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Abstract

As probabilistic systems gain popularity and are
coming into wider use, the need for a mechanism
that explains the system’s findings and recom-
mendations becomes more critical. The system
will also need a mechanism for ordering compet-
ing explanations. We examine two representa-
tive approaches to explanation in the literature—
one due to Gärdenfors and one due to Pearl—and
show that both suffer from significant problems.
We propose an approach to defining a notion of
“better explanation” that combines some of the
features of both together with more recent work
by Pearl and others on causality.

1 INTRODUCTION

Probabilistic inference is often hard for humans to under-
stand. Even a simple inference in a small domain may
seem counterintuitive and surprising; the situation only
gets worse for large and complex domains. Thus, a sys-
tem doing probabilistic inference must be able to explain
its findings and recommendations to evoke confidence on
the part of the user. Indeed, in experiments with medical
diagnosis systems, medical students not only trusted the
system more when presented with an explanation of the
diagnosis, but also were more confident about disagreeing
with it when the explanations did not account adequately
for all of the aspects of the case (Suermondt and Cooper
1992). Explanation can also play an important role in refin-
ing and debugging probabilistic systems. An incorrect or
partially correct explanation should be the best indication
to an expert of a potential problem.

Our goal is to find a notion of explanation in a probabilistic
setting that can be usefully applied by a reasoning system
to explain its findings to a human. Of course, we are not
the first to examine explanation. It has been has analyzed
by philosophers for many years. Traditionally, it has been
modeled by introducing a deductive relation between the
explanation and the fact to be explained (explanandum)
(Hempel and Oppenheim 1948). While perhaps applicable
to scientific enquiry, this approach is not easily applicable

in domains with uncertainty. There have been numerous
proposals, both probabilistic and qualitative, for defining
explanation in such domains. ((Gärdenfors 1988; Hempel
1965; Salmon 1984) describe the work done by the philoso-
phers and give numerous references; the more recent work
in AI includes, for example, (Boutilier and Becher 1995;
Henrion and Druzdzel 1990; Pearl 1988; Shimony 1991;
Suermondt 1992).) Since we are interested in explanation
in probabilistic systems, our focus is on proposals that seek
a probabilistic connection between the explanation and the
explanandum. In the philosophical literature, the focus has
been on the probability of the explanandum given the ex-
planation. The requirements range from just requiring that
this conditional probability change, to requiring that it be
very high, to requiring that it be greater than the uncon-
ditional probability of the explanandum (so that learning
the explanation increases the probability of the explanan-
dum); see (Gärdenfors 1988; Salmon 1984) for discussion
and further references. In contrast, the research on expla-
nation in Bayesian networks (Henrion and Druzdzel 1990;
Pearl 1988; Shimony 1991) has concentrated on comput-
ing the conditional probability of the explanation given the
explanandum, adding in some cases the additional require-
ment that the explanation be a complete world description.

Clearly the appropriateness of a notion of explanation will
depend in large part on the intended application. A scientific
explanation might well have different properties from an
explanation provided by an intelligent tutoring system. In
our intended application, the system will typically have
some uncertainty regarding the true state of the world (and
possibly even the domain’s causal structure), represented
as a probability distribution. Note that this is different
from, say, an intelligent tutoring system, where we assume
the system to have the full knowledge of the domain. For
simplicity, we make the (admittedly unrealistic) assumption
that the user’s knowledge can be identified with the system’s
knowledge.1 Because we expect that there will typically be
a number of competing explanations that can be provided
to the user, we are interested not just in finding an absolute
notion of explanation, but a comparative notion. We want
to be able to judge when one explanation is better than
another.

1Modeling the user’s knowledge and adjusting the explanation
to fit it is one of the planned extensions of this work.



In this paper, we concentrate on two definitions of expla-
nation, one due to Gärdenfors (1988) and the other to Pearl
(1988), as representatives of the two approaches mentioned
above. While, as we point out, there are significant prob-
lems with these definitions, we consider them because they
have some important features that we feel should constitute
part of an approach to defining explanation. We suggest an
approach that combines what we feel are the best features
of these two definitions with some ideas from the more re-
cent work on causality (Balke and Pearl 1994; Druzdzel and
Simon 1993; Heckerman and Shachter 1995; Pearl 1995).

One of the observations that falls naturally out of our ap-
proach is that we should expect different answers depending
on whether we are asking for an explanation of beliefs or
facts. For example, if the agent believes that it rained last
night and we ask for an explanation for this belief, then a
perfectly reasonable explanation is that he or she noticed
the wet grass in the morning, which is correlated with rain.
However, if the agent observes that it is raining and we ask
for the best explanation of this observation, then it would
certainly not be satisfactory to be told that the grass is wet.
We do not accept the wet grass as an explanation in the
second case because the wet grass is not a cause of rain.
However, we would accept it in the first case because the
agent believing that the grass is wet is a cause of the agent
believing that it rained. The critical difference between ex-
planations of beliefs and explanations of observations does
not seem to have been discussed before in the literature.

The rest of the paper is organized as follows. In Sections
2 and 3 we present and analyze Gärdenfors’ and Pearl’s
definitions. In Section 4 we present a new approach which
generalizes elements of both. We conclude with some open
problems in Section 5.

2 GÄRDENFORS’ APPROACH

2.1 THE DEFINITION

As we suggested earlier, roughly speaking, for Gärdenfors,�
is an explanation of � if Pr ����� ���	� Pr �
� � . That is,

�
is an explanation of � if learning

�
raises the probability

of � . In order to flesh out this intuition, we need to make
precise what probability distribution we are using.

According to Gärdenfors, what requires explanation is
something that is already known, but was unexpected: A
person asking for an explanation expresses a “cognitive dis-
sonance” between the explanandum and the rest of his or
her beliefs. We don’t typically require an explanation for
something we expected all along. The amount of disso-
nance is measured by the surprise value of the explanan-
dum in the belief state in which we reject our belief in
the explanandum while holding as many as possible of our
other beliefs intact (this operation is called contraction and
comes from the belief revision framework (Alchourrón,
Gärdenfors, and Makinson 1985)). An explanation pro-
vides “cognitive relief”; the degree of “cognitive relief” is
measured by the degree to which the explanation decreases
the surprise value.

For example, if we ask for an explanation of why David
has the flu, then we already know that David has the flu.
Thus, if � is the statement “David has the flu”, then in
the current situation, we already ascribe probability 1 to � .
Nothing that we could learn could increase that probability.
On the other hand, we presumably asked for an explanation
because before David got sick, we did not expect him to
get sick. That is, if Pr �� describes the agent’s probability
distribution in the contracted belief state, before David got
flu, we expect Pr �� ��� � not to be too high. An explanation

�
(like “David was playing with Sara, who also has the flu”)
would raise the probability of � in the contracted belief
state, that is, we have

Pr �� ���
� ����� Pr �� ��� ���
As Gärdenfors’ definition stresses, what counts as an expla-
nation depends on the agent’s epistemic state. An explana-
tion for one agent may not be an explanation for another, as
the following example, essentially taken from (Gärdenfors
1988), shows.

Example 2.1 If we ask why Mr. Johansson has been taken
ill with lung cancer, the information that he worked in as-
bestos manufacturing for many years is not going to be a
satisfactory explanation if we don’t know anything about
the effects of asbestos on people’s health. Adding the state-
ment “70% of those who work with asbestos develop lung
cancer” makes the explanation complete. The explana-
tion must consist of both statements. However, if we try
to explain Mr. Johansson’s illness to his close friend, who
is likely to know his profession, we would supply only the
second piece of information. Similarly, to someone who
knows more about asbestos but less about Mr. Johansson,
we would only present the information about his profession.

To formalize these intuitions, Gärdenfors characterizes a
(probabilistic) epistemic state using the possible worlds
model. At any given time, an agent is assumed to con-
sider a number of worlds (or states of the world) possible.
For example, if the agent looks out the window and notices
that it is raining, his set of possible worlds would include
only worlds where it is raining. Learning new facts about
the world further restricts the set of the worlds we con-
sider possible. Among the possible worlds, some may be
more likely than the others. To describe this likelihood, the
agent is assumed to have a probability distribution over the
possible worlds.

Thus, an epistemic state is taken to be a pair ��������� Pr � ,
where � is a set of possible worlds (or possible states of the
world) and Pr is a probability distribution on � . A sentence�

is said to be accepted as knowledge in an epistemic state� if Pr � � � � 1. We sometimes abuse notation and write��� � if
�

is accepted in epistemic state � .

Given an epistemic state �����
��� Pr � of an agent, let� �� ����� �� � Pr �� � denote the contraction of � with re-
spect to � , i.e., the epistemic state characterizing the
agent’s beliefs that is as close to � as possible such that�! � ���� . Gärdenfors describes a number of postulates that
� �� should satisfy, such as � �� �"� if �# � � . It is be-
yond the scope of this paper to discuss these postulates (see



(Alchourrón, Gärdenfors, and Makinson 1985)). However,
these postulates do not serve to specify �$�� uniquely; that
is, given � and � , there may be several epistemic states�&% that satisfy the postulates. On the other hand, there are
some situations where it is straightforward to specify �$�� .
For example, if Pr is determined by a Bayesian network
together with some observations, including � , then Pr �� is
just the distribution that results from the Bayesian network
and all the observations but � .

We can now present Gärdenfors’ definition of explanation.

Definition 2.2 (from (Gärdenfors 1988))
�

is an explana-
tion of � relative to a state of belief �'�(�
��� Pr � (where� � � ) if

1. Pr �� �
�
� �$��� Pr �� �
� � , and

2. Pr � �$��) 1 (that is,
�  � � ).

We have already seen the first clause of this definition.
Note that, in this clause (and throughout this paper), we
identify the formulas � and

�
with sets of possible worlds,

namely, the sets of worlds (in �*�� ) in which � and
�

,
respectively, are true. The second clause helps enforce
the intuition that the explanation depends on the agent’s
epistemic state. The explanation cannot be something the
agent already knows. For example, fire will not be an
explanation of smoke if the agent already knows that there
is a fire. Notice that the second clause also prevents �
from being an explanation for itself. (Clearly � satisfies
the first clause, since Pr �� ����� � �+� Pr �� ��� � ; since we have
assumed � � � , � does not satisfy the second clause.)
Unfortunately, as we shall see, while the second clause does
exclude � as an explanation, it does not exclude enough.

Given this notion of explanation, we can define an ordering
on explanations that takes into account the degree to which
an explanation raises the probability of the explanandum.
Gärdenfors in fact defined explanatory power as the dif-
ference between the posterior and prior probability of the
explanandum. Thus, a better explanation is one with better
explanatory power.

The difference is not always a good measure of distance
between probabilities. An explanation which raises the
probability of a statement of interest from 0.500001 to 0.51
is not so powerful. On the other hand, an explanation raising
the probability from 0.000001 to 0.01 would be received
quite differently, although the difference in probabilities is
the same. A more natural way to define explanatory power
is by using the ratio of the two probabilities.

Definition 2.3 The explanatory power (EP) of
�

with re-
spect to � is

�-,.� � �/� � � Pr �� ���
� ���
Pr �� ��� �

�

According to this definition, the two explanations above
have dramatically different explanatory power. For this
paper, we take the latter definition as our formal definition
of explanatory power.

Before we get to our critique of Gärdenfors’ definition,
there is one other issue we need to discuss: the language
in which explanations are given. Definition 2.3 makes per-
fect sense if, for example, explanations are propositional
formulas over a finite set of primitive propositions. In that
case, a world 0 could be taken to be a truth assignment to
a finite family of these primitive propositions. We could
also take explanations to be first-order formulas, in which
case a world could be taken to be a first-order interpretation.
Gärdenfors in fact allows even richer explanations, involv-
ing statistical statements. As we saw, in Example 2.1, a
possible explanation of Mr. Johansson’s illness for someone
who already knew that he worked in asbestos manufactur-
ing is to say “70% of those who work with asbestos develop
lung cancer”. To make sense of this, Gärdenfors associates
with a world not only a first-order interpretation, but a distri-
bution over individuals in the domain. (This type of model
is also considered in (Halpern 1990), where a structure con-
sists of possible worlds, with a distribution over the worlds,
and, in each world there is a distribution on the individuals
in that world; a formal language is provided for reasoning
about such models. If the domain is finite, we could sim-
plify things and assume that the distribution is the uniform
distribution, as is done in (Bacchus, Grove, Halpern, and
Koller 1996).) While it is not necessary to consider such
a rich language to make sense of Gärdenfors’ definition,
one of his key insights is that statistical assertions are an
important component of explanations. Indeed, he explicitly
describes an explanation as a conjunction

�
1 1 � 2, where�

1 is a conjunction of statistical assertions and
�

2 is what
Gärdenfors calls a singular sentence, by which he means
a Boolean combination of atomic sentences in a first-order
language with only unary predicates. (Either conjunct may
be omitted.) As we shall argue, we need to generalize this
somewhat to allow causal assertions as well as statistical
assertions.

2.2 A CRITIQUE

While Gärdenfors’ definition has some compelling features
(see (Gärdenfors 1988) for further discussion), it also has
some serious problems, both practical and philosophical.
We describe some of them in this section.

1. While the second clause prevents � from being an ex-
planation of itself, there are many other explanations
that it does not block. Let 2 be any formula such
that Pr �
2 �3) 1 and Pr �� �
� 1 2 �4� 0. Then � 1 2
will be an explanation for � . Moreover, it will be
the explanation with the highest possible explanatory
power (both according to Gärdenfors’ original defi-
nition and our modification). This is obvious, since
Pr �� �
�
� � 1 2 � � 1. Note that 2 can be practically
any formula here. We surely wouldn’t want to accept
“ � and the coin lands heads” as an explanation for � .
One possible solution to this problem is to restrict ex-
planations to only involving certain propositions. For
example, if we are looking for an explanation for some
symptoms, we might require that the explanation be a
disease. There are many cases where such restrictions
make sense, but if we are to do this, then we must



explain where the restrictions are coming from.

2. Even if we restrict attention to a particular vocabulary
for explanations, there is nothing preventing us from
adding irrelevant conjuncts to an explanation. More
precisely, note that if

�
is an explanation of � , and5

is conditionally independent of � given
�

, then
Pr �� �
�
� �$� � Pr �� ���
� � 1 5 � . Thus,

�
and

� 1 5
are viewed as equally good explanations.

3. The definition does not take into account the likeli-
hood of the explanation. For example, suppose there
are two explanations for a symptom 6 , disease 7 1 and
disease 7 2, with the same explanatory power, but 7 1
is a relatively common disease, while 7 2 is quite rare.
If the explanation is given by an expert that is trusted
by the user (as in the case of an intelligent tutoring
system), then once we are told that, say 7 2 is the ex-
planation, we would presumably accept it as true. In
this case, the prior probability (i.e., the fact that 7 2 is
rare) is irrelevant. However, in our context, even if
Pr �8 �96:� 7 1

� � Pr �8 �96;� 7 2
�
, it seems clear that we should

prefer the explanation 7 1 to 7 2.

4. The fact that learning
�

raises the probability of �
does not by itself qualify

�
to be an explanation of� . For example, suppose 6 is a symptom of disease7 and Bob knows this. If Bob learns from a doc-

tor that David has disease 7 and asks the doctor for
an explanation, he certainly would not accept as an
explanation that David has symptom 6 , even though
Pr �< �
7=� 6 �>� Pr �< ��7 � . Gärdenfors is aware of this is-
sue, and discusses it in some detail (1988, p. 205). He
would call 6 an explanation of 7 , but not a causal ex-
planation. Gärdenfors provides a definition of causal
explanation. Unfortunately, while it deals with this
problem, it does not deal with the other problems we
have raised, so we do not discuss it here.2 We dis-
agree with Gärdefnors that there are explanations that
are not causal; we view all explanations as causal. In
particular, we do not think that Bob would accept 6
as an explanation of 7 at all. Note, however, that if
Bob had asked the doctor why he (the doctor) believed
that David had disease 7 , an acceptable explanation
would have been that the doctor believed (or knew)
that David had symptom 6 . There is a big difference
between what Bob would accept as an explanation for7 and what he would accept as an explanation of the
doctor’s belief that 7 . We return to this issue below.

5. As a practical matter, Gärdenfors’ definition requires
the computation of the contraction of a belief state
(besides the computation of many conditional proba-

2For the interested reader, ? is said to be a causal explanation
of @ with respect to belief state A such that @CBDA if (1) Pr EF?HGJI
1, (2) Pr KL EF@4M ?HGON Pr KL EF@OG , (3) E Pr PQJGRKQTS Pr KL , where Pr PQ is
the belief state that arises when we add ? to the stock of beliefs
in A . This is the notion called belief expansion (Alchourrón,
Gärdenfors, and Makinson 1985). Thus, we add clause (3) to
the definition of explanation. Note, however, if U is independent
of @ , then @�V
U would be a causal explanation of @ . Similar
arguments show that Gärdenfors’ definition of causal explanation
still suffers from all the other problems we have raised.

bilities in that contracted belief state). If an approach
like this is to be used in a system, we need techniques
for computing the contraction. More accurately, since
the contraction is not unique, we need to focus on ap-
plications where there is a relatively straightforward
notion of contraction.

3 THE MAXIMUM A POSTERIORI
MODEL APPROACH

3.1 THE DEFINITION

Most of the work done on explanation in belief networks
was based on the intuition that the best explanation for an
observation is the state of the world that is most proba-
ble given the evidence (Henrion and Druzdzel 1990; Pearl
1988; Shimony 1991). There is no notion of “cognitive
dissonance” or surprise. The explanation is an (informed)
guess about the possible world we are currently in, based
on the evidence (which includes the explanandum). In
some cases (e.g., (Pearl 1988)), the guess must specify the
world completely—formulas describing sets of worlds are
not allowed as explanations. This approach, which we
call Maximum A Posteriori model (MAP) after (Shimony
1991), has been also known under other names: Most Prob-
able Explanation (MPE) (Pearl 1988) and Scenario-Based
Explanation (Henrion and Druzdzel 1990).

Formally, according to Pearl, given an epistemic state�W�X����� Pr � , an explanation for � is simply a world0 in which � is true. This notion of explanation in-
duces an obvious ordering on explanations. World 0 1 is
a better explanation of � than 0 2 if � is true in both 0 1
and 0 2 and Pr ��0 1 � � �
� Pr �F0 2 � � � . Finally, the best or
most probable explanation (MPE) is the world 0ZY such that
Pr �F0ZY:� � � � max []\_^ Pr �F0`� � � .3
We remark that although we have spoken here of an ex-
planation as being a world, we could equally well take an
explanation to be the formula that characterizes the world
if we assume (as Pearl does) that each world is uniquely
characterized by a formula. If our vocabulary consists of a
finite number of propositions a 1 � �b�c� ��aed , and each world is
a truth assignment to these primitive propositions, then an
explanation would have the form f 1 1 �c�b� 1 fgd , where each fch
is either aeh or i=ajh . Of course, if we have richer languages,
finding formulas that characterize worlds becomes more of
an issue.

Two other variants of the MAP approach have been pro-
posed, by Henrion and Druzdzel (1990) and Shimony
(1991, 1993). They share with Pearl’s definition two impor-
tant features: First, the explanation is a truth assignment to

3Actually, Pearl did not define the notion of explanation, just
that of most probable explanation. However, our definitions are
certainly in the spirit of his. Also, he did not talk explicitly of
worlds and epistemic states, but these are implicit in his defini-
tions. Pearl assumes that there is a Bayesian network that de-
scribes a number of variables of interest. The set k then consists
of all possible assignments to the variables, and the probability
distribution Pr on k is determined by the Bayesian network.



a subset of propositions, including the explanandum. Sec-
ond, the ordering of explanations is based on their posterior
probability given the explanandum.

Henrion and Druzdzel actually discuss a number of ap-
proaches to explanation. Of most relevance here are what
they call scenario-based explanations. They assume a tree
of propositions (a scenario tree), where a path from the
root to a leaf represents a scenario, or a sequence of events.
They are looking for the scenario with the highest probabil-
ity given the explanandum.4 Thus, their approach differs
from Pearl’s in that the system has additional knowledge
(the scenarios). They also allow explanations to be partial.
The truth values of all propositions do not have to be spec-
ified. However, explanations are restricted to coming from
a set of prespecified scenarios.

Shimony (1991, 1993) also allows partial explanations.
He works in the framework of Bayesian networks (as
does Pearl, in fact, although his definition makes sense
even if probabilities are not represented using Bayesian
networks).5 In his framework, the explanandum is an in-
stantiation of (truth assignment to) some nodes in the net-
work; these are called the evidence nodes. An explanation
is a truth assignment to the “relevant” nodes in the net-
work. The relevant nodes include the evidence nodes and
only ancestors of evidence nodes can be relevant. Roughly
speaking, an ancestor of a given node is irrelevant if it has
the property that it is independent of that node given the
values of the other ancestors. In (Shimony 1991), the best
explanation is taken to be the one with the highest poste-
rior probability. In (Shimony 1993), this is extended to
allow explanations to be sets of partial truth assignments,
subject to certain constraints (discussed in more detail in
Section 4.3.)

3.2 A CRITIQUE

The MAP approach has an advantage over Gärdenfors’:
it doesn’t require contraction. However, it has its own
problems. Some of the problems are particularly acute in
Pearl’s approach, with its requirement that the explanation
be complete; i.e., a world; they are alleviated somewhat if
we allow partial explanations (sets of worlds). However,
some of the problems arise in all variants of the approach,
and are a consequence of ordering according to the posterior
probability distribution.

1. By making the explanation a complete world, the no-
tion becomes very sensitive to the choice of language,
as Pearl himself observes.6 For example, if our lan-
guage consists of lm6n�/7 1 ��7 2 o , then the best explanation

4Actually, they suggest presenting all scenarios that have suf-
ficiently high probability, and pointing out how the most probable
one differs from the other likely scenarios.

5Recall that a Bayesian network is an acyclic directed graph
whose nodes represent primitive propositions (or random vari-
ables), together with conditional probability tables describing the
probability of a node given instantiations of its parents (Pearl
1988).

6Shimony (1991) calls this the overspecification problem.

for symptom 6 might be 7 1, or, more precisely, the
world characterized by 6 1 7 1 1 i]7 2. For the purposes
of this example, suppose that diseases are mutually
exclusive, so all worlds where the agent has more than
one disease have probability 0. Now suppose we sub-
divide 7 1 into two diseases 7:%1 and 7:% %1 , again mutually
exclusive (as, for example, hepatitis can be subdivided
into hepatitis A and hepatitis B). Then we might find7 2 to be a better explanation than either 7 %1 or 7 % %1 (that
is, Pr �pi]7n%1 1 i]7:% %1 1 7 2 � 6 � may be greater than either
Pr ��7:%1 1 i]7:% %1 1 i]7 2 � 6 � or Pr �9i]7:%1 1 7:% %1 1 i]7 2 � 6 � ).
Pearl gives an even sharper example of this phe-
nomenon. Suppose that 7 1 is a a diagnosis of per-
fect health, 7 2 is a diagnosis of a fatal disease,
Pr ��7 1 � 6 � � 0

�
8, and Pr ��7 2 � 6 � � 0

�
2. Now suppose we

expand the vocabulary to include q 1 � �c�b� ��q 8, where theqeh ’s are possible holidays that the agent will take next
year (provided he or she is indeed healthy), and the
agent considers each of these vacation plans equally
likely. Then we have that Pr �
qeh 1 7 1 � 6 � � 0

�
1, and the

most likely explanation of the symptom has changed
from 7 1 to 7 2! So just by considering possible holidays
he might take given that he is healthy, the agent finds
that the best explanation for his symptoms becomes a
fatal disease.

2. A related problem is the fact that if we have a large
number of primitive propositions, most will probably
be irrelevant or only marginally relevant to explaining
a particular proposition. Yet, Pearl’s definition forces
us to consider worlds, thus forcing us to worry about
the truth value of all propositions. This can cause
computational problems. In addition, conciseness is a
desirable feature in an explanation, particularly in an
interactive system. The user usually wants to know
only the most influential elements of the complete
explanation, and does not want to be burdened with
unnecessary detail. This problem is particularly se-
vere if we insist on complete explanations. However,
Shimony’s partial explanations are not necessarily as
concise as one would hope either. It is not hard to show
that for each evidence node

�
, the explanation must

include an assignment to all the nodes in at least one
path from

�
to the root, since for each relevant node,

at least one of its parents must be relevant. Moreover,
the irrelevance condition is quite strong and only in
limited contexts is it likely to achieve significant prun-
ing. Shimony attempts to overcome this problem by
relaxing the irrelevance assumption to what he calls
approximate or r -irrelevance. While helpful in some
domains, the extent to which it will result in concise
explanations in general is not clear. We discuss this
point in more detail in the full paper.

3. The ordering on explanations used in the MAP ap-
proach is supposed to maximize the probability of
the explanation given the explanandum. However,
if we consider only explanations which include the
explanandum (as all MAP explanations do), this re-
duces to maximizing the prior of the explanation. The
ordering is then based only on the likelihood of the ex-
planation and not in any way on the degree to which the



explanation raises the probability of the explanandum.

4. All the MAP approaches discussed above consider es-
sentially propositional languages. Once we move to
richer languages (like first-order, or languages that al-
low statistical information), then each world may end
up having very low probability. Indeed, if we have a
continuous number of worlds, each world may have
probability 0. In this case, the definition which re-
quires explanations to be complete worlds is not even
useful.

Given the difficulties with complete explanations, why do
Shimony and Henrion and Druzdzel put such restrictions
on the allowable partial explanations? What is the prob-
lem with partial explanations? Suppose our language con-
sists of the propositions l�a 1 � �c�b� ��a d o . Why not just allowa 1 as an explanation, instead of requiring something likea 1 1 i=a 2 1 �b�c� 1 i=aed ? Gärdenfors certainly allows such
explanations. It is not hard to see why Pearl does not allow
partial explanations. Notice that a partial explanation is
really a set of worlds (or equivalently, the disjunction of the
formulas representing the worlds). But a disjunction will
always have higher conditional probability than any of its
disjuncts (except in the degenerate case where all but one
of the disjuncts has probability 0), and thus will be viewed
as a more probable explanation than any of its disjuncts.
It is because of this that Shimony puts restrictions on the
allowable partial explanations as well. As we shall see,
we can deal with this problem, at least to some extent, by
modifying the ordering of explanations.

4 SYNTHESIS

As we have seen, both Gärdenfors’ definition and the MAP
definition have problems. We believe that in order to deal
with these problems, we need to deal with two relatively
orthogonal issues: (1) we must decide what counts as an
explanation, and (2) we must decide how to compare two
explanations.

4.1 WHAT COUNTS AS AN EXPLANATION?

The MAP approach seems somewhat too restrictive in what
counts as an explanation: An explanation must be a com-
plete description of a world (or a restricted form of partial
explanation). Gärdenfors, on the other hand, is not restric-
tive enough. He allows � 1 5 to be an explanation of� , for example, and this seems to us unreasonable. In ad-
dition, he would allow a falling barometer reading to be
an explanation for a storm, thus missing out on the causal
structure.

As we mentioned above, we view all explanations as causal.
We distinguish between explaining facts and explaining be-
liefs, but in both cases we look for the same thing in an
explanation: a causal mechanism which (possibly together
with some facts) is responsible for the fact observed or
the beliefs adopted. By enforcing causality, AGMwe be-
lieve that we can avoid the problems in Gärdenfors’ defini-
tion, while still allowing more general explanations than the

MAP approach would allow. We remark that we are not the
first to stress the role of causality in explanation. Salmon
(1984) discusses the issue at length, although the technical
details of his proposal are quite different from ours.

The literature on causality is at least as large as the literature
on explanation; it is well beyond the scope of this paper to
develop a new theory of causality. For the purposes of the
rest of this paper, we work at the propositional level (since
that is essentially what the recent approaches to causality
do) and assume that the causal mechanism is described by
a causal structure, which we take to be a Bayesian network
interpreted causally.

We believe that much of what we do is independent of the
particular way we choose to model causality. In particular,
we can replace the causal network by structural equations,
as described in (Druzdzel and Simon 1993; Pearl 1995). We
have chosen to use Bayesian networks as our representation
for causality simply to make it easier to relate our approach
to Pearl’s approach.

In this setting, part of the agent’s uncertainty concerns what
the right causal mechanism is. For example, an agent may
be uncertain whether smoking causes cancer or whether
there is a gene that causes both a susceptibility to cancer
and a susceptibility to smoking. Thus, we assume that a
world is a pair �F0-� 5 � consisting of a truth assignment 0
and a causal structure

5
. As before, an epistemic state� is a pair �
��� Pr � , where � is a set of worlds of this

form, and Pr is a probability distribution on � . However,
we assume that this epistemic state arises from a simpler
description: We assume that the agent has a probability
distribution Pr % on causal structures and has made some
observations. Notice that a causal structure

5
also places

a probability distribution Pr s on worlds. We require that
the distribution Pr be consistent with the causal mechanisms
considered possible and the observations t in the following
sense: There must be a probability distribution Pr % on causal
mechanisms such that Pr �F0-� 5 � � Pr % � 5 � Pr su��0`� t � : that
is, the probability of ��0-� 5 � is the probability of the causal
mechanism

5
times the probability that

5
induces on 0 ,

given the observation. In particular, this means that if the
agent considers only one causal mechanism possible, we
can identify Pr with a probability on truth assignments, just
as Pearl does.

We assume that the explanandum � is one of the ob-
servations. This means that Pr �� has a simple form:
Pr �� �F0>� 5 � � Pr % � 5 � Pr su��0`� twvxlg� o � . It is easy to see
that this definition satisfies the postulates for contraction.
An explanation of � in epistemic state � is a conjunction� � � 1 1 � 2 consisting of a partial causal mechanism�

1 (that is, a description of a causal structure; see below)
and an instantiation of nodes

�
2 that causally precede �

in
�

1 such that Pr � ���
) 1. (We defer for now the is-
sue of whether the explanation raises the probability of the
explanandum.)

We are deliberately being vague about the language used to
describe the causal mechanism, since we believe that this is
an area for further research. For the purposes of this paper,



we can take
�

1 to be simply a description of a subgraph of
the causal graph (intuitively, that part of the causal graph
that is relevant to explaining � , i.e., a subset of the set of
paths from nodes in

�
2 to � ).

We allow the conjunct describing the causal mechanism to
be missing from the explanation if it is known. (In practice,
this might mean that the system providing the explanation
believes that the agent to whom the explanation is being pro-
vided knows the causal mechanism.) Notice that if the agent
knows the causal mechanism, and thus considers only one
causal mechanism possible (as is implicitly the case when a
situation is described by a Bayesian network which is given
a causal interpretation), then a world can be identified with
a truth assignment. In this case (ignoring the requirement
that all the conjuncts in a basic explanation of � must pre-
cede � causally), what Pearl called an explanation would
be a special case of what we are calling an explanation.
However, we allow more general explanations, in that we
do not require an explanation to be a truth assignment. In
this sense, our framework can be viewed as generalizing
Pearl’s and Shimony’s.

Our definition also borrows heavily from Gärdenfors’ defi-
nition. We take from him the requirement that Pr � �$�y) 1.
His other requirement, that Pr �� �
�
� �$��� Pr �� �
� � , will also
play a role in our ordering of explanations. The form of
the explanation—a conjunction of a (partial) causal mech-
anism and an instantiations of nodes—is also taken from
Gärdenfors.7 Since we are working with propositional
Bayesian networks, the instantiation of nodes clearly corre-
sponds to taking the conjunction of atomic sentences in first-
order logic. Gärdenfors allows disjunctions as well (since
he allows singular sentences, which are Boolean combina-
tions of atomic sentences). Allowing disjunctions seems to
cause problems for us; we return to this issue in Section 4.3.
The (partial) causal mechanism can be viewed as a gener-
alization of statistical assertions. We view the requirement
of the causal mechanism as a key difference between our
definition and Gärdenfors’. For one thing, the causality
requirement prevents � 1 5 from being an explanation of� , since � cannot precede � in the causal ordering. It also
prevents a symptom from being an explanation of a disease.

We would argue that causality is what makes most of
Gärdenfors examples involving statistics so compelling.
For example, consider the case of Mr. Johansson. We be-
lieve that the explanation “70% of those who work with
asbestos develop lung cancer” involves more than just the
statistical assertion. It is accepted as an explanation because
we implicitly accept that there is a causal structure with an
edge from a node labeled asbestos to a node labeled lung
cancer (with a conditional probability table saying that the
probability of lung cancer given asbestos is 0.7). And it is
the lack of causality that causes us (if the reader will pardon
the pun) not to accept “70% of the time that the barometer
reading goes down there is a storm” as an explanation of a
storm (unless we happen to believe that barometer readings
have a causal influence on storms).

7Originally, the idea came from Hempel’s work on explanation
(Hempel and Oppenheim 1948).

However, the situation is different if we try to explain our
beliefs to someone else. In this case, the causal structure is
symmetric. The fact that I believe that there is a storm does
explain my belief that the barometer reading has gone down;
my belief that the barometer reading has gone down is an
explanation for my belief that there is a storm. Ultimately,
these beliefs should be rooted in an observation (either of
the storm or the barometer).

We can readily convert a causal network describing a sit-
uation to a network describing an agent’s beliefs. We just
reinterpret all the nodes so that a node labeled

�
talks about

the agent’s belief in
�

,moralize the graph and change all the
directed edges to undirected edges. The resulting Markov
network (Pearl 1988) captures the causal as well as proba-
bilistic dependencies between the agent’s beliefs. Note that
the resulting network is no longer asymmetric. While we
do not view a symptom as a cause for a disease, believing
that a patient has a certain symptom might well cause us to
believe that he has a disease. However, an explanation for
the agent’s beliefs would then be an acyclic subnetwork of
this network, together with some new nodes representing
the external causes of some of the beliefs. For example, an
external cause for the belief that the patient has symptom 7
is the observation of the symptom; an external cause for the
belief that David has an ear infection might be receiving
that information from a doctor. We discuss this in more
detail in the full paper.

4.2 ORDERING EXPLANATIONS

As we have seen in the few examples presented so far, and
as is indeed the case in many applications, there are typi-
cally several competing explanations. We need to be able to
compare them and choose the best. The two proposals pre-
sented above for ordering explanations—Gärdenfors’ no-
tion of explanatory power and Pearl’s notion of considering
the probability of the explanation given the explanandum—
both have their merits, but neither seems quite right to us.
The following example might help clarify the differences
between them.

Example 4.1 Assume that we have a bag of 100 coins, 99
of which are strongly biased (9:1) towards heads and one
that is just as strongly biased towards tails. We pick a coin
at random and toss it. The coin lands tails.

We can model this situation by using two random variables:5
(the type of coin) with values z{q and z}| (biased towards

heads and biased towards tails) and ~ (the result of the
toss), with values q and | . A priori, the probability that we
picked a coin that is biased towards heads is very high; in
fact ,.� 5 �&z{q � � 0

�
99. After receiving the evidence of the

coin landing tails, we find out that ,.� 5 ��z{q]� ~���| � is close
to 0

�
92—less that the prior on

5 �$z{q but still very high.
What explanation would we accept for the fact that the coin
landed tails? Clearly, the causal structure in this situation
is known: there is a causal relation between

5
and ~ , with

the obvious conditional probability table described by the
story. Since the causal structure is known, the allowable
explanations can be identified with

5 ��z{q and
5 ��z}| .



What is the relative merit of these explanations?

According to Gärdenfors’ definition,
5 �(z}| is a much

better explanation than
5 ��z{q , since Pr �
~���|{� 5 ��z}| � is

much greater than Pr ��~��&|{� 5 ��z{q � , where Pr is the prior
probability distribution, before the outcome ~���| is known.
Intuitively,

5 ��z}| has far better explanatory power because
it accounts for the observation far better than

5 ��z{q does.
On the other hand, the explanation seems unsatisfactory,
since it does not take into account the low probability that
the coin biased towards tails will be picked.

According to Pearl’s ordering, the best explanation of the
coin landing tails is

5 ��z{q , since Pr � 5 ��zcqJ� ~���| � is much
greater than Pr � 5 ��z}|{� ~���| � .8 This explanation, although
very likely itself, doesn’t seem to relieve the “cognitive
dissonance” between the explanandum and the rest of our
beliefs. While it may be the correct diagnosis of the situa-
tion, it doesn’t seem right to call it an explanation. The fact
that the potential explanation is less probable a posteriori
than a priori should at least cause some suspicion.

Notice that by Bayes’ rule,

Pr � 5 �xz{q]� ~���| � � Pr ��~���|{� 5 ��z{q �
Pr ��~��x| � � Pr � 5 ��z{q ���

The term Pr ��������� s ���9�g�
Pr �������F� is what we called the explanatory

power of
5 ��zcq with respect to ~���| . Thus, the degree

to which
5 �Tzcq is an explanation of ~���| according to

Pearl is precisely the product of �-,.� 5 ��z{q��/~���| � and the
prior probability of

5 ��zcq . Thus, we can see the precise
sense in which Pearl’s definition takes into account the prior
whereas Gärdenfors’ does not.

Although the two definitions disagree in this example, there
are many situations of interest in which they agree (which is,
perhaps, why both have seemed to be acceptable definitions
of the notion of explanation). In particular, they agree in
situations where the prior probability of all explanations
is the same (or almost the same). Thus, if the user has
no particular predisposition to accept one explanation over
another, both approaches will view the same explanation as
most favorable.9

Since we cannot always count on the prior of all explana-
tions being equal, we would like an ordering on explana-
tions that takes into account both the explanatory power
and the prior. One obvious way of taking both into ac-
count is to multiply them, which is essentially what Pearl
does, but multiplication loses significant information and
sometimes gets counterintuitive results. (More examples
of this appear below.) A straightforward alternative is to
associate with each explanation

�
of � the pair of numbers���>,.� � ��� � � Pr �� � ���/� : the explanatory power of

�
with

8Note that, according to Pearl’s definition, ?�SD�}� would not
be an explanation of �`S`� . The two possible explanations would
be ?�S`�}��V+�>S`� and ?`S��/�cV	�`S`� . What we are analyzing here
is the ordering produced by Pearl’s definition of better explanation
on the notion of explanation defined according to our approach.

9Here we are also implicitly assuming that there is a prior
agreement on what counts as an explanation. As we have ob-
served, the two approaches differ in this respect too.

respect to � and the prior of
�

. We can then place a partial
order � � on explanations of � by taking

�
1 � � � 2 iff�-,.� � 1 �/� ��� �-,.� � 2 ��� � and Pr �� � � 1

�	�
Pr �� � � 2

�
.

Notice that with this ordering, the two explanations in the
coin example,

5 ��z{q and
5 �&z}| , are incomparable. This

forces the user to decide whether the explanatory power or
the prior is the more significant feature here. In a case like
this, such a wide divergence between the explanatory power
and the prior of two explanations might signal a problem
with the causal model. Perhaps the agent’s prior on

5 ��zcq
vs.
5 ��z}| is incorrect in this case.

Although the ordering is partial in general, it can be viewed
as a natural generalization of Pearl’s ordering. Suppose the
causal mechanism is known, as is implicitly assumed by
Pearl. If we allow explanations that are complete descrip-
tions of worlds, then all complete descriptions that include� have exactly the same explanatory power: 1  Pr �� ��� � .
Thus, our ordering would order them by their prior, just as
Pearl’s and Shimony’s does.

Our ordering also avoids the problem in Gärdenfors’ or-
dering that adding irrelevant conjuncts results in an equally
preferred explanation. For example, if

�
is an explanation

of � then
� 1�  (for all   conditionally independent of� given the epistemic state) would be considered a worse

explanation than
�

in our ordering since their explanatory
powers are the same and

�
’s prior is higher.

If we add a conjunct that is not completely irrelevant, then
our approach forces the agent to decide between more spe-
cific explanations that have higher explanatory power, and
less specific explanations, that have a higher prior. For
example, suppose we want to understand why a somewhat
sheltered part of the lawn is wet. One possible explanation
is that it rained last night, but rain does not always cause
that part of the lawn to get wet. A better explanation might
be that it was raining and very windy. The combination of
rain and wind has better explanatory power than rain alone,
but a lower prior. According to our ordering, this makes
the two explanations incomparable. This does not seem
so unreasonable in this case. We would expect a useful
explanatory system to point out both possible explanations,
and let the user decide if the gain from the extra explanatory
power of wind is sufficiently high to merit the lower prior.

Note that if we multiply the explanatory power of the ex-
planation by its prior, we will always prefer the expla-
nation “rain”. To see this, note that for any explanation�

, the product of the explanatory power and the prior is
Pr �� � � � � � . Since clearly Pr �� � � � � �`� Pr �� � � 1�  � � � ,
the simpler explanation is preferred. This is a case where
multiplication causes a loss of useful information.

4.3 DEALING WITH DISJUNCTIONS

As we have defined it, an explanation is a conjunction of
a partial causal mechanism together with an instantiation
of nodes. We have not allowed disjunctions. Disallow-
ing disjunctions of causal mechanisms seems reasonable.
It is consistent with the intuition that “you have cancer
either because you smoke or because you have a genetic



predisposition to cancer” is viewed as a disjunction of two
explanations, not one explanation which has the form of a
disjunction. We suspect that it is for similar reasons that
Gärdenfors disallowed the disjunction of statistical asser-
tions in his definition.

On the surface, it may seem less reasonable to disallow
the disjunction of instantiations of nodes. Certainly it is
straightforward to modify our definition so as to allow them,
and doing so would be more in keeping with Gärdenfors’
allowing singular sentences. However, notice that allowing
the disjunction of instantiations has the effect of allowing
disjunctions of causal mechanisms.

Consider a case in which we ask for an explanation of huge
forest fires recently occurring in California. One possible
explanation is that the fire prevention caused the brush to
overgrow, another that the tourists often leave campfires
unattended. Both these explanations are very plausible (and
so is their conjunction). Suppose the agent considers only
one causal network possible, and it contains both of these
mechanisms. Thus, by allowing the explanation “either
some tourists left their campfire unattended or the brush
was overgrown”, we are effectively allowing a disjunction
of causal mechanisms. This example suggests that we may
want to make a distinction between what appear to be two
different causal mechanisms co-existing within the same
causal structure (perhaps using the techniques discussed by
Druzdzel and Simon (1993)). This is an area for future
research.

On the other hand, there are cases where allowing disjunc-
tions seems useful. For example, consider a situation in
which we have four coins,

5
1,
5

2,
5

3, and
5

4, where
5

1
and

5
2, are biased towards heads and

5
3 and

5
4 are bi-

ased toward tails. We pick one coin at random and toss
it three times. The coin lands heads every time. The ob-
vious explanation for this fact is that we picked one of
the coins biased towards heads, that is, either

5
1 or

5
2.

And, indeed, our ordering would prefer the explanation�
1 � def � 5 � 5 1

��¡ � 5 � 5 2
�

to either of the explanations5 � 5 1 or
5 � 5 2, assuming that both

5
1 and

5
2 had the

same bias.

By way of contrast, the explanation
�

2 � def � 5 � 5 1
�J¡

� 5 � 5 2
�	¡ � 5 � 5 3

�
does not seem at all reasonable

although, according to our ordering, it is incomparable to�
1. While

�
1 has higher explanatory power,

�
2 has a

higher prior. While most people would clearly reject
�

2,
it would be useful to have to have some automatic way of
rejecting it.10

This example suggests that rather than allowing disjunc-
tions, a better strategy might be to add an additional variable
representing the type of the coin (with possible values zcq
and z}| , as before). However, we have as yet no principled

10This is another case where multiplying the componentsgives a
misleading answer: ¢ 2 has a higher product than ¢ 1. In general,
if we compare the explanation ¢ to a disjunctive explanation¢�£¥¤ by multiplying the explanatory power times the prior, then
we will always prefer ¢x£>¤ to ¢ , for the same reasons as given
earlier for preferring ¢ to ¢�V>¤ .

way for deciding when to add such variables.

Shimony’s work can be viewed as an attempt to provide
principles as to when to consider disjunctive explanations.
The partial explanations of (Shimony 1991) are sets of
worlds where the truth values of some primitive propo-
sitions are fixed, while the rest can be arbitrary. The sets of
partial explanations of (Shimony 1993) correspond to more
general sets of worlds, but there are still significant restric-
tions. For example, the disjunctive explanation must corre-
spond to a node already in the network and the probability
of the explanandum must be the same for every disjunct in
the disjunctive explanation. The latter restriction is quite
severe. In our coin example, if the coins biased towards
heads have different biases, Shimony’s approach would not
allow us to consider the explanation

�
1, “we picked a coin

biased towards heads”. Of course, we can easily loosen
this restriction to allow disjunctions where the conditional
probabilities are almost the same. However, it seems to us
that we want more than just similar conditional probabili-
ties here. We only want to allow disjunctions if the causal
mechanism for each disjunct is the same.

To be fair, Shimony uses his restrictions to allow him to find
good explanations algorithmically. It is not clear whether
there are also philosophical reasons to restrict them in this
way. We hope to explore both the algorithmic and founda-
tional issues in future work.

5 CONCLUSIONS

We feel that the contribution of this paper is twofold: First,
we present a critique of two important approaches to ex-
planation; second, we outline a sketch of a novel approach
that tries to take into account the best features of both, and
combine them with a notion of causality.

Our approach clearly needs to be fleshed out. Some areas
for future research include:

¦ Obviously, much of the effort will involve research in
causality. Most of the work in causality has allowed
only what amounts to propositional reasoning. (The
nodes represent random variables that take on a small
finite number of values.) Can we extend it to allow
causal explanations that involve first-order constructs
and temporal constructs? There has been some work
on adding these constructs to Bayesian networks (see,
for example, (Dean and Kanazawa 1989; Glesner and
Koller 1995; Haddawy 1994)), but no work focusing
on their application to causal reasoning. Along simi-
lar lines, it would be useful to have a good language
for reasoning about causality, that allowed first-order
reasoning and temporal constructs.¦ As we have observed, our approach, which provides
only a partial ordering on explanations, seems too
weak. While it is not clear that we want to have a
total order, it does seem that we want to allow more
explanations to be comparable than is the case accord-
ing to our ordering. This is particularly the case if we
allow disjunctive explanations.



¦ A natural extension would be to apply our definition
to counterfactuals.
After all, humans seem to have no problem with ex-
plaining hypothetical facts. We believe that our basic
framework should be able to handle this, although per-
haps we may need to use structural equations and the
interpretation of counterfactuals given by Balke and
Pearl (1994).¦ As we said earlier, given that our goal is to have the
system provide an explanation that is useful to a user,
it would be important to model the user’s knowledge
state and adjust explanations accordingly. The work of
Suermondt (1992) is relevant in this regard. He also
puts the emphasis on explaining beliefs (or, specifi-
cally, probability distribution over the node of inter-
est) adopted by the system as a result of receiving some
observation. His goal is to find a small subset of ev-
idence responsible for this change and the links most
influential in transmitting it. In our context, we can
understand Suermondt as considering a system which
has full knowledge of the domain (characterized by a
Bayes Net together with all the conditional probability
tables) and knows the values of some variables, trying
to explain its beliefs to a user with no (or minimal)
knowledge. Thus, for him, an explanation amounts to
finding a “small” set of instantiations of variables (i.e.,
a partial truth assignment) and a ‘small” partial causal
mechanism that will raise the posterior probability of
the observations.

Given the importance of explanation, we believe that these
questions represent fruitful lines for further research.
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