledge of the world is captured by assuming that the
initial state of every run has the form 
�IF��JTM���RS� , and that
for every truth assignment IU/ , there is some run with initial
global state 
�IU/0��JTM���RS� . We capture the second half of the
sixth assumption—that there is no knowledge about what
information will be given—by not putting any further re-
strictions on the set of possible runs. We discuss this in
more detail later.

To summarize, we claim our assumptions are captured
by the interpreted system

; K�V &W
1� K�V ��9 K�V � , where � K�V

consists of all runs � such that for some sequence � 1 �(� 2 �������
of propositional formulas and for some truth assignment I :
X KB1. ��
 0 �L&<
�IF��JTM���RS�X KB2. if ��
�!)�-&<
�IF��JD� 1 ���������(�LK�M���RS� , then

1. either ��
�!ZY 1 �[& ��
 !"� , or ��
 !ZY 1 �[&

�IF��JD� 1 ���������(� K ��� K�\ 1 M���RS� ,

2. � 1 ] R�R�R ] �PK is true under truth assignment I , and
3. 9 K�V 
�����!"�F&^I , that is, 9 K�V is defined so that the truth

assignment at 
�����!"� is given by the environment’s
state.

Our assumption that � consists of all runs that satisfy the
conditions above also captures the assumption that there is
no knowledge about what information will be given. This
is perhaps best understood by example. There may be a
priori knowledge that, if _ is true, then this is the first thing
the KB will be told. This places a restriction on the set of
possible runs, eliminating runs with global states of the form

 IF��JD� 1 �������(��� K M���RS� such that N)O 1 and _ is true under the
truth assignment I , but � 1 `&a_ . It is easy to construct other
examples of how what information is given or the order in
which it is given might impart knowledge beyond the facts
themselves. By allowing all runs � consistent with KB1 and
KB2 in � , we are saying that there is no such knowledge.

Having defined the system
; K�V , we can see how the KB

answers queries. Suppose that at a point 
��b�(!)� the KB
is asked a query G , where G is a propositional formula.
Since the KB does not have direct access to the environ-
ment’s state, G should be interpreted not as a question
about the external world, but rather as a question about
the KB’s knowledge of the external world. Thus, the KB
should answer “Yes” exactly if 
 ; K�V ������!"�E= &@?AcEdEG holds
(taking ?AcEd to denote “the KB knows”), “No” exactly if

 ; K�V ������!"�*= &e? cEdEf G holds, and “I don’t know” other-
wise.

Suppose the KB is in local state J0� 1 �����������LK�M . We can
view the formula gh&i� 1 ] R�R�R ] �LK as a summary of
its knowledge about the world; the KB knows only what
follows from this. This could be interpreted in two ways: the
KB could answer “Yes” exactly if G is a consequence of g ,
or if ? cEd G is a consequence of ? cEd g . As the following
result shows, these two interpretations are equivalent.

Proposition 1: Suppose that ��cEdE
 !"�F&jJ0� 1 �������(���LK�M . Let
gk&l� 1 ] R�R�R ] � K and let G be a propositional formula.
The following are equivalent:

(a) 
 ; K�V �����(!)�>= &C?AcEd>G .
(b) g*mnG is a propositional tautology.
(c) ? cEd g*mn? cEd G is a valid formula in S5.

Thus, Proposition ?? shows that under our assumptions,
we can model the KB in the standard AI manner: as a
formula. Moreover, in order to answer a query, the KB must
compute what follows from the formula that represents its
knowledge.

Proposition ?? characterizes how the KB answers propo-
sitional queries. As argued by Levesque ? and Reiter ?,
in general the KB may have to answer non-propositional



queries. How should the KB handle such queries as

o_pm[?AcEdP_�� (“if _ is the case, then the KB knows that
it is the case”)? Here also we want the KB to answer “Yes”
to a query � exactly if 
 ; K�V �����(!)�'= &+? cEd � , “No” ex-
actly if 
 ; K�V ������!"�3= &q?AcEd f � holds, and “I don’t know”
otherwise. When does the formula ?AcEdr
6_jm ?AcEdL_s�
hold? It is not hard to show that this formula is equivalent
to ? cEd _utv? cEdEf _ , so the answer to this query already
follows from Proposition ??: the answer is “Yes” if either
_ follows from what the KB has been told, or f _ does, and
“I don’t know” otherwise. It is not possible here for the an-
swer to be “No”, since ?AcEd f 
o_"mn?AcEdw_�� is equivalent to
?AcEdr
6_ ] f ?AcEdL_s� , which is easily seen to be inconsistent
with S5.

We are mainly interested in what can be said about for-
mulas that involve only the KB’s knowledge, since we view
the Teller as being in the background here. We define a
KB-formula to be one in which the only modal operator is
?AcEd ; a KB-query is a query which is a KB-formula. Stan-
dard arguments from modal logic can be used to show that
for every KB-formula of the form ? cEd � we can effectively
find an equivalent formula that is a Boolean combination of
formulas of the form ?AcEdxG , where G is propositional. It
follows that the way that the KB responds to KB-queries can
already be determined from how it responds to propositional
queries. The reason is as follows. To decide on its answer to
the query � , we must determine whether ?AcEdE� holds and
whether ? cEdEf � holds. As we just noted, we can effec-
tively find a formula equivalent to ?AcEdx� that is a Boolean
combination of formulas of the form ?AcEdEG , where G is
propositional, and similarly for ?AcEd f � . We then need
only evaluate formulas of the form ? cEd G , where G is
propositional. Thus, using Proposition ??, we can compute
how the KB will answer KB-queries from the conjunction
of the formulas that the KB has been told.

There is another way of characterizing how the KB will
answer KB-queries. Given a propositional formula � , letyLz

consist of all truth assignments I to propositions in Φ
such that � is true under truth assignment I . Let { z &

 yPz ��9L�D|}� be the Kripke structure such that 9U
�IL�F&^I and
| is the universal relation (so that for all IF��~C# yLz

, we
have 
�IF�Q~w�*#�| ). In a sense, we can think of { z

as a
maximal model of � , since all truth assignments consistent
with � appear in { z

. As the following result shows, if g is
the conjunction of the formulas that the KB has been told,
then for an arbitrary formula G , the KB knows G exactly
if ?AcEdEG holds in the maximal model for g . Intuitively, if
the KB was told g , then all that the KB knows is g . The
maximal model for g is the model that captures the fact that
g is all that the KB knows.

Proposition 2: Suppose that � cEd 
�!)�-&qJD� 1 ����������� K M , and
gv&q� 1 ] R�R�R ] �LK . Then for all KB-formulas G , we have
that 
 ; K�V �����(!)�E= &@G iff 
 {j���(� 
 
�!"�Q�4= &CG .

Levesque? defines {j� as the knowledge-level model of the
KB after it has been told � 1 ���������(�LK . Thus, Proposition ??
shows that in the propositional case, our operational model
is equivalent to Levesque’s knowledge-level model.

Our discussion so far illustrates that it is possible to model
a standard type of knowledge base within our framework.
But what do we gain by doing so? For one thing, it makes
explicit the assumptions underlying the standard represen-
tation. In addition, we can talk about what the KB knows
regarding its knowledge, as shown in Proposition ??. Be-
yond that, as we now show, it allows us to capture in a
straightforward way some variants of these assumptions.
The flexibility of the model makes it easier to deal with
issues that arise when we modify the assumptions.

We begin by considering situations where there is some
prior knowledge about what information will be given. As
we observed earlier, the fact that we consider all runs in
which KB1 and KB2 are true captures the assumption that
no such knowledge is available. But, in practice, there
may well be default assumptions that are encoded in the
conventions by which information is imparted. We earlier
gave an example of a situation where there is a convention
that if _ is true, then the KB will be told _ first. Such
a convention is easy to model in our framework: it simply
entails a restriction on the set of runs in the system. Namely,
the restriction is that for every point 
 ����!"� in the system
where ��
�!)�*&,
 I>��J0� 1 M���RS� , we have � 1 &%_ iff _ is true
under I . Recall that the order in which the KB is given
information is part of its local state. In a precise sense,
therefore, the KB knows what this order is. In particular, it
is straightforward to show that, given the above restriction,
the KB either knows _ or knows f _ once it has been told at
least one fact.

In a similar fashion, it is easy to capture the situation
where there is some a priori knowledge about the world, by
modifying the set of runs in

; K�V appropriately. Suppose, for
example, that it is known that the primitive proposition _
must be true. In this case, we consider only runs � such
that ��
�
 0 �3&7I for some truth assignment I that makes _
true. An analogue to Proposition ?? holds: now the KB
will know everything that follows from _ and what it has
been told.

Next, consider the situation where the Teller does not have
complete information about the world (but still has complete
information about the KB). We model this by including in
the Teller’s state a nonempty set � of truth assignments.
Intuitively, � is the set of possible external worlds that the
Teller considers possible. The set � replaces the single
truth assignment that describes the actual external world.
Since we are focusing on knowledge here, we require that
Ih#@� ; this means that the true external world is one of
the Teller’s possibilities. The Teller’s state also includes
the sequence of facts that the KB has been told. To avoid
redundancy, we denote the Teller’s state by J1�"��RSM . Global
states now have the form 
 I>��J0� 1 �����������LK�M���J1�"��RSM�� . We still
require that everything the KB is told be true; this means
that the Teller tells the KB “ � ” only if � is true in all the truth
assignments in � . It is easy to see that this means that the
Teller says � only if ?��>� holds (taking ?�� to denote “the
Teller knows”). Not surprisingly, Propositions ?? and ??
continue to hold in this setting, with essentially no change
in proof.



Once we allow the Teller to have a collection � of worlds
that� it considers possible, it is but a short step to allow the
Teller to have false beliefs, which amounts to allowing �
not to include the actual world. We would still require that
the Teller tells the KB � only if � is true in all the truth
assignments in � . In this case, however, this means that
the Teller only believes � to be the case; its beliefs may
be wrong. How should we ascribe beliefs to agents in a
multi-agent system? In the scenario described here, the
KB and the Teller believe that the Teller is truthful, so they
both consider some global states to be impossible, namely,
the global states in which I `#^� . Thus, it makes sense
here to change the definition of the accessibility relation
in the Kripke structure associated with a system in order
to make global states where I `#l� inaccessible. The
possible-worlds principle now ascribes beliefs rather than
knowledge; see (?) for details.2

Knowledge-based programs

Up to now we have assumed that the KB is told only propo-
sitional facts. Things get somewhat more complicated if
the KB is given information that is not purely propositional;
this in fact is the situation considered by Levesque ?. For
example, suppose the KB is told _*m�?AcEdw_ . This says that
if _ is true, then the KB knows it. Such information can be
quite useful, assuming that the KB can actually check what
it knows and does not know. In this case, the KB can check
if it knows _ ; if it does not, it can then conclude that _ is
false. As this example shows, once we allow the KB to be
given information that relates its knowledge to the external
world, then it may be able to use its introspective abilities
to draw conclusions about the external world.

It is now not so obvious how to represent the KB’s knowl-
edge symbolically, i.e., by a formula. One complication that
arises once we allow non-propositional information is that
we can no longer assume that the KB knows everything it
has been told. For example, suppose the primitive propo-
sition _ is true of the external world, and the KB has not
been given any initial information. In this situation, the
formula _ ] f ?AcEdw_ is certainly true. But after the KB is
told this, then it is certainly not the case that the KB knows
_ ] f ?AcEdP_ ; indeed, as we noted earlier, ?AcEd4
o_ ] f ?AcEdL_s�
is inconsistent with S5. Nevertheless, the KB certainly
learns something as a result of being told this fact: it learns
that _ is true. As a result, ? cEd _ should hold after the KB
is told _ ] f ? cEd _ . Thus, we cannot represent the KB’s
knowledge simply by the conjunction of facts that it has
been told, even if they are all true.

Levesque ? describes a knowledge-level model for the
KB’s knowledge in this case. After the KB has been told
the sequence � 1 ���������(�LK , it is modeled by a Kripke structure
{ z

1 �S�S�S� � z�� , which we define inductively. The initial model is
{h�P&<
 y ���(9L�D|}� , where

y � is the set of all truth assignment
to the propositions in Φ, 9U
�IL�F&qI , and | is the universal
relation. Suppose that { z

1 �S�S�S� � z ��� 1 &�
 yPz
1 �S�S�S�S� z ��� 1 ��9L�0|}�

2See also (?) for a general approach to adding belief to this
framework.

has been defined. Then { z
1 �S�S�S� � z�� &�
 y z

1 �S�S�S�S� z�� ��9L�0|}� ,
where

yLz
1 �S�S�S� � z � &%���j# yPz

1 �S�S�S�S� z ��� 1 =�
�{ z
1 �S�S�S�S� z ��� 1 ���4�}= &

� K�� . As in the earlier discussion of the maximal model, this
definition attempts to capture the idea that the KB knows
only what it has been told. The induction construction
ensures that this principle is applied whenever the KB is
told a formula.

In our approach, we need to be able to describe the system
that results when the KB is given information that may
involve its own knowledge. As before, we take the KB’s
local state to consist of a sequence of formulas, except that
we now allow the formulas to be modal formulas which
can talk about the KB’s knowledge, not just propositional
formulas. The only difficulty comes in restricting to runs in
which the KB is told only true formulas. Since we are now
interested in formulas that involve knowledge, it is not clear
that we can decide whether a given formula is true without
having the whole system in hand. But our problem is to
construct the system in the first place!

While it is difficult to come up with an explicit description
of the system, it is easy to describe this system implicitly.
After all, the behavior of the agents here is fairly simple.
The Teller here can be thought as following a knowledge-
based program (?; ?; ?). This is a program with explicit
tests for knowledge. Roughly speaking, we can think of the
Teller as running a nondeterministic program �4�:��� that has
an infinite collection of clauses, one for each formula � , of
the form:

if ? � � do �����S��
��L� .
Intuitively, when running this program, the Teller nondeter-
ministically chooses a formula � that it knows to be true,
and tells the KB about it. The propositional case considered
in the previous section corresponds to the Teller running the
analogous knowledge-based program �4�:�����L�:�}� in which
the formulas � are restricted to be propositional. Using tech-
niques introduced in (?), it can be shown that both �4�:���
and �4�:�����P�:��� can be associated with unique interpreted
systems

;-� 
Q S  and
;-� 
Q S  ¡�¢(£1¡ , respectively. It turns out that

the interpreted system
; K�V (defined in the previous section),

which captured the interaction of the KB with the Teller
in the propositional case, is precisely the system

;-� 
Q S  ¡�¢(£1¡ .
This observations provides support for our intuition that;¤� 
� S  appropriately captures the situation where the Teller
tells the KB formulas that may involve the KB’s knowl-
edge. Moreover, the system that we get is closely related to
Levesque’s knowledge-level model described earlier.

Proposition 3 : Suppose that � cEd 
�!)�a&¥J0� 1 ���������(� K M .
Then for all KB-formulas G , we have that 
 ; K�V �(����!"�r= &^G
iff 
 { z

1 �S�S�S�S� z � ��� 
 
 !"���r= &^G .

One advantage of using knowledge-based programs is
that we can consider more complicated applications. In
many such applications, one cannot divide the world neatly
into a KB and a Teller. Rather, one often has many agents,
each of which plays both the role of the KB and the Teller.
For example, suppose that we have . agents, each of whom
makes an initial observation of the external world and then
communicates with the others. We assume that the agents



are truthful, but that they do not necessarily know or tell
the “whole truth”. We can view all the agents as follow-
ing knowledge-based programs similar to �r�:��� . At every
round, agent � nondeterministically selects, for each agent ¦ ,
a formula ��§ that � knows to be true, and “tells” �s§ to ¦ .
Formally, agent � ’s program consists of all clauses of the
form:

if ? � � 1 ] ����� ] ? � � K do ¨(��©�ª«
�� 1 � ¦ 1 � ; ����� ; ¨(��©�ª�
�� K �¬¦ K � ,
where we take ¨���©�ª«
 �   � ¦   � to be the action sending the
message �L  to agent ¦�  . Here we allow the messages � to be
arbitrary modal formulas; for example, Alice can tell Bob
that she does not know whether Charlie knows a fact _ .

In this case, it is no longer clear how to model the agents
symbolically or at the knowledge level as in (?).3 In fact,
while it is easy to characterize the appropriate interpreted
system implicitly, via knowledge-based programs, it is quite
difficult to describe the system explicitly. Nevertheless, our
approach enables us to characterize the agents’ knowledge
in this case and analyze how it evolves with time. We view
this as strong evidence to the superiority of the operational
approach.

Conclusions

We have tried to demonstrate the power of the operational
approach to modeling knowledge bases. We have shown
that under simple and natural assumptions, the operational
approach gives the same answers to queries as the more
standard symbolic approach and Levesque’s knowledge-
level approach. The advantage of the operational ap-
proach is its flexibility and versatility. We have given
some evidence of this here. Further evidence is provided
by the recent use of this framework (extended to deal
with beliefs) to model belief revision and belief update (?;
?). We are confident that the approach will find yet other
applications.

3See (?) for a general framework for mutual belief revision.


