An Operational Semanticsfor Knowledge Bases*

Ronald Fagin
IBM Almaden Research Center
650 Harry Road
San Jose, CA 95120-6099
fagi n@l maden. i bm com

Yoram M osest
Deparment of Applied Math. and CS
The Weizmann Institute of Science
76100 Rehovot, |sragl
yor am@auv sdom wei zmann. ac. i |

Abstract

The standard approach in Al to knowledge representation is
to represent an agent’s knowledge symbolically as a collec-
tion of formulas, which we can view asaknowledgebase. An
agent isthen said to know afact if it is provablefrom thefor-
mulas in his knowledge base. Halpern and Vardi advocated
amodel-theoretic approach to knowledge representation. In
this approach, the key step is representing the agent’ sknowl-
edge using an appropriate semantic model. Here, we model
knowledge bases operationally as multi-agent systems. Our
results show that this approach offers significant advantages.

Introduction

The standard approach in Al to knowledge representation,
going back to McCarthy ?, isto represent an agent’s knowl-
edge symbolically asacollection of formulas, whichwecan
view as a knowledge base. An agent is then said to know
afact if it is provable from the formulas in his knowledge
base. Halpern and Vardi ? advocated a model-checking
approach. In this approach, theorem proving is replaced by
evaluating queries against an appropriate semantic model of
the agent’sknowledge. This can be viewed asaknowledge-
level approach to knowledge bases (?). Such a semantic
model was in fact provided by Levesque ?; he associates
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with a knowledge base a set of truth assignments. We de-
scribe here a different semantic approach. We show that
an operational semantics for knowledge bases, based on
the model of multi-agent systems from (?) (whichin turn,
is based on earlier models that appeared in (?; ?; ?; ?;
?)), offers a clean and intuitive knowledge-level model.
The basic idea of this approach is to model the system as
a set of possible behaviors. Knowledge is then ascribed to
agentsaccording to thepossible-worldsprinciple: afact ¢ is
knownto an agent a if ¢ holdsin all the states of the system
that a considers possible. Thus, in our approach knowledge
“fallsout” of the operational model of the system. Weargue
that thisapproach offers significant advantages compared to
previous approaches to modeling knowledge bases.

Knowledgein multi-agent systems

We briefly review the framework of (?) for modeling
multi-agent systems. The basic idea of this approach isto
model systemsoperationally (inthespirit of theoperational -
semantics approach to programming languages (?; ?)). We
assumethat at each point intime, each agentisin somelocal
state. Informally, this local state encodes the information
the agent has observed thus far. In addition, thereis also an
environment state, that keepstrack of everything relevant to
the system not recorded in the agents' states. The way we
split up the system into agents and environment depends on
the system being analyzed.

A global stateisatuple(s,, s1, . . ., sp) consisting of the
environment state s, and the local state s; of each agent .
A run of the systemisafunction from time (which, for ease
of exposition, we assume ranges over the natural numbers)
to global states. Thus, if » is a run, then »(0), r(1),. ..
is a sequence of global states that, roughly speaking, is
a complete description of what happens over time in one



possible execution of the system. We take a system to
consist of a set of runs. Intuitively, these runs describe all
the possible sequences of eventsthat could occur.

Given a system R, we refer to a pair (r, m) consisting
of arunr € R and atime m as a point. If r(m) =
(Se, 81, ..,8n), We define r.(m) = s, and r;(m) = s;,
fori = 1,...,n; thus, r.(m) is the environment state and
r;(m) isprocessi'sloca state at the point (r, m). We say
that two points (r,m) and (r', m’) are indistinguishableto
agent ¢, and write (r,m) ~; (r',m’), if r;(m) = ri(m’),
i.e, if agenti hasthesamelocal stateat both points. Finally,
wedefineaninterpreted systemtobeapair (R, =) consisting
of a system R and a mapping = that associates a truth
assignment to the primitive propositionsat each global state.

An interpreted system can be viewed as a Kripke struc-
ture: the points are the possible worlds, and ~; plays the
role of the accessibility relation. We give semantics to
knowledge formulasin interpreted systemsjust asin Kripke
structures: Given a point (r,m) in an interpreted system
I = (R,w),wehave(Z,r,m) [ K,y (thatis, theformula
K;pissatisfied at the point (r, m) of Z) if (Z,7',m’) = ¢
for al points (', m') such that (v, m') ~; (r,m). Notice
that under this interpretation, an agent knows ¢ precisely
if ¢ istrue at al the situations the system could be in,
given the agent’s current information (as encoded by its lo-
cal state). Since ~; is an equivalence relation, knowledge
in this framework satisfies the S5 axioms.

The major application of thisframework hasbeenin pro-
viding a knowledge-level analysis of distributed protocols
(?). It is often relatively straightforward to construct the
system corresponding to a given protocol. The local state
of each process can typically be characterized by a number
of local variables (which, for example, describe the mes-
sages received and the values of certain local registers).
The runs describe the behavior of the system as a result of
running the protocol. (See (?) for detailed examples of the
modeling process.) Here we examine how this framework
can be used to model knowledge bases.

Knowledge bases as multi-agent systems

Following Levesque ?, we view a KB as a system that
is told facts about an external world, and is asked queries
about that world.! The standard approachin Al to modeling
knowledge bases is just to identify a KB with a formula,
or set of formulas, that can informally be thought of as
describing what the KB knows. When the KB is asked a
query 1, it computes (using some computational procedure)
whether ¢ holds. Levesquetakesamore semantic approach,
associating with the KB the set of truth assignmentsthat the
KB considers possible at any time, as a function of what it
has been told.

We now show how knowledge bases can be modeled as
multi-agent systems. As we shall see, doing so gives us
a number of advantages. Basically, since we are model-
ing knowledge bases operationally, we can easily capture

!Levesque models thisin terms of TELL and ASK operations.

aspects that are hard to capture in a symbolic model or
even in Levesgue's knowledge-level model. For one thing,
we can capture assumptions about how the KB obtains its
knowledge and show how theseassumptionsaffect theKB’s
knowledge. Furthermore, the model allows us to study
how the KB’sknowledge evolves with time. Generally, the
model is very flexible and can easily be adapted to many
applications.

The first step in modeling the KB in our framework is
to decide who the agents are and what the role of the envi-
ronment is. The KB is clearly an agent in the system. In
addition, we choose to have another agent called the Teller;
this is the agent that tells the KB facts about the exter-
nal world. We use the environment to model the external
world. It is possible to use the environment to also model
the Teller, but, as we shall see later on, our approach of-
fers certain advantages. Wewant to view the environment’s
state as providing a complete description of (the relevant
features of) the external world, the local state of the KB as
describing the information that the KB has about the exter-
nal world, and the local state of the Teller as describing the
information that the Teller has about the external world and
about the KB. This allows us to distinguish what istrue (as
modeled by the environment’ s state) from what is known to
the Teller (as modeled by the Teller’s state) and from what
the KB istold (as modeled by the KB’s state).

That till gives us quite a bit of freedom in deciding
how to model the global states. If we can describe all the
relevant features of the external world by using a set ® of
primitive propositions, then we can take the environment
to be just a truth assignment to the primitive propositions
in @. If, instead, we need to use first-order information to
describe the world, then we can take the environment to be
arelational structure.

What about the KB’slocal state? We want it to represent
all therelevant informationthat the KB haslearned. We can
do thisby taking the local stateto consist of the sequence of
facts that the KB has been told and queries that it has been
asked. If we assume that the sequence of queries does not
carry any information about the external world, then we can
simplify this representation by including in the local state
only the sequence of facts that the KB has been told, and
ignoring the queries. Thisisin fact what we do.

Finally, the Teller’s state has to describe the Teller’sin-
formation about the external world and about the KB. We
assume that the Teller has complete information about the
KB, sincethe Teller isthe sole source for the KB’sinforma-
tion. Thus, the Teller’slocal state contains a description of
itsinformation about external world aswell asthe sequence
of facts that the KB has been told.

What doesthe KB know after it hasbeen told somefact ?
Assuming that what it has been told is true, it may seem
reasonable to say that the KB knows ¢. This is clearly
false, however, if the external world can change. It might
well be the case that ¢ was true when the KB was told
it, and is no longer true afterwards. For definiteness, we
assume that the external world is stable. As we shall see,
even with this assumption, if ¢ can include facts about the



KB’s knowledge, then ¢ may be true when the KB is told
it, but not afterwards.

To get a feel for some of the issues involved, we focus
first on modeling afairly simple concretesituation. Welater
consider what happenswhen we weaken these assumptions.
We assume that:

1. theexternal world can bedescribed propositionally, using
the propositions in afinite set @,

2. the external world is stable, so that the truth values of
the primitive propositions describing the world do not
change over time, at least for the intervals of time we are
analyzing,

3. the Teller has complete information about the external
world and about the KB,

4. the KB is told and asked facts only about the external
world, and not facts about its own knowledge, and these
facts are expressed as propositional formulas,

5. everything the KB istold istrue, and

6. thereisno a priori initial knowledge about the external
world, or about what the KB will be told.

The first assumption tells us that we can represent the
environment’s state as a truth assignment « to the primi-
tive propositionsin @. The second assumption tells us that
in each run r, the environment’sstate r.(m) isindependent
of m; theenvironment’ sstate does not changeover time. As
observed by Katsuno and Mendelzon ?, thisis the assump-
tion that distinguishes belief revision from belief update.
The third assumption tells us that the Teller’s state includes
the truth assignment «, which describes the external world.
Given that we are representing the KB’slocal state as a se-
guence of factsthat it has been told, the fourth assumption
tellsusthat thislocal statehastheform (¢4, ..., 1), & > 0,
where ¢1, . . ., ¢y are propositional formulas. We assume
that the Teller’slocal state hasasimilar form, and consistsof
the truth assignment that describes the real world, together
with the sequence of factsit hastold the KB. Thus, we take
the Teller’slocal state to be of the form (o, (1, . .., k),
where « isatruth assignment and ¢4, . . ., ¢, are proposi-
tional formulas. Since the Teller’'s state is simply the pair
consisting of the environment’s state and the KB'’s state,
we do not represent it explicitly, but rather denote a global
state by (o, (¢1, ..., ¢x), ). Thefifth assumption tells us
that everything that the KB istold is true. This means that
in a global state of the form (a, (¢1, - - ., ¢x), -), each of
©1,--., e Must be true under truth assignment «. The
part of the sixth assumption that saysthat thereis no initial
knowledge of the world is captured by assuming that the
initial state of every run has the form («, (), -), and that
for every truth assignment o/, thereis some run with initial
global state (o', (), ). We capture the second half of the
sixth assumption—that there is no knowledge about what
information will be given—by not putting any further re-
gtrictions on the set of possible runs. We discuss this in
more detail |ater.

To summarize, we claim our assumptions are captured
by the interpreted system %% = (R*® z*%), where R*?

consistsof all runsr such that for some sequence 1, ¢, . . .
of propositional formulas and for some truth assignment «:

e KBL r(0) = (o, (), ")
o KB2. if r(m) = (e, (¢1, . . .
1. ether r(m + 1) = r(m),
(O[, <301a < Py §0k+1>a ')'
2. 1 A -+ A gy istrue under truth assignment «, and
3. 7*%(r,m) = o, that is, 7** is defined so that the truth
assignment at (r,m) is given by the environment’'s
state.

Our assumption that R consists of all runs that satisfy the
conditions above also captures the assumption that thereis
no knowledge about what information will be given. This
is perhaps best understood by example. There may be a
priori knowledgethat, if p istrue, then thisisthefirst thing
the KB will be told. This places a restriction on the set of
possibleruns, eliminating runswith global statesof theform
(@, (¢1, ..., 1), ) suchthat k > 1 and p is true under the
truth assignment o, but ¢1 # p. Itiseasy to construct other
examples of how what information is given or the order in
which it is given might impart knowledge beyond the facts
themselves. By alowing al runsr consistent with KB1 and
KB2in R, weare saying that thereis no such knowledge.

Having defined the system Z*?, we can see how the KB
answers queries. Suppose that at a point (r, m) the KB
is asked a query i, where ¢ is a propositional formula.
Since the KB does not have direct access to the environ-
ment’s state, » should be interpreted not as a question
about the external world, but rather as a question about
the KB’s knowledge of the external world. Thus, the KB
should answer “ Yes” exactly if (Z** r, m) |= Kx g1 holds
(taking K p to denote “the KB knows’), “No” exactly if
(Z*® r,m) = Kxp—1 holds, and “I don't know” other-
wise.

Suppose the KB isin local state {(¢1, ..., ¢r). We can
view the formula k = @1 A --- A pp & a summary of
its knowledge about the world; the KB knows only what
followsfromthis. Thiscould beinterpretedintwoways. the
KB could answer “Yes’ exactly if ) isa consequence of «,
orif Kgp isaconsequenceof Kk pk. Asthefollowing
result shows, these two interpretations are equivalent.

Proposition 1: Supposethat rxp(m) = (¢1,. .., vr). Let
k= @1 A Ay andlet ¢ be a propositional formula.
The following are equivalent:

(a) (Ikb, T, m) I: I(KBl/}.

(b) k = ¢ isapropositional tautology.

(c) Kxpk = Kgpt isavalid formulain Sb.

1S0k>7')|then
or r(m + 1) =

Thus, Proposition ?? shows that under our assumptions,
we can model the KB in the standard Al manner: as a
formula. Moreover, in order to answer aquery, the KB must
compute what follows from the formula that represents its
knowledge.

Proposition ?? characterizes how the KB answers propo-
sitional queries. As argued by Levesque ? and Reiter ?,
in genera the KB may have to answer non-propositional



gueries. How should the KB handle such queries as
(p => Kkpp) (“if p isthe case, then the KB knows that
it isthe case”)? Here also we want the KB to answer “Yes’
to a query ¢ exactly if (Z%%,r,m) = Kkpp, “NO" ex-
actly if (Z* r, m) = Kxp—¢ holds, and “I don’'t know”
otherwise. When does the formula Kxp(p = Kxpp)
hold? It is not hard to show that this formulais equivalent
to Kgpp V Kgp—p, SO the answer to this query aready
follows from Proposition ??: the answer is“Yes’ if either
p follows from what the KB has been told, or —p does, and
“1 don't know” otherwise. It is not possible here for the an-
swertobe“No", since Kxp—(p = Kkpp) isequivaentto
Kkp(p AN—Kgpp), whichiseasily seen to be inconsistent
with S5.

We are mainly interested in what can be said about for-
mulasthat involve only the KB’sknowledge, since we view
the Teller as being in the background here. We define a
KB-formula to be one in which the only modal operator is
Kgp; aKB-queryisaquery whichisaKB-formula. Stan-
dard arguments from modal logic can be used to show that
for every KB-formulaof theform K x g we can effectively
find an equivalent formulathat is a Boolean combination of
formulas of the form Kg g1, where 1) is propositional. It
followsthat theway that the KB respondsto KB-queriescan
already bedetermined from how it respondsto propositional
gueries. Thereasonisasfollows. To decideonitsanswer to
the query ¢, we must determine whether K x g holds and
whether Kg p—¢ holds. As we just noted, we can effec-
tively find aformulaequivalent to K x g that isaBoolean
combination of formulas of the form Kx g, where ¢ is
propositional, and similarly for K p—¢. We then need
only evaluate formulas of the form Kgx g, where ¢ is
propositional. Thus, using Proposition ??, we can compute
how the KB will answer KB-queries from the conjunction
of the formulas that the KB has been told.

There is another way of characterizing how the KB will
answer KB-queries. Given a propositional formula ¢, let
S¥ consist of all truth assignments « to propositionsin ®
such that ¢ is true under truth assignment o. Let M¥ =
(5%, m,U) bethe Kripke structure such that 7(«) = o« and
U is the universal relation (so that for al o, 8 € S¥, we
have (o, 3) € U). Inasense, we can think of M¥ asa
maximal model of ¢, since all truth assignments consistent
with ¢ appear in M ¢. Asthefollowing result shows, if « is
the conjunction of the formulas that the KB has been told,
then for an arbitrary formula ¢, the KB knows ) exactly
if Kgpiy holdsinthe maximal model for «. Intuitively, if
the KB was told «, then all that the KB knows is . The
maximal model for x isthe model that capturesthe fact that
« isadl that the KB knows.

Proposition 2 Supposethat rxp(m) = (gol,...,gok> and
w1 A -+ A pg. Thenfor all KB-formulas ¢, we have
that (Z*% r, m) E ¢ iff (M*,r.(m)) E .

Levesgue? defines M * astheknowledge-level model of the
KB after it hasbeentold ¢, . . ., pr. Thus, Proposition ??
shows that in the propositional case, our operational model
is equivalent to Levesque's knowledge-level model.

Our discussion sofar illustratesthat it ispossibleto model
a standard type of knowledge base within our framework.
But what do we gain by doing so? For one thing, it makes
explicit the assumptions underlying the standard represen-
tation. In addition, we can talk about what the KB knows
regarding its knowledge, as shown in Proposition ??. Be-
yond that, as we now show, it allows us to capture in a
straightforward way some variants of these assumptions.
The flexibility of the model makes it easier to deal with
issues that arise when we modify the assumptions.

We begin by considering situations where there is some
prior knowledge about what information will be given. As
we observed earlier, the fact that we consider all runs in
which KB1 and KB2 are true captures the assumption that
no such knowledge is available. But, in practice, there
may well be default assumptions that are encoded in the
conventions by which information is imparted. We earlier
gave an example of a situation where there is a convention
that if p is true, then the KB will be told p first. Such
aconvention is easy to model in our framework: it simply
entails arestriction on the set of runsin the system. Namely,
the restriction is that for every point (r, m) in the system
where r(m) = («, (¢1), ), we have g1 = p iff p istrue
under «. Recall that the order in which the KB is given
information is part of its local state. In a precise sense,
therefore, the KB knows what this order is. In particular, it
is straightforward to show that, given the above restriction,
the KB either knows p or knows —p onceit has been told at
least one fact.

In a similar fashion, it is easy to capture the situation
where thereis somea priori knowledge about the world, by
modifying the set of runsinZ*® appropriately. Suppose, for
example, that it is known that the primitive proposition p
must be true. In this case, we consider only runs » such
that r.(0) = « for some truth assignment « that makes p
true. An analogue to Proposition ?? holds: now the KB
will know everything that follows from p and what it has
been told.

Next, consider thesituation wherethe Teller doesnot have
completeinformation about theworld (but still hascomplete
information about the KB). We model this by including in
the Teller’'s state a nonempty set 7 of truth assignments.
Intuitively, 7 isthe set of possible external worlds that the
Teller considers possible. The set 7 replaces the single
truth assignment that describes the actual external world.
Since we are focusing on knowledge here, we require that
a € T, this means that the true external world is one of
the Teller’s possibilities. The Teller’s state also includes
the sequence of facts that the KB has been told. To avoid
redundancy, we denote the Teller’s state by (7, -). Global
states now havetheform («, (¢1, . .., ¢x), (7, ). Wedtill
require that everything the KB is told be true; this means
that the Teller tellstheKB “ " only if ¢ istrueinall thetruth
assignmentsin 7. It iseasy to seethat this means that the
Teller says ¢ only if K¢ holds (taking K7 to denote “the
Teller knows”). Not surprisingly, Propositions ?? and ??
continue to hold in this setting, with essentially no change
in proof.



Onceweallow the Teller to haveacollection 7 of worlds
that it considers possible, it is but a short step to alow the
Teller to have false beliefs, which amounts to alowing 7
not to include the actual world. We would still require that
the Teller tells the KB ¢ only if ¢ istruein al the truth
assignments in 7. In this case, however, this means that
the Teller only believes ¢ to be the case; its beliefs may
be wrong. How should we ascribe beliefs to agents in a
multi-agent system? In the scenario described here, the
KB and the Teller believe that the Teller istruthful, so they
both consider some global states to be impossible, namely,
the global states in which « € 7. Thus, it makes sense
here to change the definition of the accessibility relation
in the Kripke structure associated with a system in order
to make globa states where o ¢ 7 inaccessible. The
possible-worlds principle now ascribes beliefs rather than
knowledge; see (?) for details.?

Knowledge-based programs

Up to now we have assumed that the KB istold only propo-
sitional facts. Things get somewhat more complicated if
the KB isgiveninformation that isnot purely propositional;
thisin fact is the situation considered by Levesgue ?. For
example, supposetheKB istoldp = Kk pp. Thissaysthat
if p istrue, then the KB knowsit. Such information can be
quite useful, assuming that the KB can actually check what
it knows and does not know. In this case, the KB can check
if it knows p; if it does not, it can then conclude that p is
false. Asthisexample shows, once we alow the KB to be
given information that relates its knowledge to the external
world, then it may be able to use its introspective abilities
to draw conclusions about the external world.

Itisnow not so obvioushow to represent the KB’ sknowl-
edge symbolically, i.e., by aformula. One complicationthat
arises once we allow non-propositional information is that
we can no longer assume that the KB knows everything it
has been told. For example, suppose the primitive propo-
sition p is true of the external world, and the KB has not
been given any initial information. In this situation, the
formulap A =K pp is certainly true. But after the KB is
told this, then it is certainly not the case that the KB knows
pA—-K g pp; indeed, aswenoted earlier, K g (pA—~ Kk Bp)
is inconsistent with S5. Nevertheless, the KB certainly
learns something as a result of being told thisfact: it learns
that p istrue. Asaresult, Kk gp should hold after the KB
istold p A =Kgpp. Thus, we cannot represent the KB's
knowledge simply by the conjunction of facts that it has
been told, evenif they are al true.

Levesgue ? describes a knowledge-level model for the
KB’s knowledge in this case. After the KB has been told
theseguence ¢, . . ., ¢k, itismodeled by aKripkestructure
M*v--ex whichwedefineinductively. Theinitial model is
M¢< = (S, m,U),whereS¢ istheset of all truth assignment
to the propositionsin ®, 7(«) = «, and i/ isthe universal
relation. Suppose that M ¥ %x-1 = (SP1Pk=1 7 If)

2See also (?) for a general approach to adding belief to this
framework.

has been defined. Then M¥1%x = (S¥L%k 7 If),
where S¥L--%r — {w € SPL-Pk-1 | (MLP1,~~,<Pk—1’ w) ':
¢k }. Asintheearlier discussion of the maximal model, this
definition attempts to capture the idea that the KB knows
only what it has been told. The induction construction
ensures that this principle is applied whenever the KB is
told aformula

In our approach, we need to be ableto describe the system
that results when the KB is given information that may
involve its own knowledge. As before, we take the KB's
local stateto consist of a sequence of formulas, except that
we now allow the formulas to be modal formulas which
can talk about the KB’s knowledge, not just propositional
formulas. The only difficulty comesin restricting to runsin
which the KB istold only true formulas. Sincewe are now
interested in formulasthat involve knowledge, itisnot clear
that we can decide whether a given formulais true without
having the whole system in hand. But our problem isto
construct the system in the first place!

Whileitisdifficulttocomeup with an explicit description
of the system, it is easy to describe this system implicitly.
After al, the behavior of the agents here is fairly smple.
The Teller here can be thought as following a knowledge-
based program (?; ?; ?). This is a program with explicit
testsfor knowledge. Roughly speaking, we can think of the
Teller asrunning anondeterministic program TELL that has
an infinite collection of clauses, one for each formula ¢, of
theform:

if Kppdotell(y).

Intuitively, when running this program, the Teller nondeter-
ministically chooses a formula ¢ that it knows to be true,
and tellsthe KB about it. The propositional case considered
in the previous section correspondsto the Teller running the
anal ogous knowledge-based program TELLPROP inwhich
theformulas ¢ arerestricted to be propositional. Using tech-
niques introduced in (?), it can be shown that both TELL
and TELLPROP can be associated with unique interpreted
systems Z**" and Z*¢"'r"oP | respectively. It turns out that
the interpreted system Z*® (defined in the previous section),
which captured the interaction of the KB with the Teller
in the propositional case, is precisely the system Zt¢!Prop,
This observations provides support for our intuition that
T appropriately captures the situation where the Teller
tells the KB formulas that may involve the KB’s knowl-
edge. Moreover, the system that we get is closely related to
Levesgue's knowledge-level model described earlier.

Proposition 3: Suppose that rxg(m) = (¢1,...,¢k)-
Then for all KB-formulas, we have that (Z*°, r, m) |= v
iff (Me02% 1o (m)) | 9.

One advantage of using knowledge-based programs is
that we can consider more complicated applications. In
many such applications, one cannot divide the world neatly
into aKB and a Teller. Rather, one often has many agents,
each of which plays both the role of the KB and the Teller.
For example, suppose that we have n agents, each of whom
makes an initial observation of the external world and then
communicates with the others. We assume that the agents



are truthful, but that they do not necessarily know or tell
the “whole truth”. We can view al the agents as follow-
ing knowledge-based programs similar to TELL. At every
round, agent : nondeterministically selects, for each agent j,
aformula ¢; that ¢ knows to be true, and “tells’ ¢; to j.
Formally, agent i's program consists of all clauses of the
form:

if K;o1A... A K;pr, dosend(p1, j1);. . . send(er, ji),

where we take send(¢y, ji) to be the action sending the
message ¢; to agent j;. Herewe allow the messages ¢ to be
arbitrary modal formulas; for example, Alice can tell Bob
that she does not know whether Charlie knows afact p.

Inthiscase, itisnolonger clear how to model the agents
symbolically or at the knowledge level asin (?).3 In fact,
while it is easy to characterize the appropriate interpreted
systemimplicitly, viaknowledge-based programs, it isquite
difficult to describe the system explicitly. Nevertheless, our
approach enables us to characterize the agents' knowledge
in this case and analyze how it evolves with time. We view
this as strong evidence to the superiority of the operational
approach.

Conclusions

We have tried to demonstrate the power of the operational
approach to modeling knowledge bases. We have shown
that under simple and natural assumptions, the operational
approach gives the same answers to queries as the more
standard symbolic approach and Levesque's knowledge-
level approach. The advantage of the operationa ap-
proach is its flexibility and versatility. We have given
some evidence of this here. Further evidence is provided
by the recent use of this framework (extended to deal
with beliefs) to model belief revision and belief update (?;
?). We are confident that the approach will find yet other
applications.

3See (?) for ageneral framework for mutual belief revision.



