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Abstract

We showv how solution conceptsn gamessuchas
Nashequilibrium, correlatedequilibrium, rational-
izability, and sequentialequilibrium canbe given
a uniform definition in termsof knowledg-based
programs Intuitively, all solutionconceptsareim-
plementationf two knowledge-basegrograms,
one appropriatefor gamesrepresentedn normal
form, the otherfor gamesrepresentedh extensve
form. Theseknowledge-basegrogramscan be
viewed asembodyingrationality. The representa-
tion worksevenif (a) informationsetsdo not cap-
ture an agents knowledge, (b) uncertaintyis not
representecy probability, or (c) the underlying
gameis not commonknowledge.

1 Introduction

Gametheoristsrepresentgamesin two standardways: in
normal form, where eachagentsimply choosesa stratayy,
andin extensiveform, using gametrees,wherethe agents
malke choicesover time. An extensie-form representation
hasthe advantagethatit describeshe dynamicstructureof
the game—itexplicitly representghe sequencef decision
problemsencounteredy agents. However, the extensie-
form representatiopurportsto do more than just describe
the structureof the game;it also attemptsto representhe
informationthat playershave in the game,by the useof in-
formationsets Intuitively, an information setconsistsof a
setof nodesin the gametree wherea player hasthe same
information. However, as Halpern[1997 haspointedout,
informationsetsmay not adequatelyepresent players in-
formation.

Halpern malkes this point by consideringthe following
single-agentjameof imperfectrecall,originally presentedby
PiccioneandRubinstein[1997: Thegamestartswith nature
moving eitherleft or right, eachwith probability 1/2. The
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Figurel: A gameof imperfectrecall.

agentcantheneitherstopthe game(playingmove S) andget
a payof of 2, or continue by playingmove B. If hecontin-
ues,hegetsa high payof if he matchesatures move,anda
low payof otherwise Althoughhe originally knows natures
move, the informationsetthatincludesthe nodeslabeledzs

andz, is intendedto indicatethatthe playerforgetswhether
naturemoved left or right aftermoving B. Intuitively, when
heis at the informationset X, the agentis not supposedo

know whetherheis atz3 or atz,.

It is nothardto shav thatthe strategyy that maximizesex-
pectedutility chooseanove S at nodez;, move B at node
x9, andmove R attheinformationsetX consistingof 23 and
z4. Call this stratgyy f. Let f’ bethe stratgyy of choosing
move B atz, move S atzs, andmove L at X . Piccioneand
Rubinsteinarguethatif nodex; is reachedtheplayershould
reconsideranddecideto switch from f to f’. As Halpern
pointsout, thisis indeedtrue, providedthatthe playerknows
ateachstageof the gamewhatstrateyy heis currentlyusing.
However, in that case,if the playeris using f at the infor-
mation set, then he knows that he is at nodez,; if he has
switchedandis using f’, thenhe knows thatheis at z3. So,
in this setting,it is nolongerthe casethatthe playerdoesnot
know whetherheis at z3 or z, in theinformationset;hecan
infer which stateheis at from the strategy heis using.

In gametheory, astrategyis takento beafunctionfrom in-
formationsetsto movesTheintuition behindthisis that,since



anagentcannottell thenodesin aninformationsetapart,he
mugtdo the samething at all thesenodes.But this example
shaws that if the agenthasimperfectrecall but can switch
stratgies, then he canarrangeto do differentthings at dif-
ferentnodesin the sameinformationset. As Halpern[1997
obsenes,' “situationsthat[an agent]cannotdistinguish”and
“nodesin the sameinformationset” maybetwo quite differ-
entnotions. He suggestsisingthe gametreeto describethe
structureof the game,andusingthe runsandsystemdrame-
work [Faginetal., 1999 to describeheagentsinformation.
Theideais thatan agenthasan internallocal statethat de-
scribesall the informationthat he has. A strateyy (or proto-
col in thelanguageof [Faginetal., 1999) is afunctionfrom
local statesto actions. Protocolscapturethe intuition that
whatanagentdoescandependnly whatheknows. But now
anagents knowledgeis representetby its local state,not by
aninformationset. Differentassumptionsiboutwhatagents
know (for example,whetherthey know their currentstrate-
gies)are capturedby runningthe sameprotocolin different
contxts If the information setsappropriatelyrepresentin
agentsknowledgein agame thenwe canidentify local states
with informationsets.But, asthe exampleabove shows, we
cannotdo thisin general.

A numberof solution conceptshave beenconsideredn
the game-theonyliterature, ranging from Nash equilibrium
and correlated equilibrium to refinementsof Nashequilib-
rium suchassequentiakquilibriumandwealer notionssuch
asrationalizability.! Thefactthatgametreesrepresenboth
the gameandthe players’information hasproved critical in
definingsolutionconceptsn extensive-formgames.Canwe
still representsolution conceptsin a usefulway using runs
andsystemsdo represena playersinformation?As we shav
here,not only canwe do this, but we cando it in away that
givesdeeperinsightinto solutionconcepts. Indeed,all the
standardsolutionconceptsn theliteraturecanbeunderstood
asinstance®f asingleknowled@-basedkb) program[Fagin
et al., 1995;1997, which captureshe underlyingintuition
thata playershouldmake a bestresponsegiven herbeliefs.
Thedifferencedetweersolutionconceptarisefrom running
thekb programin differentcontexts.

In a kb program,a player's actionsdependexplicitly on
the player's knowledge. For example,a kb programcould
have atestthatsays'‘If youdon't know thatAnnrecevedthe
information,thensendhera messagewhich canbewritten

if =B;(Ann received info) then send Ann a message.

This kb programhasthe form of a standardf . ..then state-
ment,exceptthatthetestin theif clausds atestoni’s knowl-
edge(expressedisingthe modaloperatorB; for belief; see
Section2 for adiscussiorof the useof knowledgevs. belief).
Using suchtestsfor knowledgeallows usto abstractway
from low-level detailsof how the knowledgeis obtained.Kb
programshave beenappliedto a numberof problemsin the
computersciencditerature(see[Fagin et al., 1995 andthe

We assumethat the readeris familiar with standardsolution
conceptsuchascorrelatecequilibrium,perfectequilibrium,andse-
guentialequilibrium,aswell asthenotionof perfectrecallin games.
Theformaldefinitionscanin ary standardyametheorytext, suchas
[OsborneandRubinstein 1994 .

referencegherein). We wantto apply kb programto under
standsolution concepts. Roughly speaking,we want a kb
programthat saysthat if playeri believesthat sheis about
to do move a (which we expressusingthe formulado;(a)),

and shebelievesthat shewould not do ary betterwith an-
othermove, thensheshouldindeedgo aheadanddo a. This
testcanbe viewed asembodyingrationality. Thereis a sub-
tlety in expressinghe statementshewould notdoary better
with anothermove”. We expressthis by saying“if herex-

pectedutility, giventhat shedoesmove a, is z, thenher ex-

pectedutility if shewereto do move @’ is at mostz.” The
“if shewereto do «’ is a counterfactualstatement. She
is planningto do a, but is contemplatingwhat would hap-
penif shewereto do somethingcounterto fact, namely
a’. Counterfictualshave beenthe subjectof intensestudy
in the philosophyliterature(see,for example,[Lewis, 1973;
Stalnaler, 196§) and,morerecently in the gametheorylit-

erature(see, for example,[Aumann, 1995; Halpern, 2001;
Samet,1996). We write the counterfictual“lf A werethe
casethen B would betrue” as" A = B”. Althoughthis state-
mentinvolvesan“if ...then”, the semanticof the counter
factualimplication A = B is quitedifferentfrom thematerial
implication A = B. In particular while A = B istrueif A

is false,A = B mightnotbe.

With this backgroundconsiderthe following kb program
for player:. In the programwe use PM ; to denotei’s possi-
ble moves.For anormal-formgamel’, PM; is S;(T'), theset
of purestratgyiesfor playeri in . If I" is anextensve-form
game thenatahistoryh wherei is to move, PM ; consistof
all themovesavailableto ¢ afterhistory h.

for each move a € PM; do
if B;(do;(a) AVz((EU; = 2) =
Narepar,(doi(a’) = (EU; < 2)))) then a.

This kb programis meantto capturethe intuition above.
Intuitively, it saysthatif playeri believesthat sheis about
to do move a and, if her expectedutility is z, thenif she
wereto do anothermove o', thenher expectedutility would
be no greaterthanz, thensheshoulddo «. Call this kb pro-
gramEQ! (with theindividualinstancefor player: denoted
by EQ}).2 As we shaw, if all playersfollow EQ", then
they endup playing sometype of equilibrium. Which type
of equilibrium they play dependson the context. We start
by consideringhormal-formgameswhere,aswe said, PM ;
consistof thesetof purestratgiesfor player:. If theplayers
have a commonprior on the joint stratgjiesbeingused,and
this commonprior is suchthat players’beliefsareindepen-
dentof the stratgyiesthey use thenthey play a Nashequilib-
rium. Without this independencassumptionyve geta cor-
relatedequilibrium. On the otherhand,if playershave pos-
sibly differentpriors on the spaceof stratgies, thenthis kb
programdefinesrationalizablestratgjies [Bernheim, 1984;
Pearce,1984. Using a characterizationdue to Halpern
[2004d, we canshow thatif their prior is describedby a non-
standardrobability distribution andwe ignorewhathappens

°Note that, althoughthe notationdoesnot emphasizdt, PM ;
dependson T'; in the caseof an extensive-form game, PM; also
depend®nthe currenthistoryin thegame.



onasetof infinitesimalprobability, this kb programdefinesa
(trembling-handperfectequilibrium[Selten,1975.

With extensve-form games,we shov that againusing a
nonstandargbrior, EQ definesboth perfectequilibrium and
sequentialequilibrium [Kreps and Wilson, 1987. The dif-
ferencebetweenthemis whetherwe interpretEU; = « as
meaningthat the exact expectedutility of doing move a is
x, or just the standardpart of the utility is z. (Essentially
thisamountgo askingwhetherxz rangesover the standardr
nonstandardeal numbers.)However, it is importantto note
thatfor EQ to definea sequentiabr perfectequilibrium,we
needto assumehatinformationsetsdo correctlydescribean
agents knowledgeandthatthe gameis oneof perfectrecall.
If we drop this assumptionywe candistinguishbetweenthe
two equilibriafor thegamedescribedn Figurel.

All thesesolutionconceptsare basedon expectedutility.
But we can also considersolution conceptsbasedon other
decisionrules. For example, Boutilier and Hyafil [2004
considerminimax-egret equilibria, where eachplayer uses
astratey thatis abest-responsi@a a minimax-regretsensdo
the choicesof the otherplayers. Similarly, we canusemax-
imin equilibria [Aghassiand Bertsimas,2006. As pointed
out by ChuandHalpern[200d, all thesedecisionrulescan
be viewed as instancesof a generalizedchotion of expected
utility, whereuncertaintyis representetly aplausibility mea-
sure, a generalizatiorof a probability measureutilities are
elementsf an arbitrary partially orderedspace and plausi-
bilities andutilities arecombinedusing® and®, generaliza-
tionsof 4+ andx. We shaw in thefull paperthat,justby inter-
preting“EU; = »” appropriatelywe cancapturethesemore
exotic solutionconceptsaswell. Moreover, we cancapture
solutionconceptin gameswvherethe gameitself is notcom-
mon knowledge,or whereagentsare not aware of all moves
available,asdiscussedby HalpernandR&go[2006.

Our approachthusprovidesa powerful tool for represent-
ing solution conceptswhich works even if (a) information
setsdo not capturean agents knowledge, (b) uncertaintyis
not representetby probability, or (c) the underlyinggameis
notcommonknowledge.

The rest of this paperis organizedas follows. In Sec-
tion 2, wereview therelevantbackgroundngametheoryand
knowledge-basegrogramslin Section3, we shav thatEQ"
andEQ" characterizNashequilibrium, correlatedequilib-
rium, rationalizability and sequentiakquilibriumin a game
I’ in theappropriatecontects. We concludein Section4 with
a discussiorof how our resultscompareto othercharacteri-
zationsof solutionconcepts.

2 Background

In this section,we review the relevantbackgroundn games
andknowledge-baseg@rograms.We describeonly what we
needfor proving ourresults.Thereadelis encouragetb con-
sult [Osborneand Rubinstein, 1994 for more on gamethe-
ory, [Faginetal., 1995;1997 for moreon knowledge-based
programswithout counterfictuals,and[Halpernand Moses,
2004 for more on adding counterfictualsto knowledge-
basedbrograms.

2.1 Gamesand Strategies

A gamein extensiveformis describedby a gametree. Asso-
ciatedwith eachnon-leafnodeor historyis eithera player—
the playerwhosemove it is at that node—ornature(which
canmake arandomizednove). The nodeswherea playeri
movesarefurtherpartitionednto informationsets With each
runor maximalhistory® in thegametreeandplayeri we can
associate’s utility, denotedu;(h), if thatrun is played. A
strategy for playeri is a (possiblyrandomizedfunctionfrom
i's information setsto moves. Thusa stratey for player:
tells playeri whatto do at eachnodein the gametreewhere
1 is supposedo move. Intuitively, atall the nodesthatplayer
i cannottell apart,playeri mustdo the samething. A joint

strategy S = (S1, .. .,Sy) for theplayersdetermines distri-
bution over pathsin the gametree. A normal-formgamecan
beviewedasa specialcaseof anextensve-formgamewhere
eachplayermakesonly one move, andall playersmove si-
multaneously

2.2 Protocoals, Systems, and Contexts

To explain kb programswe mustfirst describestandardoro-
tocols.We assumehat,atany givenpointin time, aplayerin
a gameis in somelocal state Thelocal statecould include
the history of the gameup to this point, the stratgyy being
usedby the player, and perhapssomeother featuresof the
player's type, suchasbeliefsaboutthe stratgiesbeingused
by otherplayers.A globalstateis atupleconsistingof alocal
statefor eachplayer

A protocol for playeri is a function from playeri’s lo-
cal statesto actions. For easeof exposition, we consider
only deterministigorotocols althoughit is relatively straight-
forward to model randomizedprotocols—correspondintp
mixed stratgies—asfunctionsfrom local statesto distribu-
tionsover actions.Althoughwe restrictto deterministicpro-
tocols,we dealwith mixed stratgyiesby consideringdistrib-
utionsover purestrataies.

A run is a sequenceof global states;formally, a run is
a function from timesto global states. Thus, r(m) is the
global statein run r at time m. A point is a pair (r,m)
consistingof a run r andtime m. Let r;(m) bei’'s local
stateatthe point (r, m); thatis, if r(m) = (s1,...,s,), then
r;(m) = s;. A joint protocolis anassignmenof a protocol
for eachplayer; essentially a joint protocolis a joint strat-
egy. At eachpoint, a joint protocolﬁ performsa joint ac-
tion (Py(r1(m)), ..., P,(r,(m))), whichchangesheglobal
state. Thus, given aninitial global state,a joint protocol]3
generates (unique)run, which canbe thoughtof asan ex-
ecutionof P. Therunsin a normal-formgameinvolve only
oneroundandtwo time steps:time 0 (the initial state)and
time 1, after the joint strat@y hasbeenexecuted. (We as-
sumethatthe payof is thenrepresenteih the players local
stateattime 1.) In an extensve-form game,a run is again
characterizethy the stratgyiesused but now thelengthof the
run depend®n the pathof play.

A probabilisticsystenis atuple PS = (R, i), whereR is
asetof runsandg = (p1, . . ., un) associatesa probablityu;
ontherunsof R with eachplayer:. Intuitively, j«; represents
playeri’s prior beliefs.In the specialcasewherep; = - -- =



i = u, the playershave a commonprior ¢ onR. In this
casewe write just (R, u).

We are interestedin the systemcorrespondingo a joint
protocolﬁ. To determineahis systemwe needto describehe
settingin which Pis beingexecuted.For our purposesthis
settingcanbemodeledby asetG of globalstatesa subset;y
of G thatdescribeghe possibleinitial globalstatesa set.A,
of possiblgoint actionsateachglobalstates, andn probabil-
ity measuresn Gy, onefor eachplayer Thus,a probabilistic
contet is atupley = (G,Go, {A: : s € G},10).2 A joint
protocol]3 is appropriate for sucha contet « if, for every
globalstates, thejoint actionsthat P cangeneratarein A,.
When B is appropriatefor +, we alusenotationslightly and
referto by specifyingonly the pair (Go, /). A protocol P
and a contet ~ for which Pis appropriategeneratea sys-
tem; the systemdepend®on the initial statesand probability
measuresn . Sincetheseareall that matter we typically
simplify the descriptionof a context by omitting the setG of

—

global statesandthe sets. A, of globalactions.Let R(P,~)
denotethe systemgeneratedby joint protocol]3 in context .
If v = (Go, ji), thenR(P, v) = (R, ji’), whereR consistf
atherun rz for eachinitial states’ € Gy, whererz is therun
generatedy P whenstartedin states, and(rs) — ps(3),
fori=1,...,n.

A probabilisticsystem(R, 1) is compatiblewith a con-
text v = (Go, ) if (a) every initial statein Gy is theinitial
stateof somerunin R, (b) every runis the run of somepro-
tocol appropriatefor v, and(c) if R(s) is the setof runsin
R with initial global states, then u;(R(s)) = u;(s), for
j=1,...,n. ClearlyR(P,~) is compatiblewith .

We canthink of the context asdescribingbackgroundn-
formation. In distributed-systemspplications,the context
alsotypically includesinformation aboutmessagelelivery.
For example,it may determinewhetherall messagesentare
recevedin oneround,or whetherthey may take up to, say
five rounds.Moreover, whenthis is not obvious, the context
specifieshow actionstransformthe global state;for exam-
ple,it describesvhathappensf in the samejoint actiontwo
playersattemptto modify the samememorycell. Sincesuch
issuegdo not arisein the gameswe considerwe ignorethese
facetsof contexts here.For simplicity, we consideronly con-
texts whereeachinitial statecorresponds$o a particularjoint
stratgy of I". Thatis, 2" is a setof local statesfor playeri
indexedby (pure)stratgies. Theset>:! canbeviewedasde-
scribingi’stypes;the statess canthethoughtof astheinitial
statewhereplayeri’'s type is suchthathe plays.S (although
we stresghatthis is only intuition; playeri doesnot haveto
play S atthestatesg). Let G} = 3} x ... x %L, Wewill be
interestedn contexts wherethesetof initial globalstatess a
subset, of G} In anormal-formgame the only move pos-
siblefor playeri ataninitial global stateis thatof choosing
apurestratay, sothejoint actionsarejoint stratejies;no ac-

SWeareimplicitly assuminghattheglobalstatethatresultsfrom
performingajoint actionin .4, attheglobalstates is uniqueandob-
vious; otherwise suchinformationwould alsoappeain thecontext,
asin thegeneraframework of [Faginetal., 1995.

tionsarepossibleat latertimes. For anextensive-formgame,
the possiblemovesare describedby the gametree. We say
thata context for an extensive-form gameis standad if the
local stateshave the form (s, I'), wheres is the initial state
and ! is the currentinformationset. In a standardcontext,
anagents knowledgeis indeeddescribedy the information
set. However, we do not requirea contet to be standard.
For example,if anagentis allowedto switch strateies,then
thelocal statecouldincludethe history of stratgjiesused.In
sucha context, theagentin thegameof Figure1 would know
morethanjustwhatis in theinformationset,andwould want
to switchstrategjies.

2.3 Knowledge-Based Programs

A knowledg-basedprogram is a syntacticobject. For our
purposeswe cantake a knowledge-baseg@rogramfor player
1 to have theform

if k1 then a;
if k5 then as

ey

whereeachs; is a Booleancombinationof formulasof the
form B; ¢, in whichthey's canhave nestedccurrencesf By

operatorsand counterfictualimplications. We assumethat
thetestsk1, k2, . . . aremutuallyexclusive andexhaustve, so
that exactly onewill evaluateto truein ary giveninstance.
The programEQ. canbe written in this form by simply re-

placingthe for ... do statemenby oneline for eachpure
stratgyy in S;(I); similarly for EQ} .

We wantto associatea protocolwith akb program.Unfor-
tunately we cannot‘execute”a kb programaswe cana pro-
tocol. How thekb programexecutesdepend®nthe outcome
of testsx ;. Sincethetestsinvolve beliefsandcounterfictuals,
we needto interpretthemwith respecto a system.Theidea
is thata kb programPg; for player: anda probabilisticsys-
temPS togetherdeterminea protocol P for playeri. Rather
than giving the generaldefinitions (which can be found in
[HalpernandMoses,2004), we just shov how they work in
thekb programthatwe considerin this paperEQ.

GivenasystenPS = (R, (), we associatavith eachfor-
mulay aset[y]ps of pointsin PS. Intuitively, [¢]rs is the
setof pointsof PS wheretheformula is true. We needa
little notation:

e If E is asetof pointsin PS, let R(E) denotethe set
of runsgoingthroughpointsin E; thatis R(E) = {r :
Im((r,m) € E)}.

e Let K;(r,m) denotethe setof pointsthati cannotdis-
tinguishfrom (r, m): KC;(r,m) = {(+',m’) : (ri(m') =
r;(m)}. Roughlyspeaking/C;(r, m) correspondso i's
informationsetat the point (r, m).

¢ Givena point (r,m) anda players, let u; , ) bethe
probabilitymeasurehatresultsfrom conditioningy® on
K;(r,m), i's informationat (r, m). We cannotcondi-
tion on KC;(r,m) directly: u* is a probability measure
on runs, and K;(r,m) is a setof points. So we actu-
ally condition,noton iC;(r, m), buton R(K;(r, m)), the
setof runsgoing throughthe pointsin KC;(r,m). Thus,



Pigm = i | R(K;(r, m)). (Forthepurposesf thisab-
stractwe donotspecifyi; , m if 1 (R(K;(r, m))) = 0.
It turnsout notto berelevantto our discussion.)

The kb programswe considerin this paperusea limited
collection of formulas. We now can define [¢]ps for the
formulaswe considetthatdo notinvolve counteractuals.

e [do;(a)]ps is thesetof points(r, m) of PS atwhich i
performsactiona.

e Playeri believesa formula ¢ at a point (r,m) if the
eventcorrespondindo formula ¢ hasprobability 1 ac-
cording to p;,m. Thatis, (r,m) € [Byp|ps if
wi(R(K;(r,m)) # 0 (sothatconditioningon iC;(r, m)
is defined)and; » m ([¢]ps N Ki(r,m)) = 1.

e With everyrunr in thesystemsawve considerwe canas-

sociatethe joint (pure)stratey S usedin r.# This pure
stratgyy determineshehistoryin thegame andthusde-
terminesplayeri’s utility. Thus,we canassociatavith
every point (r, m) playeri's expectedutility at (r,m),
wherethe expectationis takenwith respecto the prob-
ability p; » m. If u is arealnumberthen[EU; = u]ps
is thesetof pointswhereplayeri’s expectedutility is u;
[EU; < u]ps is definedsimilarly.

e Assumethat ¢(x) has no occurrencesof ¥. Then
Vzp(@)lps = N, glele/allps, wheregla/al is
the resultof replacingall occurrence®f z in ¢ by a.
Thatis, Vz is just universalquantificationover z;, where
x rangeover thereals. This quantificationarisesfor us
whenz represents utility, sothatVazp(z) is sayingthat
¢ holdsfor all choicesof utility.

We now give the semantic®f formulasinvolving counter
factuals.Herewe considemnly arestrictedclassof suchfor-
mulas.thosewherethecounterfctualonly occursin theform
do;(a) = ¢, which shouldbereadas“if i wereto do move
a, then ¢ would be true”. Intuitively, do;(a) = ¢ is true
at a point (r,m) if ¢ holdsin the “closest” point to (r,m)
wheredo;(a) holds. What this closestpoint is dependson
whetherwe considernormal-formgamesor extensive-form
games. In a normal form game,« is a stratgy. In that
case,do;(a) = ¢ istrueat (r,m) if ¢ is true at the point
(r',m) where,in run+/, playeri usesstratgy « andall the
other playersusethe sameln an extensve-form game,a is
a move at an information set. The closestpoint to (r,m)
wheredo;(a) is true (assuminghata is anactionthati can
performin the local stater;(m)) is the point (r', m) where
all playersotherthan player: usethe sameprotocolin r/
andr, andi’s protocolin r’ agreeswith z's protocolin r
except at the local stater;(m), ¢ doesmove a. Thus, /
is the run that resultsfrom player: makinga single devia-
tion (to a at time m) from the protocol sheusesin r, and
all other playersusethe sameprotocolasin r. (This can
be viewed asan instanceof the generalsemanticdor coun-
terfactualsusedin the philosophyliterature [Lewis, 1973;

4If we allow playersto changestratejiesduring a run, thenwe
will in generahave differentjoint strat@iesat eachpointin arun.
For our theoremsn the next section,we restrictto contets where
playersdo notchangestrateyies.

Stalnaler, 1969 wherey = ¢ istakento betrueataworld w
if ¢ istrueatall theworldsw’ closesto w wherey is true.)
Of course|f i actuallydoesa in runr, thenr’ = r.

Thereis a problemwith this approach.Thereis no guar
anteethat, in general,sucha closestpoint (r',m) existsin
thesystemPS. To dealwith this problem,we restrictatten-
tion to a classof systemswherethis point is guaranteedo
exist. A system(R, i) is completewith respecto context v
if R includesevery run generatedy a protocolappropriate
for context v. In completesystemsthe closestpoint (', m)
is guaranteedo exist. For the remainderof the paper we
evaluateformulasonly with respecto completesystems.In
acompletesystemPS, we define[do;(a) > ¢]ps to consist
of all the points(r, m) suchthatthe closestpoint (', m) to
(r,m) wherei doesa is in [¢]ps. We saythata complete
system(R/, 1) extends(R, (i) if u; andu; agreeon R (so
thaty’(A) = p;(A4)) forall ACR)forj=1,...,n.

Sinceeachformulax thatappears@satestin akb program
Pg; for player: is a Booleancombinationof formulasof the
form B;, it is easyto checkthatif (r,m) € [x]ps, then
K;i(r,m) C [k]ps. In otherwords,the truth of x depends
only oni’slocal state.Moreover, sincethetestsaremutually
exclusive andexhaustie, exactly oneof themholdsin each
local state. Givena systemPS, we take the protocol Pg!®
to besuchthatPg!® (¢) = a, if, for somepoint (r, m) in PS
with r;(m) = ¢, we have (r,m) € [k;]ps. Sincekq, ko, ...
are mutually exclusive and exhaustve, thereis exactly one
actiona; with this property

We aremainly interestedn protocolsthatimplementa kb
program. Intuitively, a joint protocoll5 implementsa kb
programP}; in context - if P performsthe sameactionsas
PE in all runsof B thathave positive probability, assuming

that the knowledgetestsin PE are interpretedwith respect

—

to the completesystemPS extendingR(P, ). Formally,
ajoint protocol]3 (de facto) implementsa joint kb program
Pg [Halpernand Moses,2004 in a context v = (Go, i) if
P;(£) = Pgl’®(¢) for every local state/ = r;(m) suchthat

—

r € R(P,v) andy;(r) # 0, wherePS is the completesys-
tem extendingR(ﬁ, v). We remarkthat, in general,there
may not be ary joint protocolsthatimplementa kb program
in agivencontext, theremaybe exactly one,or theremaybe
morethanone (see[Fagin et al., 1999 for examples). This
is somavhatanalogougo the factthattheremay not be ary
equilibrium of a gamefor somenotionsof equilibrium, there
maybe one,or theremaybemorethanone.

3 TheMain Results

We startby consideringgamesn normalform. Fix agamel’
in normalform. Let P bethe protocolthat, in initial state
ss € XI' choosesstratayy S; let P/ — (P, ... PM).
Let STRAT; betherandomvariableon initial global states
that associatesvith aninitial global states playeri’s strat-
egy in r. As we said, Nashequilibrium arisesin contexts
with a commonprior. Supposehaty = (Go, ) is a con-
text with a commonprior. the mixed joint stratey S If



Sis a joint mixed strategy, then it determinesa unique
probability measurep ¢ on pure joint strat@ies; note that
STRAT;, . ..,STRAT, areindependentvith respecto .
Corverselyif STRAT, ..., STRAT,, areindependentith

respecto y, theny determines uniquemixed strateyy § .

Theorem 3.1 If thejomt strategyS is a Nashequilibriumof
thegamer’, then P implementsS in the context (go,,us)

Corversely if u is commorprior probability measue on G
sudt that STRAT,, ..., STRAT,, are independentvith re-

spectto 1 and P implementEQ" in the context (G, 1),
thenS; is a Nashequilibrium.

Proof: SupposethatS is a (p055|blym|xed stratgy) Nash
equnlbnumofthegameF To seethat P/ implementE£Q"
in the context v = (G§, pg), let ¢ = r;(0) be alocal state
suchthatr = R(P™,v) andu(r) # 0. If £ = sr, then
Pi”f(f) = T, soT mustbe in the supportof S;. Thus,
T mustbe a bestresponsdo S, the joint stratgyy where
eachplayerj # ¢ playsits componentof S. Sincei uses
stratgy T in r, the formula B;(do;(7")) holdsat (r, 0) iff
T’ = T. Moreover, sinceT is a bestresponseijf « is i's
expectedutility with the joint stratgy S, thenfor all 77,
the formulado;(7T”) = (EU; < w) holdsat (r,0). Thus,
(EQNPS(¢) = T, wherePS is the completesystemex-
tendingR(P™ , ~). It followsthat P implementsEQ" .

For the corverse supposéhat 1« is acommonprior proba-
bility measureon G', STRAT, ..., STRAT,, areindepen-
dentwith respecto g, and P implementsEQ in thecon-
text v = (G§, ). We wantto shav thatg’“ is a Nashequi-
librium. It sufiicesto shawv thateachpurestrateyy 7" in the
supportof (S,,); is a bestresponseo S Sincey is com-
patiblewith 5,,, theremustbearunr suchthaty(r) > 0 and
r;(0) = sy (i.e., playeri choosed" in runr). It since PV
implementsEQ", andin thecontext v, EQ' ensureshatno
deviationfromI" canimprovei’s expectedutility with respect
to (S,) s, it followsthatT is indeeda bestresponsell

As is well known, playerscan sometimesachieve better
outcomesthan a Nashequilibrium if they have accesdo a
helpful mediator Considerthe simple 2-player gamede-
scribedin Figure2, whereAlice, therow player mustchoose
betweentop andbottom (7" and B), while Bob, the column
player mustchoosebetweenreft andright (I and R):

L R
T [(3,3) )
B [(4,1) | (0,0

Figure2: A simple2-playergame.

It is not hardto checkthatthe bestNashequilibrium for
this gamehasAlice randomizingbetween!” and B, andBob
randomizingbetweenl. and R; this giveseachof themex-
pectedutility 2. They cando betterwith a trustedmediator
who makes a recommendatiorby choosingat randombe-

tween(T, L), (T, R), and (B, L). This giveseachof them
expectedutility 8/3. Thisis a correlatedequilibrium since,
for example,if the mediatorchooseq T, L), andthussends
recommendatiorf” to Alice and L to Bob, then Alice con-

sidersit equallylikely thatBob wastold . and i, andthus
hasnoincentiveto deviate;similarly, Bob hasnoincentiveto

deviate. In generaladistribution p« over purejoint stratejies
is a correlatedequilibrium if playerscannotdo betterthan
following a mediators recommendatioif a mediatormakes
recommendationaccordingto . (Note that, asin our ex-

ample,if amediatorchooses joint stratgy (51, . . ., S, ) ac-

cordingto u, themediatorrecommendss; to player:; player
1 is nottold thejoint stratayy.) We omit theformal definition

of correlatecequilibrium(dueto Aumman[1974) here how-

ever, we stressthata correlatedequilibriumis a distribution

over (pure)joint stratgies. We caneasilycapturecorrelated
equilibriumusingEQ.

Theorem 3.2 Thedistribution . onjoint strategiesis a cor-

relatedequilibrium of the gamel” iff P implementEQ"
in thecontext (GY, ).

Thus, if P* implementsEQ" in contect (GL', ) and
STRAT,,...,STRAT,, areindependentvith respectto g,
thenthejoint strateyy S with which u iscompatiblds aNash
equilibrium;if STRAT,,...,STRAT,, arenotindependent
with respecto p, theny is still acorrelatedequilibrium.

Both Nashequilibrium andcorrelatedequilibrium require
acommonprior onruns.By droppingthisassumptionwe get
anotherstandardsolution concept: rationalizability [Bern-
heim, 1984;Pearce1984. Intuitively, a stratgy for player
1 is rationalizabléf it is a bestresponsdo somebeliefsthat
playeri may have aboutthe stratgjiesthat otherplayersare
following, assuminghatthesestratgiesarethemselesbest
responseso beliefsthatthe otherplayershave aboutstrate-
gies that other playersare following, and so on. To make
this preuse we needa little notation. Let S_; = H#,S

Let u;(S) denoteplayeri’s utility if the stratey tuple S is
played. We describeplayeri’s beliefsaboutwhat stratejies
the other playersare using by a probability p; on S_;. A
stratgyy S for player: is abestresponséo beliefsdescribed

by a probability p; on S_;(T') if > 5 s il TYui(T) >

s, wil S, T)us(T) for all $” € S;. Following Osborne
andRubinstein[1994, we saythata stratgy S for player:

in gamel is rationalizableif, for eachplayerj, thereis a
setZ; C S;(I') and,for eachstratgy T' € Z;, a probability
measurg:; r onS_,;(I") whosesupportis Z_; suchthat

e ScZ;and

o for eachplayerj andstratgyy 1" € Z;, T' is a bestre-
sponsdo thebeliefsy; 7.

For easeof exposition, we consideronly pure rationaliz-
ablestratgjies. This is essentiallywithout lossof generality
It is easyto seethata mixedstratgy S for playeri is a best
responseo somebeliefsy; of players iff eachpurestratey
in the supportof S is a bestresponsdo ;. Moreover, we
canassumawithout lossof generalitythat the supportof 1;
consistof only purejoint strateies.



Theorem 3.3 A purestrategy .S for players is rationalizable
iff there exist probability measues p1, . . ., i, a setGy C

gL, anda states € G, sud that P/ (s;) = S and P

implement&Q" in the context (Go, j2).

Proof: First, supposethatﬁ”f implementsEQ"" in context
(Go, K). We shaw thatfor eachstates € G, andplayeri, the
strat@y Sg; — Pi”f(s,) is rationalizable.Let Z; = {Sz; :
§e€ Go}t. ForS € Z;, let E(S) = {§€ Gy : s; = sg}; that
is, F(S) consistsconsistsof all initial global stateswhere
playeri’'slocalstateis sg; let p; s = p; (- | E(S)) (underthe
obviousidentificationof global statesn G, with joint strate-
gies). Since P implementsEQ", it easilyfollows that S
bestresponseo y; ¢. Hence all thestrat@iesin Z; areratio-
nalizable asdesired.

For the corverse,let Z; consistof all the purerationaliz-
ablestratgjiesfor playeri. It follows from the definition of
rationalizability that, for eachstratgyy S € Z;, thereexists
a probability measureu; s on Z_; suchthat S is a bestre-

sponsdo y; g. For asetZ of stratgies,we denoteby Z the

set{sy: T € Z}. SetGy = 71 % ... % Zn, andchoosesome
measures; on Go suchthat g (- | E(S)) = ;s forall S €
Z;. (We cantake p; = 3 g5 asps, Whereas € (0,1)

andy g, as = 1) Recallthat P} (ss) = S for all states
sg. It |mmed|atelyfollows that, for' every rationalizablgoint

stratgy S = (S1,...,5,), boths = (ss,,...,ss,) € Go,
andS = P (5). Sincethe statesin Gy all correspondo
rationalizablestratgies, and by definition of rationalizabil-
ity each(individual) strat@y .S; is a bestresponsdo p; g,

it is easyto checkthat P/ implementsEQ! in the context
(G, i), asdesired B

We remarkthat Osborneand Rubinsteins definition of ra-
tionalizability allows 11,  to besuchthat; believesthatother
players’ stratgyy choicesare correlated. In mostof the lit-
erature,playersare assumedo believe that other players’
choicesaremadeindependentlylf we addthatrequirement,
thenwe mustimposethesamerequiremenbnthe probability
measuregi, . . ., pn, iIN Theorem3.3.

A numberof refinementof Nashequilibrium have been
consideredn normal-formgames. Here we shaw this ap-
proachcancaptureperhapghe best-knevn one, (trembling-
hand)perfectequilibrium[Selten,1975. Our resultdepends
on arecentcharacterizatiomf perfectequilibrium[Halpern,
2004 that usesnonstandargrobabilities,which canassign
infinitesimal probabilitiesto initial states(i.e., joint strate-
gies). This characterizatiorsaysthat & is a perfectequilib-
riumif thereexistsajoint strateyy ¢’ consistingof completely
mixed stratgiesthat usenonstandargbrobability (so that o}
assignspositive, althoughpossiblyinfinitesimal probability
to eachactionat every information set) suchthato; differs
infinitesimally from o; ando; is a bestresponseo ¢’ ;. By
assuminghateveryjoint stratgy getspositive (althoughpos-
sibly infinitesimal) probability, we cancaptureSeltens intu-
tion for trembling-handequilibrium without using consider
ing sequencesf stratayy profiles,asSeltendoes.

It is well known thatto everyrealnumberr, thereis aclos-
eststandardreal numberdenotedst(r), andread“the stan-

dardpartof r”: |r — st(r) | is aninfinitesimal. Givena non-
standardprobability measurer, we candefinethe standard
probability measurest(v) by taking st(v) (w) = st(v(w)).
Whendealingwith nonstandargbrobabilities,we generalize
the definition of implementationby P performsthe same
actionsas PEPS in all runsr of P suchthat st(v) (r) >
0. (Note that this doesnot changethe definition of im-
plementationwhen dealingwith standardprobabilities.) If
STRAT,,...,STRAT,, areindependentvith respectto v,
thenv determmesa unigue (standard)oint mixed strategy

Sst(y) However, givena standardoint strat@yS theremay
be a numberof nonstandar@trat@|essuchthatS = Sst(y)-
Moreover, evenif S = Sst,,, it doesnot necessarilyollow

thatSTRAT,...,STRAT,, areindependentvith respecto
5

V.

Theorem 3.4: If the joint strategy Sisa perfectequilib-

rium of the gamel’, thenthere exists a nonstandad prob-
ability measue v that gives positive probability to all ini-
tial statessudthatSTRAT,, ..., STRAT,, areindependent

with respecto v, S = gst(y)- and P implementEQ in

(Gl ,v). Corversely if v is commonprior probability mea-
sure on G}’ that givespositiveprobability to all initial states,
STRAT,,...,STRAT,, are independentith respecto v,

and P/ implement&Q" in thecontext (GF', v), theng’st(l,)

is a perfectequilibrium.

Thisis againvery similarin spiritto Theorem3.1. Thekey
differenceis the useof a nonstandargrobability measure.

Intuitively, this forces S to be a bestresponseaven in the
presencef “trembles”.

We now considerxtensive-formgamesHere,theform of
the local stateand how it changesover time becomesnore
significant. We focus for now on perhapsthe best-knavn
solutionconceptdor extensive-form games perfectequilib-
rium and sequentiakequilibrium [Kreps and Wilson, 1987.
Both of thesesolutionconceptsaapply only to gamesof per
fectrecall. In thesegamesit is the playerswho have perfect
recall. To capturethis, we work in standarccontexts. Thus,a
local statenow hastheform (sg, I), wheresS is apurestrat-
egy and/ is aninformationset. Thatmeansjntuitively, that
in aninformationset/, a playerwill know thattheinforma-
tion setis I, andwill alsoknow his strateyy, or, moreaccu-
rately, the strateyy thatheis supposedo be using(sincethat
is encodedn theinitial state).EQ charcterizeperfectequi-
librium andsequentiakquilibrium in extensive-form games
of perfectrecall, provided we restrictto standardcontexts.

Let P# betheprotocolthat,in astate(sg, I), doesthemove
S(I).

We cancharacterizgerfectequilibriumin extensive-form
gamef perfectrecallthe sameway we did in normal-form

games;we simply replace PV in Theorem3.4 with P¢/.
However, aswe said,we do needtoassumehat contexts are
standard.

5They are“almostindependentin thesensehatthey the proba-
bility of ; choosingstrateyy S and; choosingstrategy S’ differsonly
infinitesimally from the productof the probability that: choosesS
andthe probabilitythatj choosesS’.



Theorem 3.5: If the joint strategy Sis a perfect equi-
librimm of a gamel" of perfectrecall in extensiveform,
then there exists a nonstandad probability measue v that
gives positive probability to all initial states sud that
STRAT,, ..., STRAT,, are independenwith respectto v,
5= §5t(l,), and P¢/ implement&Q in the standad context
(G{,v). Corversely if v is commonprior probability mea-
sureon G}’ that givespositiveprobability to all initial states,
STRAT,, ..., STRAT,, are independentvith respectto v,
and P< implementsEQ" in the standad context (G, ),
theng’st(l,) is a perfectequilibrium.

We next characterizesequentialequilibrium in terms of
EQ. We againdependon Halperns [2006 characterization
of sequentiakquilibriumusingnonstandargrobability. The
only differencebetweensequentialequilibrium and perfect
equilibriumin this characerizatiorns that with perfectequi-
librium o; mustbeabestresponséo o’ ;, while with sequen-
tial equilibrium, it mustjust be an e-bestresponsefor some
infinitesimale. To capturethis difference whendealingwith
sequentiakquilibrium, theexpressiort EU; = 2” in EQ' is
interpretedas‘“the standardpart of i's expectedutility is ="
Thatis, whendealingwith perfectequilibrium,z rangesover
the nonstandardeals;whendealingwith sequentiakquilib-
rium, z rangesoverthestandardeals. Theeffectof interpret-
ing “EU; = 2" as“the standarcpartof i's expectedutility is
z" isthatweignoreinfinitesimaldifferencesThus,for exam-
ple, the move madeby a stratgyy P/ (s5) at aninformation
set/ mightnotbeabestresponséo thedistribution of moves
madeby the remainingplayersat 7; it mayjust be an e-best
responsdor someinfinitesimale.

Theorem 3.6: If I" is an extensive-formgamewith perfect
recall and there is a belief system3 sud that (5’, B)is a
sequentiakequilibrium of I', thenthere existsa nonstandad
measue v on G5 compatiblewith S that givespositive(al-
thoughpossiblyinfinitesimal) probability to all initial states
sudt that STRAT,, ..., STRAT,, are independentvith re-
spectto v and pel implement&Q" in the standad context
(G{,v). Corversely if v is commonprior probability mea-
sure on G’ that givespositiveprobability to all initial states,
STRAT,, ..., STRAT,, are independenwith respectto v,
and P¢ de facto implementsEQ" in the context (GI', v),
thenthere s a beliefsystens suc that (5’, 3) is asequential

equilibrium,whee Sisthe uniquejoint strategy compatible
with v.

4 Conclusions

We have shavn how a number of different solution con-
ceptsfrom gametheory can be capturedby essentiallyone
knowledge-basegdrogramwhich comesn two variants:one
appropriatefor normal-form gamesand one for extensie-
form gamesThedifferencedbetweerthesesolutionconcepts
is capturedby changesn the context in whichthe gamesare
played:whetherplayershaveacommonprior (for Nashequi-
librium, correlatedequilibrium, perfectequilibrium, and se-
guential equilibrium) or not (for rationalizability), whether
stratgies are chosenindependently(for Nash equilibrium,

perfectequilibrium,andsequentiaequilibrium,andrational-
izability) or not (for correlatedequilibrium); and whether
uncertaintyis representedisinga standardor nonstandard
probabilitymeasure.

Ourresultscanbeviewedasshaving thateachof theseso-
lution conceptssc canbe characterizedn termsof common
knowledgeof rationality (sincethe kb programsEQ' and
EQ' embodyrationality, and we are interestedn systems
“generated’by theseprogram,sothatrationality holdsat all
states),and commonknowledgeof someotherfeaturesX .
capturedby the context appropriatefor sc (e.g., that strate-
gies are chosenindependentlyor that the prior). Roughly
speaking,our resultssaythatif X,. is commonknowledge
in a system,thencommonknowledgeof rationality implies
thatthe stratgiesusedmustsatisfysolutionconceptsc con-

versely if ajoint strategy S satisfiessg thenthereis a sys-
temwhereX . is commonknowledge rationalityis common

knoNIedge,and§ is beingplayedat somestate.Resultssim-
ilar in spirit have beenprovedfor rationalizability[Branden-
burgerandDekel, 187] andcorrelatecequilibrium[Aumann,
1987. Our approachallows usto unify and extendthese
resultsand,assuggestedhn theintroduction,appliesevento
settingswherethe gameis not commonknowledge,in set-
tingswhereuncertaintyis not representetly probability, and
(in the caseof extensve-formgames)wherethe gameis not
oneof perfectrecall.

Indeed considerthe gameof Figurel again.It is nothard
to shav that P¢/ implementsf in the standardcontext that
givesprobability 1 to the statewherethe playerplays f. In
this context, f” is not a stratey, sincethe playermustmale
thesamemoveatbothnodesn theinformationset. However,
supposeave changehesetof statessothatthe cankeeptrack
of his currentstratgy heis usingin his local state.Whenus-
ing the stratayy of playing B atbothz; andz-, but switching
from f to f’ ata-, hislocalstateatzs wouldbe(f, {z3, z4}),
while hislocal stateatz, wouldbe (f7, {z3,z4}); thatis, he
hasdifferentlocal statesat z3 andz4. Thus,eventhoughzs
and x4 aresupposedo be arein the sameinformation set,
theplayercandistinguishthesenodes.(This obsenationwas
originally madein [Halpern,1997.) Let g be the stratgy
of switchingfrom f to f’ at=z. It is not hardto shav that
P implementsg in the (nonstandardgontext that allows
local stateswherethe agentkeepstrack of stratgy changes
andwherethe statewherethe playerplaysg getsprobability
1. (This discussioris basicallya reformulationof the points
madeby Halpern[1997 in the framework of this of this pa-
per)

As this exampleshows, aslong aswe usethe appropri-
ate context, whetheror not we have perfectrecall, this ap-
proachgivesthe“right” answerWe believe thattheapproach
captureghe essencef the intuition that a solution concept
shouldembodycommonknowledgeof rationality.
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