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1. INTRODUCTION

One of the most important notions in probability theory is that of expectation.
The expected value of a random variable is, in a sense, the single number that
best describes the random variable. While probability is certainly still the most
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dominant approach to representing uncertainty, in the past two decades there
has been a great deal of interest in alternative representations of uncertainty,
both from a normative and descriptive point of view. This may seem somewhat
surprising to those familiar with the many arguments that have been made showing
that probability is the only rational approach to representing uncertainty (see, for
example, Cox [1946], Ramsey [1931], de Finetti [1931], Savage [1954]). However, all
these arguments depend on assumptions, perhaps the most controversial of which
is that the uncertainty of an event can be completely characterized by a single
number. (See Walley [1991] for a good summary of the arguments for the need to
occasionally go beyond probabilistic expectation.) Some alternatives to probability
in the literature include sets of probability measure [Huber 1981; Walley 1991],
Dempster-Shafer belief functions [Shafer 1976] and the closely related nonadditive
measures [Schmeidler 1989], and possibility measures [Dubois and Prade 1990].

In this paper, we consider the notion of expectation for all these representations
of uncertainty. We do not take a stand here on what the “right” way is to represent
uncertainty; we simply investigate characterizations of expectation and reasoning
about expectation, both for probability and for other representations of uncertainty.

It is well known that a probability measure determines a unique expectation
function that is linear (i.e., E(aX+bY ) = aE(X)+bE(Y )), monotone (i.e., X ≤ Y
implies E(X) ≤ E(Y )), and maps constant functions to their value. Conversely,
given an expectation function E (that is, a function from random variables to the
reals) that is linear, monotone, and maps constant functions to their value, there
is a unique probability measure µ such that E = Eµ. That is, there is a 1-1
mapping from probability measures to (probabilistic) expectation functions. One
of the goals of this paper is to provide similar characterizations of expectation for
other representations of uncertainty.

Some work along these lines has already been done, particulary with regard to
sets of probability measures [Huber 1981; Walley 1991; 1981].1 However, there
seems to be surprisingly little work on characterizing expectation in the context of
other measures of uncertainty, such as belief functions [Shafer 1976] and possibility
measures [Dubois and Prade 1990]. We provide characterizations here.

Having characterized expectation functions, we then turn to the problem of
reasoning about them. We define a logic similar in spirit to that introduced by
Fagin et al. [1990] (FHM from now on) for reasoning about likelihood expressed
as either probability or belief. The same logic is used by Halpern and Pucella
[2002a] (HP from now on) for reasoning about upper probabilities. The logic for
reasoning about expectation is strictly more expressive than its counterpart for
reasoning about likelihood if the underlying semantics is given in terms of sets
of probability measures (so that upper probabilities and upper expectations are
used, respectively); it turns out to be equi-expressive in the case of probability,
belief functions, and possibility measures. This is somewhat surprising, especially
in the case of belief functions. In all cases, the fact that expectations are at least as
expressive is immediate, since the expectation of ϕ (viewed as an indicator function,
that is, the random variable that is 1 in worlds where ϕ is true and 0 otherwise)

1Walley [1991] actually characterizes lower and upper previsions; but these are essentially lower

and upper expectations with respect to sets of probability measures.
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is equal to its likelihood. However, it is not always obvious how to express the
expectation of a random variable in terms of likelihood.

We then provide a sound and complete axiomatization for the logic with respect
to each of the interpretations of expectation that we consider, using our characteri-
zation of expectation. Finally, we show that, just as in the case of the corresponding
logic for reasoning about likelihood, the complexity of the satisfiability problem is
NP-complete. This is clear when the underlying semantics is given in terms of
probability measures, belief functions, or possibility measures, but it is perhaps
surprising that, despite the added expressiveness in the case of sets of probability
measures, reasoning in the logic remains NP-complete.

To the best of our knowledge, there is only one previous attempt to express
properties of expectation in a logical setting. Wilson and Moral [1994] take as their
starting point Walley’s notion of lower and upper previsions. They consider when
acceptance of one set of gambles implies acceptance of another gamble. This is
a notion that is easily expressible in our logic when the original set of gambles is
finite, so our logic subsumes theirs in the finite case.

This paper is organized as follows. In the next section, the characterizations of
expectation for probability measures and sets of probability measures are reviewed,
and the characterizations of expectation for belief functions and possibility measures
are provided. In Section 3, we introduce a logic for reasoning about expectation
with respect to all these representations of uncertainty. In Section 4, we compare
the expressive power of our expectation logic to that of the logic for reasoning
about likelihood. In Section 5, we derive sound and complete axiomatizations for
the logic in Section 3, with respect to different representations of uncertainty. In
Section 6, we prove that the decision problem for the expectation logic is NP-
complete for each of the representations of uncertainty we consider. Finally, in
Section 7, we discuss an axiomatization of gamble inequalities, which is assumed
by the axiomatizations given in Section 5. The proofs of the more technical results
are given in the appendix.

2. EXPECTATION FUNCTIONS

Recall that a random variable X on a sample space (set of possible worlds) W is
a function from W to some range. Let V(X) denote the image of X, that is, the
possible values of X. A gamble is a random variable whose range is the reals. In
this paper, we focus on the expectation of gambles. Additionally, we restrict to
finite sample spaces; most of the issues of interest already arise in the finite sample
space setting. (Most of the results in this section extend in a straightforward way
to the infinite sample space setting, by adding suitable continuity assumptions on
the measures defined. See Halpern [2003] for more detail.) Note that if the sample
space is finite, the range V(X) of a gamble X is finite. This allows us to define
expectation using summation rather than integration.

2.1 Expectation for Probability Measures

Given a finite sample space W , and a probability measure µ and gamble X over
W , the expected value of X (or the expectation of X) with respect to µ, denoted
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Eµ(X), is just ∑
w∈W

µ(w)X(w). (1)

Thus, the expected value of a gamble is essentially the “average” value of the
variable.

Actually, (1) makes sense only if every singleton is measurable (i.e., in the domain
of µ). If singletons are not necessarily measurable, the standard assumption is that
X is measurable with respect to the algebra F on which µ is defined; that is, for each
value x ∈ V(X), the set of worlds X = x where X takes on value x is measurable.2

(In general, a function f : W →W ′ is measurable with respect to F if f−1(w′) ∈ F
for all w′ ∈W ′.) Then

Eµ(X) =
∑

x∈V(X)

xµ(X = x). (2)

Note that this definition makes sense even if W is not finite, so long as V(X) is
finite. It is easy to check that (1) and (2) are equivalent if W is finite and all
singletons are measurable.

As is well known, probabilistic expectation functions can be characterized by a
small collection of properties. If X and Y are gambles on W and a and b are real
numbers, define the gamble aX + bY on W in the obvious way: (aX + bY )(w) =
aX(w) + bY (w). Say that X ≤ Y if X(w) ≤ Y (w) for all w ∈W . Let c̃ denote the
constant function which always returns c; that is, c̃(w) = c. Let µ be a probability
measure on W .

Proposition 2.1. The function Eµ has the following properties for all measur-
able gambles X and Y .

(a) Eµ is additive: Eµ(X + Y ) = Eµ(X) + Eµ(Y ).

(b) Eµ is affinely homogeneous: Eµ(aX + b̃) = aEµ(X) + b for all a, b ∈ R.
(c) Eµ is monotone: if X ≤ Y , then Eµ(X) ≤ Eµ(Y ).

Proof. See any standard text in probability or discrete mathematics [Billingsley
1995]

The next result shows that the properties in Proposition 2.1 essentially character-
ize probabilistic expectation functions. It too is well known. We provide the proof
here, just to show how the assumptions are used. In the proof (and throughout
the paper) we make use of a special type of random variable. Let XU denote the
gamble such that XU (w) = 1 if w ∈ U and XU (w) = 0 if w /∈ U . A gamble of the
form XU is traditionally called an indicator function.

Theorem 2.2. Suppose that E maps gambles measurable with respect to some
algebra F to R and E is additive, affinely homogeneous, and monotone. Then there
is a (necessarily unique) probability measure µ on F such that E = Eµ.

2Recall that an algebra F over a sample space W is a set of subsets of W that includes W itself
and is closed under complementation and union, so that if U, V ∈ F , then so is U and U ∪ V .
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Proof. Define µ(U) = E(XU ). Note that XW = 1̃, so µ(W ) = 1, since E is
affinely homogeneous. Since X∅ is 0̃ and E is affinely homogeneous, it follows that
µ(∅) = E(X∅) = 0. X∅ ≤ XU ≤ XW for all U ⊆ W ; since E is monotone, it
follows that 0 = E(X∅) ≤ E(XU ) = µ(U) ≤ E(XW ) = 1. If U and V are disjoint,
then it is easy to see that XU∪V = XU +XV . By additivity,

µ(U ∪ V ) = E(XU∪V ) = E(XU ) + E(XV ) = µ(U) + µ(V ).

Thus, µ is indeed a probability measure.
To see that E = Eµ, note that it is immediate from (2) that µ(U) = Eµ(XU ) for

U ∈ F . Thus, Eµ and E agree on all measurable indicator functions. Every mea-
surable gamble X can be written as a linear combination of measurable indicator
functions. For each a ∈ V(X), let UX,a = {w : X(w) = a}. Since X is a measurable
gamble, UX,a must be in F . Moreover, X =

∑
a∈V(X) aXUX,a

. By additivity and
affine homogeneity, Eµ(X) =

∑
a∈V(X) aE(XUX,a

). By Proposition 2.1, Eµ(X) =∑
a∈V(X) aEµ(XUX,a

). Since E and Eµ agree on measurable indicator functions, it
follows that E(X) = Eµ(X). Thus, E = Eµ as desired.

Clearly, if µ(U) 6= µ′(U), then Eµ(XU ) 6= Eµ′(XU ). Thus, µ is the unique
probability measure on F such that E = Eµ.

2.2 Expectation for Sets of Probability Measures

If P is a set of probability measures on a space W , define

P∗(U) = inf{µ(U) : µ ∈ P} and
P∗(U) = sup{µ(U) : µ ∈ P}.

P∗(U) is called the lower probability of U and P∗(U) is called the upper probability
of U . Lower and upper probabilities have been well studied in the literature (see,
for example, Borel [1943], Smith [1961]).

There are straightforward analogues of lower and upper probability in the context
of expectation. If P is a set of probability measures such that X is measurable with
respect to each probability measure µ ∈ P, then define EP(X) = {Eµ(X) : µ ∈ P}.
EP(X) is a set of numbers. Define the lower expectation and upper expectation of
X with respect to P, denoted EP(X) and EP(X), as the inf and sup of the set
EP(X), respectively.

The properties of EP and EP are not so different from those of probabilistic
expectation functions. Note that Eµ(XU ) = µ(U). Similarly, it is easy to see
that P∗(U) = EP(XU ) and P∗(U) = EP(XU ). Moreover, we have the following
analogue of Propositions 2.1.

Proposition 2.3. The functions EP and EP have the following properties for
all gambles X and Y .

(a) EP(X + Y ) ≥ EP(X) + EP(Y ) (superadditivity);
EP(X + Y ) ≤ EP(X) + EP(Y ) (subadditivity).

(b) EP and EP are both positively affinely homogeneous: EP(aX+b̃) = aEP(X)+
b and EP(aX + b̃) = aEP(X) + b if a, b ∈ R, a ≥ 0.

(c) EP and EP are monotone.
(d) EP(X) = −EP(−X).

Journal of the ACM, Vol. V, No. N, May 2007.
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Proof. This result is also well-known; see Walley [1991, Section 2.6.1]. (Walley
proves the result for what he calls coherent lower and upper previsions, but then
proves [Walley 1991, Section 3.3.4] that these are equivalent to lower and upper
expectations, respectively.)

Superadditivity (resp., subadditivity), positive affine homogeneity, and mono-
tonicity in fact characterize EP (resp., EP).

Theorem 2.4. [Huber 1981] Suppose that E maps gambles measurable with
respect to F to R and is superadditive (resp., subadditive), positively affinely homo-
geneous, and monotone. Then there is a set P of probability measures on F such
that E = EP (resp., E = EP).3

The set P constructed in Theorem 2.4 is not unique. It is not hard to construct
sets P and P ′ such that P 6= P ′ but EP = EP′ . However, there is a canonical largest
set P such that E = EP ; P consists of all probability measures µ such that Eµ(X) ≥
E(X) for all gambles X. This set P can be shown to be closed and convex. Indeed,
it easily follows that Theorem 2.4 actually provides a 1-1 mapping from closed,
convex sets of probability measures to lower/upper expectations. Moreover, in a
precise sense, this is the best we can do. If P and P ′ have the same convex closure
(where the convex closure of a set is the smallest closed, convex set containing it),
then EP = EP′ .

As Walley [1991] shows, what he calls coherent lower/upper previsions are also
lower/upper expectations with respect to some set of probability measures. Thus,
lower/upper previsions can be identified with closed, convex sets of probability
measures.

2.3 Expectation for Belief Functions

As is well known, a belief function [Shafer 1976] Bel is a function from subsets of a
state space W to [0, 1] satisfying the following three properties:

B1. Bel(∅) = 0.
B2. Bel(W ) = 1.
B3. For n = 1, 2, 3, . . .,

Bel(
⋃n
i=1 Ui) ≥

∑n
i=1

∑
{I⊆{1,...,n}:|I|=i}(−1)i+1Bel(

⋂
j∈I Uj).

Given a belief function Bel, there is a corresponding plausibility function Plaus,
where Plaus(U) = 1 − Bel(U). It follows easily from B3 that Bel(U) ≤ Plaus(U)
for all U ⊆W . Bel(U) can be thought of as a lower bound of a set of probabilities
and Plaus(U) can be thought of as the corresponding upper bound. This intuition
is made precise in the following well-known result.

Theorem 2.5. [Dempster 1967] Given a belief function Bel defined on W , let
PBel = {µ : µ(U) ≥ Bel(U) for all U ⊆W}. Then Bel = (PBel)∗.4

3There is an equivalent characterization of EP , due to Walley [1991]. He shows that E = EP
for some set P of probability measures iff E is superadditive, E(cX) = cE(X), and E(X) ≥
inf{X(w) : w ∈ W}. There is an analogous characterization of EP .
4Dempster [1967] defines PBel as {µ : Plaus(U) ≥ µ(U) ≥ Bel(U) for all U ⊆ W}, but his
definition is easily seen to be equivalent to that given here. For if µ(U) ≥ Bel(U) for all U ⊆ W

then, in particular, µ(U) ≥ Bel(U), so Plaus(U) = 1− Bel(U) ≥ 1− µ(U) = µ(U).
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w1

x3

X(w)

Ww4w3w2

x1

x2

Fig. 1. Two equivalent definitions of probabilistic expectation.

Similarly, we can check that Plaus(U) = 1 − Bel(U) = (PBel)∗. There is an
obvious way to define a notion of expectation based on belief functions, using the
identification of Bel with (PBel)∗. Given a belief function Bel, define EBel = EPBel

.
Similarly, for the corresponding plausibility function Plaus, define EPlaus = EPBel .
(These definitions are in fact used by Dempster [1967]).

This is well defined, but it seems more natural to get a notion of expectation for
belief functions that is defined purely in terms of belief functions, without reverting
to probability. One way of doing so is due to Choquet [1953].5

It takes as its point of departure the following alternate definition of expecta-
tion in the case of probability. Suppose that X is a gamble such that V(X) =
{x1, . . . , xn}, with x1 < . . . < xn.

Proposition 2.6. Eµ(X) = x1 +(x2−x1)µ(X > x1)+ · · ·+(xn−xn−1)µ(X >
xn−1).

Proof. Figure 1 should help make clear why this result is true, where we assume
for simplicity that the worlds W = {w1, w2, . . .} are ordered such that if X(wi) <
X(wj), then i < j. If we assume that the probability of a world wi is the width
of the vertical rectangle over wi, then it should be clear that the total area of
the rectangles represent the expectation of X. Notice that the vertical rectangles
determine the expectation using the standard definition (2), while the horizontal
rectangles determine the expectation using the formula in this proposition.

For a more formal proof, suppose that V(X) = {x1, . . . , xn}, where x1 < . . . <
xn. We proceed by induction on n. If n = 1, the result is trivial, since clearly
Eµ(X) = x1. If n > 1, then note that X = X1 + X2, where X1(w) = X(w) if
X(w) 6= xn, and X1(w) = xn−1 if X(w) = xn, and X2(w) = 0 if X(w) 6= xn,
and X(w) = xn − xn−1 if X(w) = xn. Clearly X = X1 + X2, so by additivity,
E(X) = E(X1) + E(X2). Note that V(X1) = {x1, . . . , xn−1}, so by the induction
hypothesis, Eµ(X1) = x1 +(x2−x1)µ(X > x1)+ · · ·+(xn−1−xn−2)µ(X > xn−2).

5Choquet actually talked about k-monotone capacities, which are essentially functions that satisfy

B3 where n = 1, . . . , k. Belief functions are infinitely monotone capacities.
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Finally, it is immediate from the definition of X2 that Eµ(X2) = (xn−xn−1)µ(X >
xn−1). The result follows immediately.

Define

E′Bel(X) = x1 + (x2 − x1)Bel(X > x1) + · · ·+ (xn − xn−1)Bel(X > xn−1). (3)

An analogous definition holds for plausibility:

E′Plaus(X) = x1 + (x2 − x1)Plaus(X > x1) + · · ·+ (xn − xn−1)Plaus(X > xn−1).
(4)

Proposition 2.7. [Schmeidler 1989] EBel = E′Bel and EPlaus = E′Plaus.

Schmeidler [1986; 1989] actually used Choquet’s definition to define a notion
of expectation for what he called nonadditive probabilities, where a nonadditive
probability ν maps subsets of a space W to [0, 1] such that ν(∅) = 0, ν(W ) = 1,
and ν(U) ≤ ν(V ) if U ⊆ V . He proved an analogue of Proposition 2.7 for arbitrary
nonadditive probabilities. Since belief functions and plausibility functions are both
nonadditive probabilities in Schmeidler’s sense, Proposition 2.7 is actually a special
case of Schmeidler’s result.

Proposition 2.7 shows that (3) gives a way of defining expectation for belief
functions without referring to probability. There is yet a third way of defining
expectation for belief functions, which also does not use probability; see the proof
of Theorem 6.2 in Appendix A.4.

Since EBel can be viewed as a special case of the lower expectation EP (tak-
ing P = PBel), it is immediate from Proposition 2.3 that EBel is superadditive,
positively affinely homogeneous, and monotone. (Similar remarks hold for EPlaus,
except that it is subadditive. For ease of exposition, we focus on EBel in the
remainder of this section, although analogous remarks hold for EPlaus.)

Since it is immediate from the definition that EBel(XU ) = Bel(U), the inclusion-
exclusion property B3 of belief functions can be expressed in terms of expectation
(just by replacing all instances of Bel(V ) in B3 by EBel(XV )). Moreover, it does not
follow from the other properties, since it can be shown not to hold for arbitrary lower
probabilities. This restatement of the inclusion-exclusion property applies only to
the expectation of indicator functions. But, in fact, a more general inclusion-
exclusion property holds for EBel. Given gambles X and Y , define the gambles
X ∧ Y and X ∨ Y as the minimum and maximum of X and Y , respectively; that
is, (X ∧Y )(w) = min(X(w), Y (w)) and (X ∨Y )(w) = max(X(w), Y (w)). Consider
the following inclusion-exclusion property for expectation functions:

E(∨ni=1Xi) ≥
n∑
i=1

∑
{I⊆{1,...,n}:|I|=i}

(−1)i+1E(∧j∈IXj). (5)

Since it is immediate that XU∪V = XU ∨XV and XU∩V = XU ∧XV , (5) generalizes
B3. We recover B3 from (5) by taking Xi to be the indicator function XUi

.
There is yet another property satisfied by expectation functions based on belief

functions. Two gambles X and Y are said to be comonotonic if it is not the case
that one increases while the other decreases. Formally, this means that there do
not exist worlds w and w′ such that (X(w) − X(w′))(Y (w) − Y (w′)) < 0. The
Journal of the ACM, Vol. V, No. N, May 2007.
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property satisfied by expectation based on belief functions is called comonotonic
additivity :

If X and Y are comonotonic, then E(X + Y ) = E(X) + E(Y ). (6)

The fact that EBel satisfies this property was essentially recognized by Dellacherie
[1970].

Proposition 2.8. The function EBel is superadditive, positively affinely homo-
geneous, monotone, and satisfies (5) and (6).6

Proof. See Appendix A.1.

Theorem 2.9. Suppose that E is an expectation function that is positively affinely
homogeneous, monotone, and satisfies (5) and (6). Then there is a (necessarily
unique) belief function Bel such that E = EBel.

Proof. See Appendix A.1.

Schmeidler [1986] proved that expectation functions for nonadditive measures
are characterized by positive affine homogeneity, monotonicity, and comonotonicity.
Theorem 2.9 shows that the inclusion-exclusion property (5) is what distinguishes
expectation for belief functions from expectation for arbitrary nonadditive mea-
sures. Note that superadditivity was not assumed in the statement of Theorem 2.9.
Indeed, it is a consequence of Theorem 2.9 that superadditivity follows from the
other properties. In fact, the full stength of positive affine homogeneity is not
needed either in Theorem 2.9. It suffices to assume that E(b̃) = b.

Corollary 2.10. Given a belief function Bel, EBel is the unique expectation
function E that is superadditive, positively affinely homogeneous, monotone, and
satisfies (5) and (6) such that E(XU ) = Bel(U) for all U ⊆W .

Proof. Proposition 2.8 shows that EBel has the required properties. If E′ is
an expectation function that has these properties, by Theorem 2.9, E′ = EBel′ for
some belief function Bel′. Since E′(XU ) = Bel′(U) = Bel(U) for all U ⊆ W , it
follows that Bel = Bel′.

Corollary 2.10 is somewhat surprising. While it is almost immediate that an
additive, affinely homogeneous expectation function (the type that arises from a
probability measure) is determined by its behavior on indicator functions, it is
not at all obvious that a superadditive, positively affine homogeneous expectation
function should be determined by its behavior on indicator functions. In fact, in
general it is not; the inclusion-exclusion property is essential. Corollary 2.10 says
that Bel and EBel contain the same information. Thus, so do (PBel)∗ and EPBel

(since Bel = (PBel)∗ and EBel = EPBel
). However, this is not true for arbitrary sets

P of probability measures, as the following example shows.

Example 2.11. Let W = {1, 2, 3}. A probability measure µ on W can be
characterized by a triple (a1, a2, a3), where µ(i) = ai. Let P consist of the three

6In a preliminary version of this paper [Halpern and Pucella 2002b] we used a different character-
ization of expectation functions, based on belief functions. The current characterization is much
simpler.
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probability measures (0, 3/8, 5/8), (5/8, 0, 3/8), and (3/8, 5/8, 0). It is almost imme-
diate that P∗ is 0 on singleton subsets ofW and P∗ = 3/8 for doubleton subsets. Let
P ′ = P∪{µ4}, where µ4 = (5/8, 3/8, 0). It is easy to check that P ′∗ = P∗. However,
EP 6= EP′ . In particular, let X be the gamble such that X(1) = 1, X(2) = 2, and
X(3) = 3. Then EP(X) = 13/8 but EP′(X) = 11/8. Thus, although EP and
EP′ agree on indicator functions, they do not agree on all gambles. In light of the
discussion above, it should be no surprise that P∗ is not a belief function.

2.4 Expectation for Possibility Measures

A possibility measure Poss is a function from subsets of W to [0, 1] such that

Poss1. Poss(∅) = 0.

Poss2. Poss(W ) = 1.

Poss3. Poss(U ∪ V ) = max(Poss(U),Poss(V )) if U and V are disjoint.

It is not hard to show that Poss3 implies that Poss(U∪V ) = max(Poss(U),Poss(V ))
even when U and V are not disjoint.

It is well known [Dubois and Prade 1982] that possibility measures are special
cases of plausibility functions. Thus, (4) can be used to define a notion of possi-
bilistic expectation; indeed, this has been done in the literature [Dubois and Prade
1987]. It is also straightforward to see from Poss3 that the expectation function
EPoss defined from a possibility measure Poss in this way satisfies the following max
property defined in terms of indicator functions:

EPoss(XU∪V ) = max(EPoss(XU ), EPoss(XV ). (7)

Proposition 2.12. The function EPoss is positively affinely homogeneous, mono-
tone, and satisfies (6) and (7).

Proof. See Appendix A.1.

Theorem 2.13. Suppose that E is an expectation function that is positively
affinely homogeneous, monotone, and satisfies (6) and (7). Then there is a (neces-
sarily unique) possibility measure Poss such that E = EPoss.

Proof. See Appendix A.1.

Note that, although Poss is a plausibility measure, and thus satisfies the analogue
of (5) with ≥ replaced by ≤, there is no need to state (5) explicitly; it follows
from (7). Moreover, just as with expectation for belief functions, it follows from
the other properties that EPoss is subadditive. (Since a possibility measure is a
plausibility function, not a belief function, the corresponding expectation function
is subadditive rather than superadditive.)

3. A LOGIC FOR REASONING ABOUT EXPECTATION

We now consider a logic for reasoning about expectation. To set the stage, we
briefly review the FHM logic for reasoning about likelihood.
Journal of the ACM, Vol. V, No. N, May 2007.
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3.1 Reasoning about Likelihood

The syntax of the FHM logic is straightforward. Fix a set Φ0 = {p1, p2, . . .} of
primitive propositions. The choice of primitive propositions is application depen-
dent. The set of primitive propositions could include statements such as “the
patient has cancer” and “the patient has fever” if we are reasoning in a medical
domain, or statements such as “the price of IBM stock is over $80” if we are
considering a financial domain. The set Φ of propositional formulas is the closure
of Φ0 under ∧ and ¬. We can define ∨ and ⇒ in the usual way; we use the
operators freely throughout the paper. We assume a special propositional formula
true, and abbreviate ¬true as false. A basic likelihood formula has the form
a1`(ϕ1) + · · · + ak`(ϕk) ≥ b, where a1, . . . , ak, b are integers and ϕ1, . . . , ϕk are
propositional formulas.7 The ` stands for likelihood. Thus, a basic likelihood
formula talks about a linear combination of likelihood terms of the form `i(ϕ). A
likelihood formula is a Boolean combination of basic likelihood formulas. Let LQU
be the language consisting of likelihood formulas. (The QU stands for quantitative
uncertainty. The name for the logic is taken from Halpern [2003].)

We use standard abbreviations such as −`(ϕ) for (−1)`(ϕ), and formulas `(ϕ1) ≥
`(ϕ2) for `(ϕ1) − `(ϕ2) ≥ 0. In addition, we write a1`(ϕ1) + . . . + ak`(ϕk) ≤ b for
−a1`(ϕ1)− . . .− ak`(ϕk) ≥ −b, a1`(ϕ1) + . . .+ ak`(ϕk) > b for ¬(a1`(ϕ1) + . . .+
ak`(ϕk) ≤ b), a1`(ϕ1) + . . .+ ak`(ϕk) < b for −a1`(ϕ1)− . . .− ak`(ϕk) > −b, and
a1`(ϕ1) + . . . + ak`(ϕk) = b for (a1`(ϕ1) + . . . + ak`(ϕk) ≥ b) ∧ (a1`(ϕ1) + . . . +
ak`(ϕk) ≤ b).

The semantics of LQU depends on how ` is interpreted. In FHM, it is interpreted
as a probability measure and as a belief function; in HP, it is interpreted as an
upper probability (determined by a set of probability measures). Depending on the
interpretation, `(ϕ) is the probability of ϕ (i.e., more precisely, the probability of
the set of worlds where ϕ is true), the belief in ϕ, etc. For example, in the case
of probability, define a probability structure to be a tuple M = (W,F , µ, π), where
W is a (possibly infinite) set of worlds, µ is a probability measure whose domain
is the algebra F of subsets of W , and π is an interpretation, which associates with
each state (or world) in W a truth assignment on the primitive propositions in Φ0.
Thus, π(s)(p) ∈ {true, false} for s ∈ W and p ∈ Φ0. We require that primitive
propositions be measurable, that is, that {s ∈ W : π(s)(p) = true} ∈ F for all
p ∈ Φ0. Extend π(s) to a truth assignment on all propositional formulas in the
standard way, and associate with each propositional formula the set [[ϕ]]M = {s ∈
W : π(s)(ϕ) = true}. Note that [[ϕ]]M is measurable for all ϕ since F is an
algebra. Then

M |= a1`(ϕ1) + · · ·+ an`(ϕn) ≥ b iff a1µ([[ϕ1]]M ) + · · ·+ anµ([[ϕn]]M ) ≥ b.

The semantics of Boolean combinations of basic likelihood formulas is given in the

7As observed in FHM, we gain no further generality by allowing the coefficients a1, . . . , ak to be

rational numbers, since for any formula with rational coefficients, we can easily find an equivalent
formula with coefficients that are integers by clearing the dominator. There is no difficulty giving

semantics to formulas where the coefficients are arbitrary real numbers (and, indeed, this is what

we did in a preliminary version of the paper [Halpern and Pucella 2002b]), but allowing real
numbers causes problems in the complexity results. (In the preliminary version, we restricted to

integer coefficients for the complexity results.)
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obvious way.
We can similarly give semantics to ` using lower (or upper) probability. Define

a lower probability structure to be a tuple M = (W,F ,P, π), W , F and π are,
as before, a (possibly infinite) set of worlds, an algebra of subsets of W , and an
interpretation that makes each primitive proposition measurable, and P is a set of
probability measures over F . Likelihood is interpreted as lower probability in lower
probability structures:8

M |= a1`(ϕ1) + · · ·+ an`(ϕn) ≥ b iff a1P∗([[ϕ1]]M ) + · · ·+ anP∗([[ϕn]]M ) ≥ b.

A belief structure has the form M = (W,Bel, π), where Bel is a belief function.
We can interpret likelihood formulas with respect to belief structures in the obvious
way. Similarly, a possibility structure has the form M = (W,Poss, π), where Poss
is a possibility measure. Again, we interpret likelihood formulas with respect to
possibility structures in the obvious way.

Let Mprob , Mlp , Mbel , and Mposs denote the set of all probability structures,
lower probability structures, belief structures, and possibility structures, respec-
tively.

3.2 Reasoning about Expectation

Our logic for reasoning about expectation is similar in spirit to LQU . The idea is to
interpret a propositional formula ϕ as the indicator function X[[ϕ]]M , which is 1 in
worlds where ϕ is true, and 0 otherwise. We can then take linear combinations of
such gambles. Formally, we again start with a set Φ0 of primitive propositions. A
(linear) propositional gamble has the form b1ϕ1 + · · ·+ bnϕn, where b1, . . . , bn are
integers and ϕ1, . . . , ϕn are propositional formulas that mention only the primitive
propositions in Φ0. We use γ to represent propositional gambles. An expectation
inequality is a statement of the form a1e(γ1) + · · · + ake(γk) ≥ b, where a1 . . . , ak
are integers, k ≥ 1, and b is an integer. An expectation formula is a Boolean
combination of expectation inequalities. We use f and g to represent expectation
formulas. We define ≤, >, <, and = just as in Section 3.1, Let LE be the language
consisting of expectation formulas.

Given a model M , we associate with a propositional gamble γ the gamble {|γ|}M ,
where {|b1ϕ1+· · ·+bnϕn|}M = b1X[[ϕ1]]M +· · ·+bnX[[ϕn]]M . Of course, the intention is
to interpret e(γ) in M as the expected value of the gamble {|γ|}M , where the notion
of “expected value” depends on the underlying semantics. In the case of probability
structures, it is probabilistic expectation; in the case of belief structures, it is
expected belief; in the case of lower probability structures, it is lower expectation;
and so on. For example, if M ∈Mprob , then

M |= a1e(γ1) + · · ·+ ake(γk) ≥ b iff a1Eµ({|γ1|}M ) + · · ·+ akEµ({|γk|}M ) ≥ b.

Again, Boolean combinations are defined in the obvious way. We leave the
obvious semantic definitions in the case of belief structures and lower probability
structures to the reader.

8In HP, we interpreted likelihood as upper probability. We interpret it here as lower probability
to bring out the connections to belief, which is an instance of lower probability. It is easy to

translate from upper probabilities to lower probabilities and vice versa, since P∗(U) = 1−P∗(U).
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4. EXPRESSIVE POWER

It is easy to see that LE is at least as expressive as LQU . Since the expected value
of an indicator function is its likelihood, for all the notions of likelihood we are
considering, replacing all occurrences of `(ϕ) in a formula in LQU by e(ϕ) gives an
equivalent formula in LE . Is LE strictly more expressive than LQU? That depends
on the underlying semantics.

In the case of probability, it is easy to see that it is not. Using additivity and
affine homogeneity, it is easy to take an arbitrary formula f ∈ LE and find a formula
f ′ ∈ LE that is equivalent to f (with respect to structures in Mprob) such that e
is applied only to propositional formulas. Then using the equivalence of e(ϕ) and
`(ϕ), we can find a formula fT ∈ LQU equivalent to f with respect to structures
in Mprob . It should be clear that the translation f to fT causes at most a linear
blowup in the size of the formula.

The same is true if we interpret formulas with respect toMbel andMposs . In both
cases, given a formula f ∈ LE , we can use (6) to find a formula f ′ ∈ LE equivalent
to f such that e is applied only to propositional formulas (see Lemma A.5 in the
appendix). It is then easy to find a formula fT ∈ LQU equivalent to f ′ with respect
to structures in Mbel and Mposs . However, now the translation from f to fT can
cause an exponential blowup in the size of the formula; we do not know if there is
a shorter translation.

What about lower expectation/probability? In this case, LE is strictly more
expressive than LQU . It is not hard to construct two structures in Mlp that agree
on all formulas in LQU but disagree on formulas in LE such as e(p+q) > 1/2. That
means that there cannot be a formula in LQU equivalent to e(p+ q) > 1/2.

The following theorem summarizes this discussion.

Theorem 4.1. LE and LQU are equivalent in expressive power with respect to
Mprob, Mbel , and Mposs . LE is strictly more expressive than LQU with respect to
Mlp.

Proof. See Appendix A.2.

5. AXIOMATIZING EXPECTATION

In FHM, a sound and complete axiomatization is provided for LQU both with
respect toMprob andMbel ; in HP, a sound and complete axiomatization is provided
for LQU with respect toMlp . Here we provide a sound and complete axiomatization
for LE with respect to these structures, as well as with respect to Mposs .

The axiomatization for LQU given in FHM splits into three parts, dealing re-
spectively with propositional reasoning, reasoning about linear inequalities, and
reasoning about likelihood. We follow the same pattern here. The following axioms
characterize propositional reasoning:

Taut. All instances of propositional tautologies in the language LE .
MP. From f and f ⇒ g infer g.

Instances of Taut include all formulas of the form f∨¬f , where f is an expectation
formula. We could replace Taut by a simple collection of axioms that characterize
propositional reasoning (see, for example, Mendelson [1964]), but we have chosen
to focus on aspects of reasoning about expectations.
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The following axiom characterizes reasoning about linear inequalities:

Ineq. All instances in LE of valid formulas about linear inequalities.

This axiom is taken from FHM. There, an inequality formula is taken to be a
Boolean combination of formulas of the form a1x1 + · · ·+ anxn ≥ c, over variables
x1, . . . , xn. Such a formula is valid if the resulting inequality holds under every
possible assignment of real numbers to variables. To get an instance of Ineq, we
replace each variable xi that occurs in a valid formula about linear inequalities by
a primitive expectation term of the form e(γi) (naturally each occurrence of the
variable xi must be replaced by the same primitive expectation term e(γi)). As with
Taut, we can replace Ineq by a sound and complete axiomatization for Boolean
combinations of linear inequalities. One such axiomatization is given in FHM. It is
described in Section 7; the details do not matter for the discussion in this section.

The following axioms characterize probabilistic expectation in terms of the prop-
erties described in Proposition 2.1.

E1. e(γ1 + γ2) = e(γ1) + e(γ2),
E2. e(aϕ) = ae(ϕ) for all a ∈ R,
E3. e(false) = 0,
E4. e(true) = 1,
E5. e(γ1) ≤ e(γ2) if γ1 ≤ γ2 is an instance of a valid formula about propositional

gamble inequality (see below).

Axiom E1 is simply additivity of expectations. Axioms E2, E3, and E4, in conjunc-
tion with additivity, capture affine homogeneity. Axiom E5 captures monotonicity.
A propositional gamble inequality is a formula of the form γ1 ≤ γ2, where γ1 and
γ2 are propositional gambles. Examples of valid propositional gamble inequalities
are p = p ∧ q + p ∧ ¬q, ϕ ≤ ϕ + ψ, and ϕ ≤ ϕ ∨ ψ. We define the semantics
of gamble inequalities more carefully in Section 7, where we provide a complete
axiomatization for them. As in the case of Ineq, we can replace E5 by a sound
and complete axiomatization for Boolean combinations of gamble inequalities.9

Let AXprob be the axiomatization {Taut,MP, Ineq,E1,E2,E3,E4,E5}. As
usual, given an axiom system AX, we say that a formula f is AX-provable if it can
be proved in finitely many steps using the axioms and rules of inferences of AX.
AX is sound with respect to a class M of structures if every AX-provable formula
is valid in M. AX is complete with respect to M if every formula that is valid in
M is AX-provable.

Theorem 5.1. AXprob is a sound and complete axiomatization of LE with
respect to Mprob.

Proof. See Appendix A.3.

9We could have taken a more complex language that contains both expectation formulas and

gamble inequalities. We could then merge the axiomatizations for expectation formulas and gamble

inequalities. For simplicity, and to clarify the relationship between reasoning about expectation
versus reasoning about likelihood (see Section 4), we consider only the restricted language in this

paper.
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Despite the fact that we allow structures that have infinitely many worlds, we
do not have axioms capturing the continuity properties of expectations that hold
for expectations over infinite spaces. Roughly speaking, this is because the logic
cannot distinguish between infinite sample spaces and finite ones. We make this
intuition precise in Section 6.

The characterizations of Theorems 2.4 and 2.9 suggest the appropriate axioms
for reasoning about lower expectations and expected beliefs. The following axioms
capture the properties specified in Proposition 2.3:

E6. e(γ1 + γ2) ≥ e(γ1) + e(γ2),
E7. e(aγ + b true) = ae(γ) + b, for all a, b ∈ R, a ≥ 0,
E8. e(aγ + b false) = ae(γ), for all a, b ∈ R, a ≥ 0.

Axiom E6 is superadditivity of the expectation. Axioms E7 and E8 capture
positive affine homogeneity. Note that because we do not have additivity, we
cannot get away with simpler axioms as in the case of probability. Monotonicity is
captured, as in the case of probability measures, by axiom E5. Let AXlp be the
axiomatization {Taut,MP, Ineq,E5,E6,E7,E8}.

Theorem 5.2. AXlp is a sound and complete axiomatization of LE with respect
to Mlp.

Proof. See Appendix A.3.

Although it would seem that Theorem 5.2 should follow easily from Proposi-
tion 2.3, this is, unfortunately, not the case. As usual, soundness is straightforward,
and to prove completeness, it suffices to show that if a formula f is consistent with
AXlp , it is satisfiable in a structure inMlp . Indeed, it suffices to consider formulas f
that are conjunctions of expectation inequalities and their negations. However, the
usual approach for proving completeness in modal logic, which involves considering
maximal consistent sets and canonical structures does not work. The problem is
that there are maximal consistent sets of formulas that are not satisfiable. For
example, there is a maximal consistent set of formulas that includes e(γ) > 0 and
e(γ) ≤ 1/n for n = 1, 2, . . .; this is clearly unsatisfiable. A similar problem arises in
the completeness proofs for LQU given in FHM and HP, but the techniques used
there do not seem to suffice for dealing with expectations.

Of course, it is the case that any expectation function that satisfies the constraints
in the formula f and also every instance of axioms E6, E7, and E8 must be a lower
expectation, by Theorem 2.4. The problem is that, a priori, there are infinitely
many relevant instances of the axioms. To get completeness, we must reduce this
to a finite number of instances of these axioms. It turns out that this can be done,
using techniques from linear programming and Walley’s [1991] notion of natural
extension.

It is also worth noting that, although LE is a more expressive language than LQU
in the case of lower probability/expectation, the axiomatization for LE in this case
is much more elegant than the corresponding axiomatization for LQU given in HP.

We next consider expectation with respect to belief. As expected, the axioms
capturing the interpretation of belief expectation rely on the properties pointed out
in Proposition 2.8. Stating these properties in the logic requires a way to express
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the max and min of two propositional gambles. It turns out that we can view
the notation γ1 ∨ γ2 as an abbreviation for a more complex expression. Given a
propositional gamble γ = b1ϕ1 + · · · + bnϕn, we construct an equivalent gamble
γ′ as follows. First define a family ρA of propositional formulas indexed by A ⊆
{1, . . . , n} by taking ρA =

∧
i∈A ϕi ∧ (

∧
j /∈A ¬ϕj). Thus, ρA is true exactly if the

ϕi’s for i ∈ A are true, and the other ϕj ’s are false. Note that the formulas ρA are
mutually exclusive. Define bA for A ⊆ {1, . . . , n} by taking bA =

∑
i∈A bi. Define

γ′ =
∑
A⊆{1,...,n} bAρA. It is easy to check that the propositional gambles γ and γ′

are equal. Given two propositional gambles, say γ1 and γ2, we can assume without
loss of generality that the involve the same primitive propositions ϕ1, . . . , ϕn. (If
not, we can always add “dummy” terms of the form 0ψ.) Form the gambles γ′1 and
γ′2 as above. Since all the formulas mentioned in γ′1 and γ′2 are mutually exclusive,
it follows that max(γ′1, γ

′
2) =

∑
A⊆{1,...,n}max(bA, b′A)ρA. We take γ1 ∨ γ2 to be an

abbreviation for this gamble. (Note that if γ1 and γ2 are propositional formulas,
then γ1∨γ2 really is a gamble equivalent to the propositional formula γ1∨γ2, given
our identification of propositional formulas with indicator functions, so the use of
∨ is justified here.) Of course, we can similarly define γ1∧γ2, simply by taking min
instead of max.

With these definitions, the following axiom accounts for property (5):

E9. e(γ1 ∨ · · · ∨ γn) ≥
∑n
i=1

∑
{I⊆{1,...,n}:|I|=i}(−1)i+1e(

∧
j∈I γj).

To deal with the comonotonic additivity property (6), it seems that comonotonicity
must be expresssed in the logic. It turns out that it suffices to capture only a
restricted form of comonotonicity. Note that if ϕ1, . . . , ϕm are pairwise mutually
exclusive, a1 ≤ . . . ≤ am, b1 ≤ . . . ≤ bm, γ1 = a1ϕ1 + · · · + amϕm, and γ2 =
b1ϕ1 + · · · + bmϕm, then in all structures M , the gambles {|γ1|}M and {|γ2|}M are
comonotonic. Thus, by (6), it follows that EBel({|γ1 + γ2|}M ) = EBel({|γ1|}M ) +
EBel({|γ2|}M ). The proof that EBel satisfies comonotonic additivity (see the proof
of Theorem 2.9 in the appendix) shows that it suffices to restrict to gambles of this
form. These observations lead to the following axiom:

E10. e(γ1+γ2) = e(γ1)+e(γ2) if γ1 = a1ϕ1+· · ·+amϕm, γ2 = b1ϕ1+· · ·+bmϕm,
a1 ≤ . . . ≤ am, b1 ≤ . . . ≤ bm, and ¬(ϕi ∧ ϕj) is a propositional tautology
for all i 6= j.

Let AXbel be the axiomatization {Taut,MP, Ineq,E5,E7,E8,E9,E10}.

Theorem 5.3. AXbel is a sound and complete axiomatization of LE with respect
to Mbel .

Proof. See Appendix A.3.

Finally, we consider expectation with respect to possibility. The axioms capturing
the interpretation of possibilistic expectation EPoss rely on the properties pointed
out in Proposition 2.12. The max property (7) is captured by the following axiom:

E11. (e(ϕ1) ≥ e(ϕ2)) ⇒ (e(ϕ1 ∨ ϕ2) = e(ϕ1)).

E11 essentially says that e(ϕ1 ∨ ϕ2) = max(e(ϕ1), e(ϕ2)).
Let AXposs be the axiomatization {Taut,MP, Ineq,E5,E7,E8,E10,E11}.
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Theorem 5.4. AXposs is a sound and complete axiomatization of LE with
respect to Mposs .

Proof. See Appendix A.3.

6. DECISION PROCEDURES

In FHM, it was shown that the satisfiability problem for LQU is NP-complete, both
with respect to Mprob and Mbel ; in HP, NP-completeness was also shown with
respect to Mlp . Here we prove similar results for the language LE . In the case
of Mprob , this is not at all surprising, given Theorem 4.1 and the fact that the
translation from LE to LQU causes only a linear blowup in the case of Mprob .
However, we cannot get the result for Mbel or Mposs from Theorem 4.1, since
the translation causes an exponential blowup. Of course, in the case of Mlp , no
translation exists at all. Nevertheless, in all these cases, we can get NP-completeness
using techniques very much in the spirit of the linear programming techniques used
in FHM.

We define |f | to be the length of f , that is, the number of symbols required to
write f , where each coefficient is counted as one symbol. Define ||f || to be the
length of the longest coefficient appearing in f , when written in binary. The size of
a rational number a

b , denoted ||ab ||, where a and b are relatively prime, is defined
to be ||a||+ ||b||.

The next theorems, helpful to establish the complexity of the decision procedures,
show that the logic is not expressive enough to distinguish between infinite sample
spaces and infinite ones; if a formula is satisfiable at all, it is satisfiable in a
(relatively small) finite structure. In other words, we could have restricted to
structures with only finitely many worlds without loss of generality. We prove this
result for Mlp , Mbel , and Mposs ; it follows from Fagin et al. [1990, Theorem 2.4]
(which shows that a formula in the language LQU is satisfiable in Mprob iff it is
satisfiable in a finite structure in Mprob) and Theorem 4.1 (which shows that every
formula in LE is equivalent to a formula in LQU for structures in Mprob) that the
result holds for Mprob as well.

Theorem 6.1. Suppose that f ∈ LE is satisfied in some structure in Mlp. Then
f is satisfied in a structure (W,P, π) such that |W | ≤ |f |2, |P| ≤ |f |, µ(w) is
a rational number such that ||µ(w)|| is O(|f |2||f || + |f |2 log(|f |)) for every world
w ∈W and µ ∈ P, and π(w)(p) = false for every world w ∈W and every primitive
proposition p not appearing in f .

Proof. See Appendix A.4.

To prove a small-model theorem for belief functions (and possibility measures), we
need a representation of belief functions that is particularly compact. Given a setW
of worlds, a mass function m is a function from 2W to [0, 1] such thatm(∅) = 0, and∑
U⊆W m(U) = 1 [Shafer 1976]. As is well known, in finite spaces, there is a one-

to-one correspondence between belief functions and mass functions [Shafer 1976].
Given a mass function m, let Belm be the set function defined by setting Belm(U) =∑
V⊆U m(V ). It can be shown that Belm is a belief function (in particular, it

satisfies B3). Conversely, given a belief function Bel, consider the set function mBel

defined by setting mBel(∅) = 0, and mBel(U) = Bel(U) −
∑
V⊂U mBel(V ). It can
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be shown that mBel is a mass function (in particular, mBel(U) ≥ 0 for all U) and
that BelmBel = Bel. It easily follows that the mappings Bel 7→ mBel and m 7→ Belm
give a one-to-one correspondence between belief function and mass functions.

Theorem 6.2. Suppose that f ∈ LE is satisfied in some structure in Mbel

(resp., Mposs). Then f is satisfied in a structure (W, ν, π) such that |W | ≤ |f |2, ν
is a belief function (resp., possibility measure) whose corresponding mass function
is positive on at most |f | subsets of W and the mass of each of these |f | sets is
a rational number of size O(|f | ||f || + |f | log(|f |)), and π(w)(p) = false for every
world w ∈W and every primitive proposition p not appearing in f .

Proof. See Appendix A.4.

Theorems 6.1 and 6.2 yield the following complexity result for the decision
problem for LE .

Theorem 6.3. The problem of deciding whether a formula in LE is satisfiable
in Mprob (resp., Mlp, Mbel , Mposs) is NP-complete.

Proof. See Appendix A.4.

7. REASONING ABOUT GAMBLE INEQUALITIES

Ineq presumes an oracle for all valid formulas about linear inequalities; as we
said earlier, this oracle can be replaced by the complete axiomatization of linear
inequalities provided in FHM. Similarly, E5 assumes an oracle for valid formulas
about gamble inequalities. In this section, we provide an axiomatization that can
replace that oracle. One of the axioms involves reasoning about linear inequalities
over real-valued functions, so we axiomatize this as well.

Let Lg consist of all Boolean combinations of gamble inequalities γ ≥ c̃, where
γ is a propositional gamble, as defined in Section 3, and c is an integer. As in
Section 3.1, we write γ1 ≤ γ2 as an abbreviation for γ1 − γ2 ≤ 0̃, which is the
form of gamble inequality used in axiom E5. We also use the abbreviations we
defined in Section 3.1 for ≤, <, and =. However, we now take γ1 > γ2 to be an
abbreviation for γ1 ≥ γ2 ∧ ¬(γ1 ≤ γ2). The analogue of the conjunct γ1 ≥ γ2 is
not necessary when reasoning about likelihood or expectation, since likelihood and
expectation terms are interpreted as real numbers, and thus are totally ordered.
(For real numbers b1 and b2, ¬(b1 ≤ b2) implies b1 > b2). However, this is not the
case for gamble expressions, which are interpreted as real-valued functions.

We can provide a semantics for gamble formulas by considering structures M =
(W,π) where W is a nonempty set of worlds and π associates with each world
in W a truth assignment on the primitive propositions. Let Mg be the class all
such structures. (Clearly, every structure in Mprob , Mlp , Mbel , and Mposs can be
interpreted as a structure in Mg by simply “forgetting” the uncertainty measure
over the worlds. Note that W is nonempty for such structures, since µ(W ) 6= µ(∅)
for all the measures of uncertainty considered.) Then

M |= γ ≥ c̃ iff for all w ∈W , {|γ|}M (w) ≥ c.

Again, Boolean combinations are given semantics in the obvious way.
We can characterize gamble formulas axiomatically as follows. As before, we

have Taut and MP (although now we consider the instances of valid propositional
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tautologies in the language Lg). Instead of Ineq, we have a similar axiom that
captures reasoning about linear inequalities interpreted over real-valued functions
with nonempty domains:

IneqF. All instances in Lg of valid formulas about linear inequalities over real-
valued functions with nonempty domains.

A formula about linear inequalities over real-valued functions is a Boolean combi-
nation of formulas of the form a1v1 + · · · anvn ≥ c̃, where v1, . . . , vn are variables
ranging over real-valued functions. This formula is valid if, for every domain X
and every assignment for real-valued functions with domain X to v1, . . . , vn, the
resulting inequality holds when c̃ is interpreted as the constant function with domain
X that always returns c ∈ R and ≥ is the pointwise ordering on functions. To
get an instance of IneqF, we replace each function variable vi that occurs in a
valid formula about linear inequalities by a propositional formula ϕi. (Again, each
occurence of the function variable vi must be replaced by the same propositional
formula ϕi.) As with Ineq, we can replace IneqF by a sound and complete
axiomatization for Boolean combinations of linear inequalities over real-valued
functions. We provide one such axiomatization at the end of this section.10 We also
consider the following axioms, which capture properties of indicator functions, such
as: for any w ∈W , XU (w)+XV (w) = XU∪V (w) if U∩V = ∅, andXU (w) ≤ XV (w)
if U ⊆ V .

G1. a((ϕ ∧ ψ) ∨ (ϕ ∧ ¬ψ)) = a(ϕ ∧ ψ) + a(ϕ ∧ ¬ψ),
G2. a(ϕ ∧ ψ) + b(ϕ ∧ ¬ψ) ≥ 0̃ ⇔ a(ϕ ∧ ψ) ≥ 0̃ ∧ b(ϕ ∧ ¬ψ) ≥ 0̃
G3. true = 1̃,
G4. ϕ− ψ = 0̃ if ϕ⇔ ψ is a propositional tautology.

Intuitively, G1 and G3 say that propositional formulas act like indicator functions,
and G2 says that the ≥ order is the pointwise order on gambles. Axiom G4 simply
says that equivalent formulas yield the same indicator functions. Let AXg be the
axiomatization {Taut,MP, IneqF,G1,G2,G3,G4}.

Theorem 7.1. AXg is a sound and complete axiomatization of Lg with respect
to Mg.

Proof. See Appendix A.5.

Finally, we consider the complexity of the decision procedure for Lg. As we did
in Section 6, let Lg1 be the restriction of Lg to inequalities with integer coefficients.
Perhaps not surprisingly, the logic for reasoning about gamble inequalities is NP-
complete.

Theorem 7.2. The problem of deciding whether a formula of Lg1 is satisfiable
in Mg is NP-complete.

10In a preliminary version of this paper [Halpern and Pucella 2002b], we mistakenly used an
axiomatization that relied on Ineq. Ineq is inappropriate for reasoning about linear inequalities

over real-valued functions because, intuitively, Ineq captures properties of inequalities where ≥ is
a linear order. However, the pointwise ordering on functions is only a partial order. Furthermore,
we did not have axioms G2 and G3 in that version of the paper; they seem to be necessary.
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Proof. See Appendix A.5.

We now provide a sound and complete axiomatization for reasoning about linear
inequalities over real-valued functions. As before, start with Taut and MP, and
consider the following axioms:

F1. v − v ≥ 0̃,
F2. (a1v1 + · · ·+ akvk ≥ c̃) ⇔ (a1v1 + · · ·+ akvk + 0vk+1 ≥ c̃),
F3. (a1v1 + · · · + akvk ≥ c̃) ⇔ (aj1xj1 + · · · + ajkvjk ≥ c̃), if j1, . . . , jk is a

permutation of 1, . . . , k,
F4. (a1v1 + · · ·+ akvk ≥ c̃) ∧ (a′1v1 + · · ·+ a′kvk ≥ c̃′)

⇒ (a1 + a′1)v1 + · · ·+ (ak + a′k)vk ≥ (c̃+ c′),

F5. (a1v1 + · · ·+ akvk ≥ c̃) ⇔ (da1v1 + · · ·+ dakvk ≥ d̃c), if d > 0,
F6. (a1v1 + · · ·+ akvk ≥ c̃) ⇒ (a1v1 + · · ·+ akvk > d̃), if c > d.

The axiomatization for Ineq for reasoning about linear inequalities over reals pre-
sented in FHM is identical to this axiomatization, except that it includes one
additional axiom: x ≥ c ∨ x ≤ c. (Note that now c represents a real number,
as opposed to c̃, which represents a constant real-valued function.) The absence of
this axiom is not surprising; although ≥ is a total order over the reals, it is only a
partial order over real-valued functions.

Let AXf be the axiomatization {Taut,MP,F1,F2,F3,F4,F5,F6}.

Theorem 7.3. AXf is sound and complete for reasoning about formulas about
linear inequalities over real-valued functions with nonempty domain.

Proof. See Appendix A.5.

We can now replace axiom IneqF in AXg by F1–F6 (since AXg already has
Taut and MP). Following the discussion above, this means that we replace the v’s
appearing in F1–F6 by propositional formulas ϕ’s. Note that axiom F1 becomes
redundant in AXg , since it becomes false ≥ false, which follows from G2.

The complexity of reasoning about linear inequalities over real-valued functions
(with integer coefficients, following what was said in Section 6) is NP-complete,
just like reasoning about linear inequalities over the reals.

Theorem 7.4. The problem of deciding whether a formula about linear inequali-
ties (with integer coefficients) is satisfiable over real-valued functions with nonempty
domain is NP-complete.

Proof. See Appendix A.5.

8. CONCLUSION

The notion of expectation is critical in many areas, ranging from physics to decision
theory (where much of modern theory of decision making under risk is based on
the notion of maximizing expected utility [Savage 1954]), and theoretical computer
science (where it arises, for example, when establishing the correctness and effi-
ciency of randomized algorithms [Motwani and Raghavan 1995]). For the most
part, expectation has been considered in the context of probability. However, it
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has been considered for other representations of uncertainty. For example, various
notions of decision making are based on taking expectations with respect to other
representations of uncertainty [Schmeidler 1986; Walley 1991]. Indeed, it is possible
to consider almost all decision rules as instances of a generalized expected utility,
for different representations of uncertainty [Chu and Halpern 2003; 2004].

After reviewing characterizations of expectation functions with respect to various
notions of uncertainty (and, in a few cases, providing characterizations when none
existed), we considered a propositional logic for reasoning about uncertainty. Such
a logic should prove useful to reason about decision making with respect to various
notions of uncertainty. Our logic is at least as expressive as the corresponding
logic for reasoning about uncertainty for all representations we considered, and
in some cases it is more expressive. For each representation of uncertainty, we
provided a sound and complete axiomatization for the logic, and showed that the
satisfiability problem is NP-complete, as it is for reasoning about probabilibity,
lower probabilities, and belief functions. Thus, the added expressiveness of being
able to reason about expectation of sets of probability measures comes at no
computational-complexity cost. Moreover, the axiomatization is, in some cases,
much more elegant.

A. PROOFS

A.1 Proofs for Section 2

Proposition 2.6 defines the expectation of X in terms of the values {x1, . . . , xn} that
make up V(X). The following lemma, which turns out to be useful in a number
of technical results, shows that we can use the same calculation for expectation for
any set of values that includes V(X). The lemma holds for all the representations
of uncertainty ν considered in this paper. It uses only the fact that ν(W ) = 1 and
ν(∅) = 0 for all representations that we are considering.

Lemma A.1. Let X be a gamble, let s1 ≤ . . . ≤ sm be reals such that V(X) ⊆
{s1, . . . , sm}, and let ν be either a probability measure, belief function, or possibility
measure. Then Eν(X) = s1 +(s2− s1)ν(X > s1)+ · · ·+(sm− sm−1)ν(X > sm−1).

Proof. Clearly, it suffices to show that the result holds for values such that s1 <
. . . < sm. Indeed, if si = si+1 for some i, then clearly the term (si+1−si)ν(X > si)
does not contribute to the sum. For a set S = {s1, . . . , sm} such that S ⊇ V(X)
and s1 < . . . < sm, define

ESν (X) = s1 + (s2 − s1)ν(X > s1) + · · ·+ (sm − sm−1)ν(X > sm−1).

We proceed by induction on |S−V(X)|. If |S−V(X)| = 0, then S = V(X). Observe
that Eν(X) is just EV(X)

ν (X), so the base case is immediate. For the inductive step,
suppose that S ⊇ V(X), |S−V(X)| = k+1, and the claim holds for all sets S′ such
that S′ ⊇ V(X) and |S′ − V(X)| = k. Choose s ∈ S − V(X) and let S′ = S − {s}.
We show that ESν (X) = ES

′

ν (X). There are three cases.
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(1) s = min(S): Since s 6∈ V(X), we must have (X > s) = W . Thus,

ESν (X)
= s+ (s1 − s)ν(X > s) + (s2 − s1)ν(X > s1) + · · ·+ (sn − sn−1)ν(X > sn−1)
= s+ (s1 − s) + (s2 − s1)ν(X > s1) + · · ·+ (sn − sn−1)ν(X > sn−1)
= s1 + (s2 − s1)ν(X > s1) + · · ·+ (sn − sn−1)ν(X > sn−1)
= ES

′

ν (X).

(2) s = max(S). Let sn = max(S′). Since s 6∈ V(X), (X > sn) = ∅. Thus,

ESν (X)
= s1 + (s2 − s1)ν(X > s1) + · · ·+ (sn − sn−1)ν(X > sn−1) + (s− sn)ν(X > sn)
= s1 + (s2 − s1)ν(X > s1) + · · ·+ (sn − sn−1)ν(X > sn−1)
= ES

′

ν (X).

(3) S = {s1, . . . , sk, s, sk+1, . . . , sn} for some s1, . . . , sn, such that s1 < . . . < sk <
s < sk+1 < . . . < sn. Since s 6∈ V(X) and s > sk, we have (X > s) = (X > sk).
Thus,

(sk+1 − sk)µ(X > sk) = (sk+1 − s)µ(X > sk) + (s− sk)µ(X > sk)
= (sk+1 − s)µ(X > s) + (s− sk)µ(X > sk).

It is immediate that ESν (X) = ES
′

ν (X).

This completes the proof of the inductive step.

Lemma A.2. The functions EBel and EPlaus satisfy (6).

Proof. Suppose that X and Y are comonotonic gambles. We claim that there
exist pairwise disjoint sets U1, . . . , Un and reals a1, . . . , an, b1, . . . , bn such that

(a) X = a1XU1 + · · ·+ anXUn ,
(b) Y = b1XU1 + · · ·+ bnXUn

,
(c) a1 ≤ . . . ≤ an, and
(d) b1 ≤ . . . ≤ bn.

To see this, suppose that V(X) = {a′1, . . . , a′m}, where a′1 < . . . < a′m, and
V(Y ) = {b′1, . . . , b′m′}, where b′1 < . . . < b′m′ . Define U ′i = X−1(a′i) for i = 1, . . . ,m,
and U ′′j = Y −1(b′j) for j = 1, . . . ,m′. Then clearly (a) X = a′1XU ′

1
+ · · ·+ a′mXU ′

m
,

(b) Y = b′1XU ′′
1

+ · · ·+ b′m′XU ′′
m′

, (c) the sets U ′1, . . . , U
′
m are pairwise disjoint, (d)

the sets U ′′1 , . . . , U
′′
m′ are pairwise disjoint, and (e) W = ∪mi=1U

′
i = ∪m′

i=1U
′′
i . Let

Vij = U ′i ∩ U ′′j . Note that if Vij and Vi′j′ are both nonempty and i < i′, then
j ≤ j′. For suppose not; then i < i′ and j > j′. Thus, if w ∈ Vij and w′ ∈ Vi′j′ ,
then (X(w) −X(w′))(Y (w) − Y (w′)) = (a′i − a′i′)(b

′
j − b′j′) < 0, contradicting the

comonotonicity of X and Y . It follows that we can take the claimed sets U1, . . . , Un
to be the nonempty sets Vij ordered lexicographically (so that if Uk = Vij , Uk′ =
Vi′j′ , and k < k′, then either i < i′ or i = i′ and j < j′). Moreover, if Uk = Vij ,
take ak = a′i and bk = b′j . It is clear that these choices have the required properties.

For this choice of U1, . . . , Un, it follows that X + Y = (a1 + b1)XU1 + · · ·+ (an +
bn)XUn

, with a1 + b1 ≤ . . . ≤ an + bn. By construction, we have V(X + Y ) =
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{a1 + b1, . . . , an+ bn}. By Lemma A.1, we have the following, where ν is either Bel
or Plaus:

Eν(X + Y )
= (a1 + b1) + (a2 + b2 − a1 − b1)ν(X + Y > a1 + b1) + · · ·+

(an + bn − an−1 − bn−1)ν(X + Y > an−1 + bn−1)
= (a1 + b1) + (a2 + b2 − a1 − b1)ν(U2 ∪ . . . ∪ Un) + · · ·+

(an + bn − an−1 − bn−1)ν(Un)
= a1 + (a2 − a1)ν(U2 ∪ . . . ∪ Un) + · · ·+ (an − an−1)ν(Un)+

b1 + (b2 − b1)ν(U2 ∪ . . . ∪ Un) + · · ·+ (bn − bn−1)ν(Un)
= a1 + (a2 − a1)ν(X > a1) + · · ·+ (an − an−1)ν(X > an−1)+

b1 + (b2 − b1)ν(Y > b1) + · · ·+ (bn − bn−1)ν(Y > bn−1)
= Eν(X) + Eν(Y ),

where the last equality follows from Lemma A.1 and the fact that V(X) = {a1, . . . , an}
and V(Y ) = {b1, . . . , bn}.

Proposition 2.8. The function EBel is superadditive, positively affinely homo-
geneous, monotone, and satisfies (5) and (6).

Proof. The fact that EBel is superadditive, positively affinely homogeneous,
and monotone follows immediately from Theorem 2.5 and Proposition 2.3. The
fact that EBel satisfies (5) follows essentially from property B3 of belief functions
and Proposition 2.6. First, it is easily checked that for gambles X and Y , X ∨Y >
x = (X > x)∪ (Y > x) and X ∧ Y > x = (X > x)∩ (Y > x). Consider the gamble
X1∨ . . .∨Xn. Let S = V(X1)∪ . . .∪V(Xn) = {s1, . . . , sm}, with s1 < . . . < sm. Let
s0 be an arbitrary real less than every number in S. Clearly, V(X1 ∨ . . .∨Xn) ⊆ S.
Moreover, for every subset I ⊆ {1, . . . , n}, V(∧i∈IXi) ⊆ S. By Proposition 2.6 and
Lemma A.1, we have:

EBel(X1 ∨ . . . ∨Xn)
= s1 +

∑m
k=1(sk − sk−1)Bel(X1 ∨ . . . ∨Xn > sk−1)

= s1Bel(X1 ∨ . . . ∨Xn > s0) +
∑m
k=1(sk − sk−1)Bel(X1 ∨ . . . ∨Xn > sk−1)

= s1Bel(X1 > s0 ∪ . . . ∪Xn > s0)+∑m
k=1(sk − sk−1)Bel(X1 > sk−1 ∪ . . . ∪Xn > sk−1)

≥ s1
∑n
i=1

∑
I⊆{1,...,n},|I|=i(−1)i+1Bel(∩j∈IXj > s0)+∑m

k=1(sk − sk−1)
∑n
i=1

∑
I⊆{1,...,n},|I|=i(−1)i+1Bel(∩j∈IXj > sk−1)

=
∑n
i=1

∑
I⊆{1,...,n},|I|=i(−1)i+1(s1Bel(∩j∈IXj > s0)+∑m

k=1(sk − sk−1)Bel(∩j∈IXj > sk−1))
=

∑n
i=1

∑
I⊆{1,...,n},|I|=i(−1)i+1(s1 +

∑m
k=1(sk − sk−1)Bel(∧j∈IXj > sk−1))

=
∑n
i=1

∑
I⊆{1,...,n},|I|=i(−1)i+1EBel(∧j∈IXj).

Finally, the fact that EBel satisfies (6) follows from Lemma A.2.

The following property turns out to be useful in various proofs involving expec-
tation for belief functions.

Lemma A.3. If E is an expectation function that satisfies (6) and positive affine
homogeneity, then it satisfies the following property on indicator functions:

If U1 ⊇ U2 ⊇ . . . ⊇ Un and a1, . . . , an ≥ 0,
then E(a1XU1 + · · ·+ anXUn

) = a1E(XU1) + · · ·+ anE(XUn
). (8)
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Proof. Define Sk = a1XU1 + · · · + akXUk
, for k = 1, . . . , n. Since ai > 0 for

i = 1, . . . , n, it is not hard to show that Sk and ak+1XUk+1 are comonotonic for all
k. For if Sk(w) > Sk(w′), since U1 ⊇ . . . ⊇ Uk, there must be some j ≤ k such that
w ∈ Uj and w′ /∈ Uj . Since Uk ⊇ Uk+1, it must be the case that w′ /∈ Uk+1. Hence
ak+1XUk+1(w

′) = 0 and ak+1XUk+1(w) ≥ 0. Thus, we have comonotonicity. Since
E satisfies (6), it follows that

E(a1XU1 + · · ·+ anXUn
)

= E(Sn) = E(Sn−1 + anXUn
) = E(Sn−1) + E(anXUn

) = . . .
= E(a1XU1) + · · ·+ E(anXUn

)

The result is now immediate, since E satisfies positive homogeneity.

Theorem 2.9. Suppose that E is an expectation function that is positively affinely
homogeneous, monotone, and satisfies (5) and (6). Then there is a (necessarily
unique) belief function Bel such that E = EBel.

Proof. Define Bel(U) = E(XU ). Just as in the case of probability, it follows
from positive affine homogeneity and monotonicity that Bel(∅) = 0, Bel(W ) = 1,
and 0 ≤ Bel(U) ≤ 1 for all U ⊆ W . By (5) (specialized to indicator functions), it
follows that Bel satisfies B3. Thus, Bel is a belief function. Now if X is a gamble
such that V(X) = {x1, . . . , xn} and x1 < x2 < . . . < xn, then it is easy to check
that

X = x1XW + (x2 − x1)XX>x1 + · · ·+ (xn − xn−1)XX>xn−1 .

Clearly W ⊇ (X > x1) ⊇ . . . ⊇ (X > xn−1). Thus, by Lemma A.3,

E(X) = x1E(XW ) + (x2 − x1)E(XX>x1) + · · ·+ (xn − xn−1)E(XX>xn−1)
= x1 + (x2 − x1)Bel(X > x1) + · · ·+ (xn − xn−1)Bel(X > xn−1)
= EBel(X).

For uniqueness, observe that if EBel = EBel′ , then Bel(U) = EBel(XU ) =
EBel′(XU ) = Bel′(U) for all U ⊆W .

Proposition 2.12. The function EPoss is positively affinely homogeneous, mono-
tone, and satisfies (6) and (7).

Proof. Recall from Section 2.4 that a possibility measure is just a plausibil-
ity function. Therefore, by Theorem 2.5 and Proposition 2.7, we have EPoss =
EPBel , where Bel is the belief function whose corresponding plausibility function
is Poss. By Proposition 2.3, we immediately have that EPoss is positively affinely
homogeneous, and monotone. By Lemma A.2, we have that EPoss satisfies (6).
Showing that EPoss satsifies (7) is straightforward: EPoss(X∪i Ui) = Poss(∪i Ui) =
maxi Poss(Ui) = maxiEPoss(XUi

).

Theorem 2.13. Suppose that E is an expectation function that is positively
affinely homogeneous, monotone, and satisfies (6) and (7). Then there is a (neces-
sarily unique) possibility measure Poss such that E = EPoss.

Proof. Define Poss(U) = E(XU ). Just as in the case of probability and be-
lief functions, it follows from positive affine homogeneity and monotonicity that
Poss(∅) = 0, Poss(W ) = 1, and 0 ≤ Poss(U) ≤ 1 for all U ⊆ W . By (7),
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it follows that Poss satisfies Poss3. Thus, Poss is a possibility measure. The
proof that E = EPoss is the same as that of Theorem 2.9, which is not surprising
since Poss is a plausibility function. More precisely, let X be a gamble such that
V(X) = {x1, . . . , xn} with x1 < . . . < xn, and write X as x1XW +(x2−x1)XX>x1 +
· · · + (xn − xn−1)XX>xn−1 . Since W ⊇ (X > x1) ⊇ . . . ⊇ (X > xn−1), we can
apply Lemma A.3 to get

E(X) = x1E(XW ) + (x2 − x1)E(XX>x1) + · · ·+ (xn − xn−1)E(XX>xn−1)
= x1 + (x2 − x1)Poss(X > x1) + · · ·+ (xn − xn−1)Poss(X > xn−1)
= EPoss(X).

A.2 Proofs for Section 4

The following transformations on formulas of LE will be used in the proofs of
Theorems 4.1, 5.1, 5.3, and 5.4. We prove here that these transformations preserve
satisfiability of the formulas, with respect to the appropriate structures.

First, define for a formula f of LE , the transformation fT1 inductively on the
structure of f , taking (a1e(γ1)+ ·+ane(γn) ≥ b)T1 to be t1+ · · ·+tn ≥ b, where ti is
obtained from ai and γi = c1,iϕ1,i + · · · ck,iϕk,i as aic1,ie(ϕ1,i) + · · ·+ aick,ie(ϕk,i).
We define (f1 ∧ f2)T1 and (¬f1)T1 as fT1

1 ∧ fT1
2 and ¬(fT1

1 ), respectively.

Lemma A.4. If M ∈Mprob, then M |= f if and only if M |= fT1 .

Proof. We proceed by induction on the structure of f . For the base case,

M |= a1e(γ1) + · · · ≥ b
iff a1Eµ(Xγ1) + · · · ≥ b
iff a1Eµ(c1,1X[[ϕ1,1]]M + · · ·+ ck,1X[[ϕk,1]]M ) + · · · ≥ b
iff a1c1,1Eµ(X[[ϕ1,1]]M ) + · · ·+ a1ck,1Eµ(X[[ϕk,1]]M ) + · · · ≥ b
iff M |= a1c1,1e(ϕ1,1) + · · ·+ a1ck,1e(ϕk,1) + · · · ≥ b.

The inductive cases are immediate.

The second transformation is a bit more complicated. As before, we define a
transformation taking a formula f of LE to a formula fT2 by induction on the
structure of f . Intuitively, we translate every expectation term e(γ) appearing
in f into an expectation term of the form given by Proposition 2.6, namely d0 +
(d1 − d0)e(ψ1) + . . .+ (dm − dm−1)e(ψm) for formulas ψ1, . . . , ψm. As before, take
(f1 ∧ f2)T2 and (¬f1)T2 to be fT2

1 ∧ fT2
2 and ¬(fT2

1 ), respectively. Take (a1e(γ1) +
· · · + ane(γn) ≥ b)T2 to be t1 + · · · + tn ≥ b, where ti is obtained from ai and
γi = c1,iϕ1,i + · · ·+ ck,iϕk,i as follows. Let p1, . . . , pN be the primitive propositions
that appear in f . Let an atom over p1, . . . , pN be a formula of the form q1 ∧
. . . ∧ qN , where qi is either pi or ¬pi. There are clearly 2N atoms over p1, . . . , pN .
Let δ1, . . . , δ2N be an arbitrary ordering of these atoms. It is easy to see that
atoms are pairwise disjoint. It is also easy to see that any formula over p1, . . . , pN
can be written in a unique way as a disjunction of atoms. Using these atoms,
we construct a gamble γ′i equivalent to γi as follows. For j ∈ {1, . . . , 2N}, let
cj =

∑
{l : δj ⇒ ϕl,i is a prop. tautology} cl,i. It is straightforward to check that γi =∑2n

j=1 cjδj . Let d0, . . . , dm be the distinct elements of {cj}j∈{1,...,2N}, with d0 <
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. . . < dm. For j ∈ {1, . . . ,m}, let ψj =
∨
l∈{1,...,2N},cl≥dj

δl. Note that ψ0 is
logically equivalent to true; moreover, ψj+1 ⇒ ψj is a propositional tautology for
all j ∈ {0, . . . ,m−1}. Finally, let γ′i = d0+(d1−d0)ψ1+ · · ·+(dm−dm−1)ψm. One
can check that γi and γ′i are equivalent gambles. Indeed, γ′i is provably equivalent
to d0(

∑2N

l=1 δl)+ (d1− d0)(
∑
cl≥d1 δl)+ . . .+(dm− dm−1)(

∑
cl≥dm

δl). Distributing
the coefficients and putting like terms together, we see that the coefficient of δl
is just d0 + (d1 − d0) + . . . + (dr`

− dr`−1) = dr`
, where r` = max{r : cl ≥ dr}.

By definition of d1, . . . , dm, dr`
= cl, and therefore γi and γ′i are equivalent. Note

that, by Lemma A.3, if E is an expectation function that satisfies comonotonicity
and positive homogeneity, then E(Xγ′i

) = d1 + (d1 − d0)E(X[[ψ1]]M ) + · · · + (dm −
dm−1)E(X[[ψm]]M ). Let ti be aid0 + ai(d1 − d0)e(ψ1) + · · ·+ ai(dm − dm−1)e(ψm).

Lemma A.5. If M ∈Mprob∪Mbel∪Mposs , then M |= f if and only if M |= fT2 .

Proof. We proceed by induction on the structure of f , for M ∈Mbel ; the result
follows for structures in Mprob and Mposs , since these can be viewed as structures
in Mbel . For the base case, we have

M |= a1e(γ1) + · · · ane(γn) ≥ b
iff a1EBel(Xγ1) + · · · anEBel(Xγn

) ≥ b
iff a1EBel(Xγ′1

) + · · ·+ anEBel(Xγ′n) ≥ b
iff a1EBel(d0,1 + (d1,1 − d0,1)X[[ψ1,1]]M + · · ·+ (dm1,1 − dm1−1,1)X[[ψm1,1]]M )+

· · ·+ anEBel(d0,n + (d1,n − d0,n)X[[ψ1,n]]M + · · ·+
(dmn,n − dmn−1,n)X[[ψmn,n]]M ) ≥ b

iff a1d0,1 + a1(d1,1 − d0,1)EBel(X[[ψ1,1]]M ) + · · ·+
a1(dm1,1 − dm1−1,1)EBel(X[[ψm1,1]]M ) + · · ·+
and0,n + a1(d1,n − d0,n)EBel(X[[ψn,1]]M ) + · · ·+
an(dmn,n − dmn−1,n)EBel(X[[ψmn,n]]M ) ≥ b

iff M |= a1d0,1 + a1(d1,1 − d0,1)e(ψ1,1) + · · ·+ a1(dm,1 − dm−1,1)e(ϕm,1) + · · ·+
and0,n + an(d1,n − d0,n)e(ψ1,n) + · · · an(dm,n − dm−1,n)e(ϕm,n) ≥ b.

The fact that we can distribute the expectation EBel of the gamble into a sum of
expectation of indicator functions follows from comonotonicity, using Lemma A.3.

The inductive cases are immediate.

Theorem 4.1. LE and LQU are equivalent in expressive power with respect to
Mprob, Mbel , and Mposs . LE is strictly more expressive than LQU with respect to
Mlp.

Proof. The proof follows the lines laid out in Section 4. First, we show that
LE is at least as expressive as LQU with respect to Mprob , Mbel , Mlp , and Mposs .
Formally, we show that every formula f of LQU is equivalent to the formula fT ∈ LE
that results by replacing `(ϕ) by e(ϕ). Define fT by induction on the structure
of f , taking (a1`(ϕ1) + · · · + an`(ϕn) ≥ b)T to be a1e(ϕ1) + · · · + an`(ϕn) ≥ b,
(f1 ∧ f2)T to be fT1 ∧ fT2 , and (¬f1)T to be ¬(fT ).

It suffices to show that for all M inMprob , Mbel , Mlp , orMposs , we have M |= f
if and only if M |= fT . First, note if ν is a probability measure, belief function,
or set of probability measures, then Eν(XU ) = ν(U), where XU is the indicator
function of U . Let M be an arbitrary structure in Mprob , Mbel , Mlp , or Mposs ,
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with associated measure of uncertainty µ. Thus, if ν is the measure associated
with structure M , we have that ν([[ϕ]]M ) = Eν({|X[[ϕ]]M |}M ). (If ν is the set P or
probability measures, we take Eν = EP .) The result now follows immediately by a
straightforward induction on the structure of f .

We next show that LQU is as expressive as LE with respect to Mprob , Mbel ,
and Mposs . Let LE ′ be the sublanguage of LE where the expectation operator e
is applied only to propositional formulas, as opposed to arbitrary gambles. It is
immediate from the construction in the previous paragraph that if f ∈ LQU , then
fT ∈ LE ′. Moreover, it is easy to see that every formula f ′ ∈ LE ′ is of the form fT

(where f is the result of replacing all occurrences of e(ϕ) in f ′ by `(ϕ)). Since we
showed above that f is equivalent to fT , to prove that LQU is as expressive to LE
with respect to Mprob , Mbel , and Mposs , it suffices to show that every formula in
LE is equivalent to a formula in LE ′ in structures in Mprob ∪Mbel ∪Mposs . But
this is immediate from Lemma A.5, since the formula fT2 ∈ LE ′.

Finally, we show that LE is strictly more expressive than LQU with respect
to Mlp . To establish this, it is sufficient to exhibit two structures in Mlp that
satisfy the same formulas in LQU , but can be distinguished by a formula f in LE .
(This means that f in LE cannot be equivalent to any formula in LQU .) We use
a variant of Example 2.11. Consider the two Mlp structures M1 = (W,P1, π)
and M2 = (W,P2, π), where W = {w1, w2, w3}, π is such that p is true at w1,
both p and q are true at w2, and neither p nor q is true at w3, and the sets of
probability measures P1 and P2 are given as follows. We can describe a probability
measure on W by a tuple (a1, a2, a3), where ai gives the probability at wi. Define
P1 = {(1/3, 2/3, 0), (0, 1/3, 2/3), (2/3, 0, 1/3)}, and P2 = P1 ∪ {(1/3, 0, /2, 3)}. It
is easy to check that (P1)∗ and (P2)∗ are both 0 on singleton subsets of W and
1/3 on doubleton subsets. Hence, (P1)∗ = (P2)∗. Therefore, no formula involving
only lower probability can distinguish these two structures, and M1 and M2 satisfy
the same formulas of LQU . Now, consider the gamble p + q. It is easy to see
that {|p + q|}M1 = {|p + q|}M2 is the random variable X defined by X(w1) = 1,
X(w2) = 2, and X(w3) = 0. It is not hard to check that EP1

(X) = 2/3, and
EP2

(X) = 1/3. Hence, M1 |= e(p + q) > 1/2, and M2 |= e(p + q) < 1/2, so that
M2 |= ¬e(p+ q) > 1/2.

A.3 Proofs for Section 5

The proofs of Theorems 5.1–5.4 use an approach similar to the one taken in FHM.
We first need some definitions. We say a formula σ is consistent with an axiom
system AX (or simply AX-consistent) if ¬σ is not provable from AX. To show
that AX is a complete axiomatization with respect to some class of structure M,
we must show that every formula that is valid in every structure in M is provable in
AX. This is equivalent to showing that every AX-consistent formula σ is satisfiable
in M.

The proofs of Theorems 5.1–5.4 are all structured as follows. Soundness is
straightforward in all cases. Completeness is obtained by showing that a consistent
formula f is satisfiable in the appropriate set of structures M. More specifically,
assume that formula f is not satisfiable in a structure in M; we must show that
f is inconsistent. We first reduce f to a canonical form. Let g1 ∨ . . . ∨ gr be
a disjunctive normal form expression for f (where each gi is a conjunction of
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expectation inequalities and their negations). Using propositional reasoning, we can
show that f is provably equivalent to this disjunction. Since f is unsatisfiable, each
gi must also be unsatisfiable. Thus, it is sufficient to show that any unsatisfiable
conjunction of expectation inequalities and their negations is inconsistent. Let
f be such a formula. To show that it is inconsistent, we essentially construct a
system of inequalities f̂ from f by replacing every term e(γi) in f by a variable xi,
with the property that f is satisfiable over structures in M if and only if f̂ has a
solution over the reals. Since f is unsatisfiable, f̂ has no solution, so that ¬f must
be an instance of Ineq. (That f̂ has no solution means that f̂ is not satisfiable
as a formula about linear inequalities, so that ¬f̂ is a valid formula about linear
inequalities.) Therefore, ¬f is provable, and f is inconsistent. The details of how
to construct f̂ differ for each representation of uncertainty.

Theorem 5.1. AXprob is a sound and complete axiomatization of LE with
respect to Mprob.

Proof. Soundness is straightforward. For completeness, we proceed as above.
Without loss of generality, assume that f is a conjunction of expectation inequalities
and their negations. Using axioms E1 and E2, we can convert f into the equivalent
formula fT1 (Lemma A.4) where e is applied only to propositional formulas. For
every propositional formula ϕ in fT1 , ϕ is equivalent to ∨kj=1δij , where δi1 , . . . , δik
are the atoms over the propositions in f such that δij ⇒ ϕ for all 1 ≤ j ≤ k.
Since ¬(δij ∧ δil) is a propositional tautology for all j 6= l, ϕ = δi1 + · · · + δik is a
valid formula about propositional gamble inequalities (see Section 7), and axiom E5
yields e(ϕ) = e(δi1 + · · ·+ δik). This means that we can find a formula f ′ provably
equivalent to fT1 , where f ′ is formed by replacing each term ae(ϕ) of fT1 by the
sum ae(δi1)+ · · ·+ae(δik), and then collecting like terms. Let f ′′ be obtained from
f ′ by adding as conjuncts to f ′ all the expectation inequality formulas e(δj) ≥ 0,
for 1 ≤ j ≤ 2N , e(δ1) + · · · + e(δ2N ) ≥ 1, and −e(δ1) − · · · − e(δ2N ) ≥ −1 (which
together essentially say that the sum of the probabilities of the atoms is 1). It is
not hard to see that these formulas are provable, hence f ′′ is provably equivalent
to f ′, and hence to f . We therefore only have to show that f ′′ is satisfiable.

The negation of an expectation inequality a1e(γ1) + · · · + ane(γn) ≥ b can be
written −a1e(γ1) − · · · − ane(γn) > −b. Thus, without loss of generality, we can
assume that f ′′ is the conjunction of the formulas

e(δ1) + · · ·+ e(δ2N ) ≥ 1
−e(δ1)− · · · − e(δ2N ) ≥ −1

e(δ1) ≥ 0
...

e(δ2N ) ≥ 0
a1,1e(δ1) + · · ·+ a1,2N e(δ2N ) ≥ b1

...
ar,1e(δ1) + · · ·+ ar,2N e(δ2N ) ≥ br

−a′1,1e(δ1)− · · · − a′1,2N e(δ2N ) > b′1
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...
−a′s,1e(δ1)− · · · − a′s,2N e(δ2N ) > b′s.

Consider the following system of inequations, obtained by replacing e(δi) by the
variable xi:

x1 + · · ·+ x2N ≥ 1
−x1 − · · · − x2N ≥ −1

x1 ≥ 0
...

x2N ≥ 0
a1,1x1 + · · ·+ a1,2Nx2N ≥ b1

...
ar,1x1 + · · ·+ ar,2Nx2N ≥ br

−a′1,1x1 − · · · − a′1,2Nx2N > b′1

...
−a′s,1x1 − · · · − a′s,2Nx2N > b′s.

Clearly if f ′′ is satisfiable, say in a structure M with associated probability measure
µ, then the system is satisfiable, by taking xi = µ([[δi]]M ). Conversely, if the system
of inequations has a solution, then f ′′ is satisfied in a structure M with associated
probability measure µ such that xi = µ([[δi]]M ).

Returning to the main argument, suppose by way of contradiction, that f is not
satisfiable. Then this system of inequations has no solution. It follows that ¬f ′′ is
an instance of the axiom Ineq. Since f ′′ is provably equivalent to f , it follows that
¬f is provable, so that f is inconsistent, a contradiction.

The proofs of Theorems 5.2, 5.3, and 5.4 require some additional terminology.
Let f be a formula of LE , and let p1, . . . , pN be the primitive propositions that
appear in f . Observe that there are 22N

inequivalent propositional formulas over
p1, . . . , pN . The argument goes as follows. Recall the notion of an atom over
p1, . . . , pN , introduced before Lemma A.5. It is easy to see that any formula over
p1, . . . , pN can be written in a unique way as a disjunction of atoms. There are 22N

such disjunctions, so the claim follows. Let ρ1, . . . , ρ22N be some canonical listing
of the inequivalent formulas over p1, . . . , pN . Without loss of generality, we assume
that ρ1 is equivalent to true, and ρ22N is equivalent to false. Following FHM, we
call these formulas ρi, i = 1, . . . , 22N

regions.

Theorem 5.2. AXlp is a sound and complete axiomatization of LE with respect
to Mlp.

Proof. Soundness is straightforward. For completeness, we proceed as above.
Again, without loss of generality, assume that f is a conjunction of expectation
inequalities and their negations.
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The first step of the proof is to find a formula f ′ provably equivalent to f , where
the gambles in f ′ are expressed in terms of atoms δ1, . . . , δ2N . As observed above,
every propositional formula ϕ in f is equivalent to some region ρi, 1 ≤ i ≤ 22N

,
which is of the form ∨kj=1δij , where δi1 , . . . , δik are the atoms over the propositions
in f such that δij ⇒ ϕ for all 1 ≤ j ≤ k. Since δij ∧ δil ⇔ false is a propositional
tautology for all j 6= l, ϕ = δi1+· · ·+δik is valid. It easily follows that a propositional
gamble a1ϕ1 + · · ·+anϕn is equal to a propositional gamble of the form a′1δ1 + · · ·+
a′2N δ2N . By axiom E5, e(a1ϕ1 + · · ·+ anϕn) = e(a′1δ1 + · · ·+ a′2N δ2N ) is provable.
This means we can find a formula f ′ provably equivalent to f , where each term ae(γ)
of f is replaced by a term ae(a′1δ1 + · · ·+a′2N δ2N ). In fact, the following arguments
shows that, without loss of generality, we can take the a′is to be nonnegative. Given
a gamble a′1δ1 + . . . + a′2N δ2N , let b = min1≤i≤2N (a′i). We can easily show that
(a′1 + b)δ1 + . . .+ (a′2N + b)δ2N − b = a′1δ1 + . . .+ a′2N δ2N is a valid gamble equality.
Thus, every expectation inequality formula c1e(γ1) + . . . + cke(γk) ≥ d in f ′ is
provably equivalent to a formula of the form c1e(γ′1)+c1b1+. . .+cke(γ′j)+ckbk ≥ d,
which in turn is provably equivalent to c1e(γ′1)+ . . .+cke(γ

′
k) ≥ d−c1b1− . . .−ckbk.

Thus, without loss of generality, we can take the coefficients of the gambles in f ′

to be nonnegative.
The next step of the proof is to derive a finite system of inequations f̂ corre-

sponding to f ′ such that f ′ is satisfiable if and only f̂ has a solution. Suppose that
we have found such a formula f̂ and that f ′ is unsatisfiable. Then f̂ has no solution.
Thus, the formula ¬f ′ is an instance of Ineq. Since f ′ is provably equivalent to
f , ¬f is provable, and thus f is inconsistent, a contradiction. Therefore, f ′, and
hence f , is satisfiable. The remainder of the proof consists of coming up with f̂ ,
and showing that it has a solution if and only if f ′ is satisfiable.

We would like f̂ to be a system of inequalities that yields a solution that can
be used to construct a lower expectation function that satisfies f ′. We can force
a solution to f̂ to be a lower expectation function by adding to f̂ inequalities
corresponding to all the instances of axioms E6–E8. Unfortunately, there are
infinitely many such instances. The aim now is therefore to derive a finite set of
instances of E6–E8 that is sufficient to constrain a solution to f̂ to be a lower
expectation function.

To do this, let γ1, . . . , γn be the propositional gambles γ such that e(γ) appears
in f ′, together with the propositional gambles false and true (if they do not already
appear in f ′). For ease of exposition, take γn−1 = false and γn = true. As we saw
earlier, each γi is provably equivalent to a formula of the form ai,1δ1+· · ·+ai,2N δ2N ,
where δ1, . . . , δ2N are the atoms over the primitive propositions appearing in f , and
ai,j ≥ 0. We now construct, for every propositional gamble γi (1 ≤ i ≤ n − 1), a
finite set Bi of vectors. (We do not need a vector for the gamble γn = true.) We
give the construction of B1, and then describe the minor modifications needed to
construct Bi for i = 2, . . . , n− 1. We then show how to use these sets to identify a
finite set of instances of E6–E8.

Let A1 be the (n− 1)× 2N matrix of real numbers whose ith row consists of the
coefficients of δ1, . . . , δ2N in γi+1, i = 1, . . . , n − 1. Let B′1 be the set of vectors
~b = 〈b2, . . . , bn〉 such that b2, . . . , bn−1 ≥ 0 (bn can be negative) and

~bA1 ≤ 〈a1,1, . . . , a1,2N 〉. (9)
Journal of the ACM, Vol. V, No. N, May 2007.



Characterizing and Reasoning about Probabilistic and Non-Probabilistic Expectation · 31

It is easy to see that B′1 is a closed convex set: it is clearly closed, and if ~b1,~b2 ∈ B′1,
then so is a~b1 +(1− a)~b2, for all a ∈ [0, 1]. Thus, for each vector ~y = 〈y1, . . . , yn−1〉
such that y1, . . . , yn−2 ≥ 0, there exists a ~by ∈ B′1 such that ~by ·~y is maximal (where
· is the inner product). It is a consequence of the Krein-Milman Theorem (see
Rudin [1991], for instance) that the set of such ~by is a finite subset B1 of B′1.

We use the set B1 to derive a finite number of instances of E6–E8 as follows.
Note that if ~b = 〈b2, . . . , bn〉 satisfies (9), then b2γ2 + · · · + bnγn ≤ γ1 is a valid
formula about gamble inequalities. Therefore, by E5, e(b2γ2 + · · ·+ bnγn) ≤ e(γ1).
By applying E6, E7 and E8, we can derive b2e(γ2) + · · · bn−1e(γn−1) + bn ≤ e(γ1).
Let F~b be the conjunction of the instances of axioms E6, E7, and E8 that are used
to perform this derivation. Let f1 be the conjunction of F~b for all ~b ∈ B1.

This process defines a set B1 of vectors, and from these a formula f1. Repeat
this process for the gambles γ2, . . . , γn−1, by interchanging the role of γ1 and γi,
for 2 ≤ i ≤ n− 1. After doing this for all gambles, we obtain sets B1, . . . , Bn−1 of
vectors, and formulas f1, . . . , fn−1.

Let f ′′ be the conjunction of f1, . . . , fn−1, f ′, e(γn−1) ≥ 0, −e(γn−1) ≥ 0,
e(γn) ≥ 1, and −e(γn) ≥ −1 (that is, e(false) = 0 and e(true) = 1, since γn−1 =
false and γn = true, by assumption). Let f̂ be the conjunction of inequalities
obtained by replacing every instance of a term of the form e(γ) in f ′′ by the variable
xγ . Note that, besides e(γ1), . . . , e(γn), there are other terms of the form e(γ)
that arise in f1, . . . , fn−1; the gambles γ in these terms are linear combinations of
γ1, . . . , γn. We then obtain a system of inequalities over the variables xγ . We now
show that f̂ is our required system of inequalities, that is, f ′ is satisfiable if and
only if f̂ has a solution.

It is straightforward to show that if f ′ is satisfiable, then f̂ has a solution. If
f ′ is satisfiable, then there exists a lower probability structure (W,P, π) such that
(W,P, π) |= f ′, and hence (W,P, π) |= f ′′ (since the instances of E6–E8 are valid
in lower probability structures). Clearly, taking xγ = EP({|γ|}M ) gives a solution
to f̂ .

The interesting direction is showing that if f̂ has a solution, then f ′ is satisfiable
in Mlp . Suppose that f̂ has a solution in which xγ1 , . . . , xγn

taken on values
x∗1, . . . , x

∗
n, respectively. (Note that by the construction of f̂ , we must have x∗n−1 = 0

and x∗n = 1.) Take W = {δ1, . . . , δ2N }, and let π(δi)(p) = true if and only if
δi ⇒ p is a propositional tautology. We need to show that there exists a set of
probability measures P such that (W,P, π) |= f ′. To do this, we start with the
solution to f̂ , which intuitively gives us a lower expectation function defined on
a subset of gambles (those that appear in f), and show that it can be extended
to a lower expectation function defined on all gambles. This lower expectation
function will give us the set P of probability measures necessary for satisfiability.
More precisely, corresponding to the propositional gambles γ1, . . . , γn appearing in f
(along with false and true, as described above), let Xi be the gamble corresponding
to γi = ai,1δ1 + . . . + ai,2N δ2N defined on W by Xi(δj) = ai,j , for all 1 ≤ j ≤ 2N .
Define the function P ∗ on {X1, . . . , Xn} by P ∗(Xi) = x∗i . Our goal is to extend P ∗

to a lower expectation function E∗ defined on all gambles, such that E∗(Y ) = P ∗(Y )
for Y ∈ {X1, . . . , Xn}.
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The first thing we have to check is that P ∗ is a potential candidate to be a partial
lower expectation function. This is made precise by Walley’s [1991, p.72] notion of
coherence. A function P defined on a set {X1, . . . , Xn} of gambles is coherent if
and only if for all reals b1, . . . , bn ≥ 0 and i∗ ∈ {1, . . . , n}, we have11

sup
w∈W


(

∑
j 6=i

bj(Xj − P̃ (Xj)))− bi∗(Xi∗ − P̃ (Xi∗))

 (w)

 ≥ 0. (10)

If E is a lower expectation function (that is, if E = EP for some set P of probability
measures) then (10) holds (with P replaced by E). To see this, first note that for
any gambles Y, Y1, . . . , Yn and nonnegative reals b, b1, . . . , bn, by Proposition 2.3,
E(b(Y − Ẽ(Y ))) = 0, and E(b1(Y1 − Ẽ(Y1)) + · · · + E(Yn − Ẽ(Yn)) ≥ 0. Now
suppose that

sup
w∈W


(

n∑
j=1

bj(Yj − Ẽ(Yj)))− bE(Y − Ẽ(Y ))

 (w)

 = c < 0.

Then
∑n
j=1 bj(Yj − Ẽ(Yj)) ≤ b(E(Y − Ẽ(Y )) + c̃. Thus

E(
n∑
j=1

bj(Yj − Ẽ(Yj))) ≤ E(b(Y − Ẽ(Y )) + c̃) = E(b(Y − Ẽ(Y ))) + c = c < 0.

But this is a contradiction. It follows that (10) holds for E.
This shows that coherence, that is, (10), is a necessary condition for P to be

extendible to a lower expectation. Walley’s Natural Extension Theorem, which we
now state, shows that it is sufficient as well.

Theorem A.6. [Walley 1991, p.123] Suppose that P is a coherent real-valued
function defined on a set G of gambles on W . Define the natural extension E of P
as

E(Y ) = sup{b : Y − b̃ ≥
m∑
j=1

λj(Yj − P̃ (Yj)),m ≥ 0, Yj ∈ G, λj ≥ 0, b ∈ R}.

Then E is a lower expectation function (that is, E = EP for some set P of
probability measures on W ) and E agrees with P on the gambles in G.

It follows from Theorem A.6 that to show that P ∗ can be extended to a lower
expectation, it suffices to show that it is coherent. This is done in the next lemma.

Lemma A.7. The function P ∗ is coherent on {X1, . . . , Xn}.

11Walley has an apparently stronger requirement, namely, that for all Y1, . . . , Ym ⊆ {X1, . . . , Xn}
and all reals b1, . . . , bm, we have supw∈W

n
[(

Pm
j=2 bj(Yj − P̃ ∗(Yj)))− b1(Y1 − P̃ ∗(Y1))](w)

o
≥ 0.

However, we can assume that all the Yj ’s are distinct without loss of generality (since if there is
a repetition of Xi’s, we can simply add the coefficients bi), and if any Xi does not appear among

the Yi’s, we can add it, taking bi = 0.
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Proof. Observe that (10) is equivalent to the condition that, for all nonnegative
reals b1, . . . , bn−1, reals bn, and all i∗, it is not the case that∑

j 6=i∗
bj(Xj − x̃∗j ) < bi∗(Xi∗ − x̃∗i∗). (11)

Suppose, by way of contradiction, that there exist such nonnegative reals b1, . . . , bn−1

and real bn. Note that, without loss of generality, we can assume that i∗ 6= n and
that bi∗ = 1. For if bi∗ 6= 0, then we can divide both all coefficients on both sides
by bi∗ to get an equivalent instance of (11) where bi∗ = 1. Moreover, observe that,
since γn−1 = false and γn = true, we have that Xn−1 = 0̃, x∗n−1 = 0, Xn = 1̃, and
x∗n = 1. Thus, if i∗ = n or if bi∗ = 0, then we can take i∗ = n − 1 and bi∗ = 1, to
get an equivalent instance of (11). Thus, if there exist b1, . . . , bn and i∗ such that
(11) holds, then we can assume without loss of generality that i∗ 6= n and bi∗ = 1.

For simplicity, in the remainder of the argument, we take i∗ = 1 (the argument
is the same for every choice of i∗ 6= n) and assume that b1 = 1. Since Xn = 1̃ and
x∗n = 1, there exist nonnegative b′2, . . . , b

′
n−1 and ε > 0 such that

n−1∑
j=2

b′j(Xj − x̃∗j ) + ε̃ ≤ X1 − x̃∗1.

Let b′n = ε+ x∗1 −
∑n−1
j=2 b

′
jx
∗
j (b′n can be negative). Note that

∑n
j=2 b

′
jx
∗
j = x∗1 + ε,

since x∗n = 1. Since Xn − x̃∗n = 0̃, it follows that
n∑
j=2

b′j(Xj − x̃∗j ) + ε̃ ≤ X1 − x̃∗1.

Thus,
∑n
j=2 b

′
jXj ≤ X1. By definition of B1, there exists 〈b∗2, . . . , b∗n〉 ∈ B1 such

that
∑n
j=2 b

∗
jXj ≤ X1 and

∑n
j=2 b

∗
jx
∗
j ≥

∑n
j=2 b

′
jx
∗
j = x∗1 + ε. In other words, we

can assume without loss of generality that b′2, . . . , b
′
n are in B1, since otherwise,

we can always replace them by b∗2, . . . , b
∗
n. By the above, we have that E(b′2X2 +

. . .+b′nXn) ≤ E(X1). By the constraints corresponding to f1 in f̂ , we can therefore
derive b′2E(X2)+ · · ·+b′n−1E(Xn−1)+b′n ≤ E(X1). (The constraints corresponding
to f1 where chosen so that exactly this derivation could be performed.) However,
replacing b′n by ε+ x∗1 −

∑n−1
j=2 b

′
jx
∗
j and replacing E(Xi) by x∗i , we get that ε < 0,

a contradiction. Thus, there cannot exist b1, . . . , bn of the above form. Hence, P ∗

is coherent, as desired.

Continuing with the proof of Theorem 5.2, by Lemma A.7 and the Natural
Extension Theorem, there exists a set of probability measures P such that EP
is defined on all gambles, and EP agrees with P ∗ on {X1, . . . , Xn}. It is routine to
check that (W,P, π) |= f ′, and hence (W,P, π) |= f , as required.

Theorem 5.3. AXbel is a sound and complete axiomatization of LE with respect
to Mbel .

Proof. Soundness is straightforward. For completeness, we proceed as in The-
orem 5.1. Assume without loss of generality that f is a conjunction of expectation
inequalities and their negations. Using axioms E7, E8, and E10 we can convert
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f into the equivalent formula fT2 ∈ LE ′ (Lemma A.5) where e is applied only to
propositional formulas. Every propositional formula ϕ in fT2 is provably equivalent
to a region ρi for some 1 ≤ i ≤ 22N

. Since ϕ = ρi is valid, e(ϕ) = e(ρi) is provable
by E5. This means that we can find a formula f ′ provably equivalent to fT2 , where
e is applied only to formulas ρ1, . . . , ρ22N . Let f ′′ be obtained from f ′ by adding
as conjuncts to f ′ all the instances of E9 involving the regions ρ1, . . . , ρ22N , as well
as the inequalities e(ρi) ≥ 0 for all 1 ≤ i ≤ 22N

, e(ρ1) ≥ 1, −e(ρ1) ≥ −1 and
−e(ρ22N ) ≥ 0. (Recall that by assumption, ρ1 is true and ρ22N is false.) It is not
hard to see that these formulas are provable, hence f ′′ is provably equivalent to f ′,
and hence to f .

As before, the negation of an expectation inequality a1e(γ1) + · · ·+ ane(γn) ≥ b
can be written −a1e(γ1) − · · · − ane(γn) > −b. Thus, without loss of generality,
we can assume that f ′′ is the conjunction of formulas of the form a1e(ρ1) + · · · +
a22N e(ρ22N ) ≥ b and −a′1e(ρ1) − · · · − a′

22N e(ρ22N ) > b′. Let f̂ be the system of
inequations obtained by replacing the terms e(ρi) by the variable xi, for 1 ≤ i ≤
22N

. We claim that f ′′ in satisfiable in Mbel iff the system f̂ of equations has a
solution. One direction is straightforward. Suppose that f ′′ is satisfiable. Thus,
there exists a belief structure (W,Bel, π) such that (W,Bel, π) |= f ′′. Clearly, taking
xi = EBel({|ρi|}M ) = Bel(ρi) gives a solution to f̂ . Conversely, suppose that f̂ has a
solution, say x∗1, . . . , x

∗
22N . Let p1, . . . , pN be the primitive propositions appearing

in f (and, hence, in f ′′). Define the belief structure M = (W,Bel, π) as follows:

—W = {δ1, . . . , δ2N }, the set of atoms over p1, . . . , pN ;
—Bel({δi1 , . . . , δik}) = x∗i , where i is the unique index such that δi1 ∨ . . . ∨ δik is

logically equivalent to the region ρi;
—π(δi)(p) = true if and only if δi ⇒ p is a propositional tautology.

It is straightforward to show that Bel defined in this way is a belief function. That
Bel satisfies B1 and B2 follows from the fact that we must have x∗1 = 0 and x∗

22N = 1.
Similarly, that Bel satisfies B3 follows from the observation that any instance of B3
corresponds to an instance of E9 that was added as an inequality in f̂ , and thus
is satisfied by the solution x∗1, . . . , x

∗
22N . Finally, that M |= f ′′ holds also follows

from the construction of f̂ . Thus, f ′′ is satisfiable. This completes the proof of the
claim.

Returning to the proof of the theorem, we want to show that if f is consistent,
then f is satisfiable. So suppose that f is consistent and, by way of contradicition,
that it is not satisfiable. Then f ′′ is not satisfiable. Thus, by the claim, the system of
equations f̂ has no solution. Thus, ¬f ′′ is an instance of the axiom Ineq. Since f ′′

is provably equivalent to f , it follows that ¬f is provable, so that f is inconsistent,
a contradiction.

Theorem 5.4. AXposs is a sound and complete axiomatization of LE with
respect to Mposs .

Proof. Soundness is straightforward. For completeness, we proceed almost
exactly as in Theorem 5.3. As before, we can reduce to showing that a for-
mula f consistent with AXposs that is a conjunction of formulas of the form
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a1e(ρ1)+ · · ·+a22N e(ρ22N ) ≥ b and −a′1e(ρ1)−· · ·−a′22N e(ρ22N ) > b′ is satisfiable.
We add as conjuncts to this formula all the expectation inequalities corresponding
to E11 involving the regions ρ1, . . . , ρ22N , as well as the inequalities e(ρi) ≥ 0 for
all 1 ≤ i ≤ 22N

, e(ρ1) ≥ 1, −e(ρ1) ≥ −1 and −e(ρ22N ) ≥ 0. Again, let f̂ be
the system of inequations formed by replacing e(ρi) by xi. Arguments similar in
spirit to those of Theorem 5.3 can be used to show that f̂ has a solution iff there
is a structure in Mposs satisfying f ; we leave details to the reader. The proof is
completed using Ineq, just as the earlier completeness proofs.

A.4 Proofs for Section 6

As in FHM and HP, the small model theorems we prove rely on the following lemma,
which can be derived from Cramer’s rule [Shores 1999] and simple estimates on the
size of the determinant (see also Chvátal [1983] for a simpler variant):

Lemma A.8. If a system of r linear equalities and/or inequalities with integer
coefficients, each of length at most l, has a nonnegative solution, then it has a
nonnegative solution with at most r positive entries, where the size of each element
of the solution is O(rl + r log(r)).

Before getting to the small model theorems, we first establish a finite model
theorem, that is, we show that, for all the representations of uncertainty we consider
in this paper, if a formula in LE is satisfiable, it is in fact satisfiable in a structure
with finitely many states. This is a consequence of the completeness proofs in
Section 5.

Lemma A.9. Suppose f ∈ LE is satisfied in some structure in Mprob (resp.,
Mlp, Mbel , Mposs). Then f is satisfied in a structure in Mprob (resp., Mlp,
Mbel , Mposs) with finitely many states.

Proof. In each of the proofs of Theorems 5.1–5.4, we show that a formula
is satisfiable iff a certain system of inequations has a solution. The system of
inequations involves only finitely many variables. Our argument showing that if
the system of inequations is satisfiable, then there is a structure where the formula
is satisfied actually shows that the satisfying structure has only finitely many states,
with no more than one state per variable in the system.

Note for future reference that the satisfying structures in Mprob and Mlp con-
structed in the proofs of Theorems 5.1 and 5.2 are such that all subsets are mea-
surable.

Theorem 6.1. Suppose that f ∈ LE is satisfied in some structure in Mlp. Then
f is satisfied in a structure (W,P, π) such that |W | ≤ |f |2, |P| ≤ |f |, µ(w) is
a rational number such that ||µ(w)|| is O(|f |2||f || + |f |2 log(|f |)) for every world
w ∈W and µ ∈ P, and π(w)(p) = false for every world w ∈W and every primitive
proposition p not appearing in f .

Proof. The first step in the proof involves showing that if P is a set of proba-
bility measures defined on a finite space W (assuming all subsets are measurable),
and if X1, . . . , Xn are gambles over W , then we can assume without loss of gen-
erality that for each gamble Xi, there is a probability measure µXi

∈ P such
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that EµXi
(Xi) = EP(Xi) (rather than EP(Xi) just being the inf of Eµ(Xi) for

µ ∈ P). A similar result is proved in HP for upper probabilities. More specifically,
in HP, it is shown that, given P, there exists a set P ′ ⊇ P such that, for each
S ⊆ W , EP(XS) = EP′(XS) and, moreover, there exists some µS ∈ P ′ such
that µS(S) = EP(XS). The next result can be viewed as a generalization of this
result to arbitrary gambles. It is proved using essentially the same technique as the
corresponding result in HP.

Lemma A.10. Let P be a set of probability measures defined on a finite set W
of worlds, and let X1, . . . , Xn be gambles over W . Then there exists a set P ′ of
probability measures such that, for each gamble Xi, (a) EP(Xi) = EP′(Xi), and
(b) there is a probability measure µXi ∈ P ′ such that EµXi

(Xi) = EP(Xi).

Proof. To show that P ′ exists, it clearly suffices to show that, for each gamble
X ∈ {X1, . . . , Xn}, there is a probability measure µX such that EµX

(Y ) ≥ EP′(Y )
for all Y ∈ {X1, . . . , Xn} and EµX

(X) = EP(X).
Given a gamble X ∈ {X1, . . . , Xn}, if there exists µ ∈ P such that Eµ(X) =

EP(X), then we are done. If not, there must be a sequence µ1, µ2, . . . of measures
in P such that limn→∞Eµn

(X) = EP(X). Suppose that W = {w1, . . . , wn}. By
the Bolzano-Weierstrass theorem [Rudin 1976] (which says that every sequence of
real numbers has a convergent subsequence), the sequence µ1(w1), µ2(w1), µ3(w1),
. . . has a convergent subsequence. Suppose, inductively, that we have found a
subsequence µj,1, µj,2, . . . of µ1, µ2, . . . such that µj,1(w), µj,2(w), µj,3(w), . . . con-
verges for w ∈ {w1, . . . , wj}. By applying the Bolzano-Weierstrass Theorem again,
there is a subsequence µj+1,1, µj+2,1, . . . of µj,1, µj,2, . . . such that µj+1,1(wj+1),
µj+2,1(wj+1), . . . converges. It follows that µj+1,1(w), µj+2,w), . . . converges for all
w ∈ {w1, . . . , wj+1}. By induction, we can find a subsequence µn,1, µn,2, . . . of the
original sequence such that µn,1(w), µn,2(w), . . . converges for all w ∈ W . Suppose
that µn,1(wi), µn,2(wi), . . . converges to pi. It is easy to see that p1 + · · ·+ pn = 1,
since

∑n
i=1 µn,j(wi) = 1 for all j. Let µX be the probability measure such that

µ(wi) = pi. Since µn,j → µX , it must be the case that EµX
(X) = EP(X).

Moreover, since µn,j ∈ P for all j, it must be the case that Eµn,j
(Y ) ≥ EP(Y )

for all j. Thus, EµX
(Y ) ≥ EP(Y ), as desired.

Now let P ′ = P ∪ {µX1 , . . . , µXn}. P ′ clearly has the desired properties.

Continuing with the proof of Theorem 6.1, suppose that f is satisfiable in Mlp .
By Lemma A.9, f is satisfied in a lower probability structure with a finite set W
of worlds. Thus, by Lemma A.10, f is satisfied in a structure M = (W,P, π) such
that, for all X ∈ {X1, . . . , Xn}, there exists µX ∈ P such that EµX

(X) = EP(X).
The rest of the proof also continues in much the same spirit as the proof of the

analogous result in HP. A straightforward induction on structures shows that we
can find a formula equivalent to f in disjunctive normal form, where each disjunct
has length at most |f |. (The inductive hypothesis states that we can find both a
DNF formula equivalent to f where each disjunct has length at most |f |, and a
CNF formula equivalent to f where each conjunct has length at most |f |.) Since a
formula in DNF is satisfiable iff one of its disjuncts is, we can thus assume without
loss of generality that f is a conjunction of inequality formulas and negations of
inequality formulas. Let p1, . . . , pN be the primitive formulas appearing in f . Let
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δ1, . . . , δ2N be the atoms over p1, . . . , pN . As in the proof of completeness, we derive
a system of equalities and inequalities from f , but it is a slightly more complicated
system than that used in the completeness proof. Recall that each propositional
formula over p1, . . . , pN is a disjunction of atoms. Let γ1, . . . , γk be the propositional
gambles that appear in g. Notice that k < |f | (since there are some symbols in f ,
such as the coefficients, that are not in the propositional formulas). The system
of equations and inequalities we construct involve variables xij , where i = 1, . . . , k
and j = 1, . . . , 2N . Intuitively, xij represents µγi

([[δj ]]M ), where µγi
∈ P is such

that Eµγi
({|γi|}M ) = EP({|γi|}M ). Thus, the system includes k < |f | equations of

the form

xi1 + · · ·+ xi2N = 1,

for i = 1, . . . , k. Suppose that γi is equivalent to bi1δ1 + · · · + bi2N δ2N . Then
bi1xi1 + · · · + bi2Nxi2N represents Eµγi

({|γi|}M ). Since Eµγi
({|γi|}M ) ≤ Eµ({|γi|}M )

for all µ ∈ P, the system includes k2− k inequalities of the form

bi1xi1 + · · ·+ bi2Nxi2N ≤ bi1xi′1 + · · ·+ bi2Nxi′2N ,

for each pair i, i′ such that i 6= i′. For each conjunct in g of the form a1e(γ1)+ · · ·+
ane(γk) ≥ b, there is a corresponding inequality where, roughly speaking, we replace
e(γi) by Eµγi

({|γi|}M ).12 Since Eµγi
{|γi|}M corresponds to bi1xi1 + · · · bi2Nxi2N , the

appropriate inequality is
k∑
i=1

ai(bi1xi1 + · · ·+ bi2Nxi2N ) ≥ b.

Negations of such formulas correspond to a negated inequality formula; as before,
this is equivalent to a formula of the form

−(
k∑
i=1

ai(bi1xi1 + · · ·+ bi2Nxi2N ) > −b.

Notice that there are at most |f | inequalities corresponding to the conjuncts of f .
Thus, altogether, there are at most k(k−1)+2|f | < |f |2 equations and inequalities
in the system (since k < |f |). We know that the system has a nonnegative solution
(taking xij to be µγi([[δj ]]M )). It follows from Lemma A.8 that the system has a
solution x∗ = (x∗11, . . . , x

∗
12N , . . . , x

∗
k1, . . . , x

∗
k2N ) with t ≤ |f |2 entries positive, and

with each entry of size O(|f |2||f ||+ |f |2 log(|f |)).
We use this solution to construct a small structure satisfying the formula f . Let

I = {i : x∗ij is positive, for some j}; suppose that I = {i1, . . . , it′} for some t′ ≤ t.
Let M = (W,P, π), where W has t′ worlds, say s1, . . . , st′ . Let π(sh) be the truth
assignment corresponding to the formula δih , that is, π(sh)(p) = true if and only
if δih ⇒ p is a propositional tautology (and where π(sh)(p) = false if p does not
appear in f). Define P = {µj : 1 ≤ i ≤ k}, where µj(sh) = x∗ihj . It is clear
from the construction that M |= f . Since |P| = k < |f |, |W | = t′ ≤ t ≤ |f |2 and

12For simplicity here, we are implicitly assuming that each of the formulas γi appears in each
conjunct of f . This is without loss of generality, since if γi does not appear, we can put it in,

taking ai = 0.
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µj(sh) = x∗ihj , where, by construction, the size of x∗ihj is O(|f |2||f ||+ |f |2 log(|f |)),
the theorem follows.

Theorem 6.2. Suppose that f ∈ LE is satisfied in some structure in Mbel

(resp., Mposs). Then f is satisfied in a structure (W, ν, π) such that |W | ≤ |f |2, ν
is a belief function (resp., possibility measure) whose corresponding mass function
is positive on at most |f | subsets of W and the mass of each of these |f | is a rational
number of size O(|f | ||f ||+|f | log(|f |)), and π(w)(p) = false for every world w ∈W
and every primitive proposition p not appearing in f .

Proof. First, consider expectation for belief functions. The proof is similar in
spirit to the proof of the small model theorem for reasoning about belief functions
given in FHM. In FHM, the complexity result used the representation of belief
functions in terms of mass functions. We do that here too; to do so, it is helpful to
have an alternate characterization of expectation for belief that uses mass functions.

Given a belief function Bel over a finite set W of worlds, let m be the correspond-
ing mass function. For a given gamble X, let vU = minw∈U X(w).

Lemma A.11. EBel(X) =
∑
U⊆W m(U)vU .

Proof. Suppose that Bel is a belief function on W with corresponding mass
functionm, andX is a gamble on a finite setW = {w1, . . . , wn}, where the elements
of W are ordered so that i ≤ j implies X(wi) ≤ X(wj). For each U ⊆ W , let
iU = min{i : wi ∈ U}; note that vU = X(wiU ).

EBel(X) =
∑
U⊆W

m(U)vU .

We want to show that EBel(X) = EBel(X).
Recall from Section 2.3 that EBel = EPBel

, where PBel is the set {µ : µ(U) ≥
Bel(U) for all U ⊆W}. As a first step, let µ0 be a probability measure on W such
that µ0(X = x) =

∑
{U :vU=x}m(U). (Note that µ0 is a probability measure, since∑

x∈V(X)

µ0X = x =
∑

x∈V(X)

∑
{U :vU=x}

m(U) =
∑
U⊆W

m(U) = 1,

since m is a mass function.) Clearly

Eµ0(X) =
∑

x∈V(X)

xµ0(X = x) =
∑

x∈V(X)

x
∑

{U :vU=x}

m(U)

=
∑
U⊆W

m(U)vU = EBel(X).

Moreover, for all U ⊆ W , since µ0(U) =
∑
{V :wiV

∈U}m(V ), and wiV ∈ U for
all V ⊆ U , it follows that µ0(U) ≥

∑
{V :wiV

∈U}m(V ) = Bel(U). It follows that
µ0 ∈ PBel. Thus,

EBel(X) = Eµ0(X) ≥ inf
µ∈PBel

Eµ(X) = EPBel(X) = EBel(X).

To show that EPBel
(X) ≥ EBel(X), let x1 ≤ · · · ≤ xk be the values of X in

increasing order, and let Uj = ∪ji=1(X = xj) = {w ∈ W : X(w) ≤ xj}. We
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claim that µ0(Uj) = Plaus(Uj), j = 1, . . . , k. This is almost immediate from the
definition, since

µ0(Uj) =
∑

{U :vU≤xj}

m(U) =
∑

{U :U∩Uj 6=∅}

m(U) = Plaus(Uj).

It follows that if µ ∈ PBel, then µ0(Uj) ≥ µ(Uj), for j = 1, . . . , k (since µ(Uj) ≤
Plaus(Uj)). For convenience, define U0 = ∅. Then we get that

Eµ(X)− Eµ0(X) =
∑k
i=i xi(µ(X = xi)− µ0(X = xi))

=
∑k
i=1 xi((µ(Ui)− µ(Ui−1))− (µ0(Ui)− µ0(Ui−1)))

= xk(µ(Uk)− µ0(Uk)) +
∑k−1
i=1 (xi+1 − xi)(µ0(Ui)− µ(Ui))

≥ 0.

The last inequality follows from the fact that µ(Uk) = µ0(Uk) = µ0(W ) = 1,
xi+1 > xi, and µ0(Ui) ≥ µ(Ui) for i = 1, . . . , k − 1. Thus, Eµ0(X) = EPBel

(X). It
follows that EBel(X) = EPBel

(X).

Continuing with the proof of Theorem 6.2, suppose that f ∈ LE is satisfiable
in structure M . As in the proof of Theorem 6.1, we can assume without loss of
generality that f is a conjunction of expectation formulas and their negations. Let
δ1, . . . , δ2N be the atoms over p1, . . . , pN . Let ρ1, . . . , ρ22N be all the inequivalent
propositional formulas over p1, . . . , pN .

As in the proof of completeness, we derive a system of equalities and inequalities
from f . First, note that every propositional formula appearing in the gambles of f
is provably equivalent to some region ρi. Therefore, we can replace every gamble
in f by an equivalent gamble where the propositional formulas are the regions
ρ1, . . . , ρ22N . Let f ′ be resulting formula. Clearly, M |= f ′. Construct the following
system of linear inequalities over the variables x1, . . . , x22N , where, intuitively, the
variable xi stands for the mass corresponding to the set ρi. For every gamble γ
that appears in f ′ every ρi, we can compute values vγ,i = minw∈[[ρi]]M ({|γ|}M (w)).

For every gamble γ, replace every term e(γ) in f ′ by
∑22N

i=1 xivγ,i. Consider the
system f̂ ′ of at most |f | inequalities (over unknowns x1, . . . , x22N ) resulting from
this process, after putting together like terms, along with the inequalities x1 + · · ·+
x22N ≥ 1 and −x1 − · · · − x22N ≥ −1.

We now show that any nonnegative solution x∗1, . . . , x
∗
22N of f̂ ′ can be used to

construct a belief function Bel∗ such that (W,Bel∗, π) |= f ′. (Note that we keep
the same worlds and interpretation as in M .) Let x∗1, . . . , x

∗
22N be a nonnegative

solution of f̂ . Define the mass function m∗([[ρi]]M ) = x∗i , and define m∗(U) = 0
for all U ⊆ W such that U is not of the form [[ρ]]M for some region ρ. Because
x∗1 + . . . + x∗

22N = 1 (by choice of f̂ ′), m∗ is indeed a mass function. Let Bel∗

be the belief function corresponding to m∗, and let M∗ = (W,Bel∗, π). Since the
interpretation of propositional formulas and gambles depends only on the set of
worlds and the interpretation π, for all propositional formulas ρi, we have [[ρi]]M =
[[ρi]]M∗ , and for all gambles γ appearing in f ′, we have {|γ|}M = {|γ|}M∗ . We now
show that M∗ |= f ′. Let a1e(γ1)+ . . .+ake(γk) ≥ b be a conjunct in f ′. (A similar
argument works for the negation of expectation inequalities.) We know from the
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construction of f̂ ′ and the fact that x∗1, . . . , x
∗
22N is a solution of f̂ ′ that

a1

22N∑
i=1

x∗i vγ1,i + . . .+ ak

22N∑
i=1

x∗i vγk,i ≥ b.

By definition, this is just

a1

22N∑
i=1

m∗([[ρi]]M ) min
w∈[[ρi]]M

({|γ1|}M (w)) + . . .+

ak

22N∑
i=1

m∗([[ρi]]M ) min
w∈[[ρi]]M

({|γk|}M (w)) ≥ b.

Since every subset of W is of the form [[ρi]]M for some i, we have

a1

∑
U⊆W

m∗(U) min
w∈U

({|γ1|}M (w)) + . . .+ ak
∑
U⊆W

m∗(U) min
w∈U

({|γk|}M (w)) ≥ b.

But by Lemma A.11, this is just a1EBel∗({|γ1|}M ) + . . . + akEBel∗({|γk|}M ) ≥ b,
which is equivalent to a1EBel∗({|γ1|}M∗) + . . . + akEBel∗({|γk|}M∗) ≥ b, and thus
M∗ |= a1e(γ1) + . . .+ ake(γk) ≥ b. It follows that M∗ |= f ′.

Because f ′ is satisfiable in M , there is in fact a nonnegative solution to the
system f̂ ′, where xi = m([[ρi]]M ) and m is the mass function corresponding to
the belief function in M . By Lemma A.8, there is a small nonnegative solution
x∗1, . . . , x

∗
22N , that is, one with at most |f | positive entries and each entry of size

O((|f |)||f || + (|f |) log(|f |)). By the argument above, x∗1, . . . , x
∗
22N can be used to

construct a model M∗ = (W,Bel∗, π) such that M∗ |= f ′. We are not quite done
yet; while we have a small mass function, we still have potentially too many worlds.
We now show how to cut down the number of worlds in the model to get a small
enough structure M ′.

Let {i1, . . . , i|f |} = {i : m∗([[ρi]]M∗) > 0}. Let γ1, . . . , γk be the gambles in
f ′. For i ∈ {1, . . . , k} and j ∈ {1, . . . , |f |}, there is some wi,j ∈ [[ρij ]]M∗ such that
{|γi|}M (wi,j) = minw∈[[ρij

]]M ({|γi|}M (w)); that is, wi,j is a world where {|γi|}M attains
its minimum value. DefineM ′ = (W ′,Bel′, π′) as follows. Let the set of statesW ′ be
{wi,j : i ∈ {1, . . . , k}, j ∈ {1, . . . , |f |}}. Let Bel′ be the belief function whose corre-
sponding mass functionm′ is defined by settingm′({w1,j , . . . , wk,j}) = m∗([[ρij ]]M∗)
for j = 1, . . . , |f |, and m′(U) = 0 if U is not [[ρij ]]M∗ for some j ∈ {1, . . . , |f |}.
The interpretation π′ is simply the restriction of π to W ′, with π(w)(p) = false for
primitive propositions p not appearing in f . This model satisfies the size conditions
of the theorem.

We now check that f ′ (and hence f) is satisfiable in M ′. It is clearly sufficient to
show that for every gamble γi in f ′, we have EBel∗({|γi|}M∗) = EBel′({|γi|}M ′). To
do this, we show that

{|γi|}M∗(wi,j) = min
1≤r≤k

({|γi|}M ′(wr,j)). (12)

By choice of wi,j , {|γi|}M∗(wi,j) = minw∈[[ρij
]]M∗ ({|γi|}M∗(w)). Since {w1,j , . . . , wk,j}

is a subset of [[ρij ]]M∗ , it follows that {|γi|}M∗(wi,j) = min1≤r≤k({|γi|}M∗(wr,j)).
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Next note that for all w ∈ {w1,j , . . . , wk,j}, we have that {|γi|}M∗(w) = {|γi|}M ′(w).
For if γi = c1ρj1 + . . . + clρjl , then {|γi|}M∗ = c1X[[ρj1 ]]M∗ + . . . + clX[[ρjl

]]M∗ and
{|γi|}M ′ = c1X[[ρj1 ]]M′ + . . . + clX[[ρjl

]]M′ . Since π′ is the restriction of π∗ to W ′,
it follows that [[ρji ]]M∗ = [[ρji ]]M ′ ∩ W ′. Since {w1,j , . . . , wk,j} ⊆ W ′, it follows
that X[[ρji

]]M∗ (w) = X[[ρj1 ]]M′ (w) for all w ∈ {w1,j , . . . , wk,j}. Thus, {|γi|}M∗(w) =
{|γi|}M ′(w) for all w ∈ {w1,j , . . . , wk,j}. We can now show that EBel∗({|γi|}M∗) =
EBel′({|γi|}M ′):

EBel∗({|γi|}M∗)

=
∑22N

i=1 m
∗([[ρi]]M∗) minw∈[[ρi]]M∗ ({|γi|}M∗(w))

=
∑|f |
j=1m

∗([[ρij ]]M∗) minw∈[[ρi]]M∗ ({|γi|}M∗(w)) (since m∗(U) = 0 if U 6= [[ρij ]]M∗)
=

∑|f |
j=1m

∗([[ρij ]]M∗){|γi|}M∗(wi,j) (by choice of wi,j)
=

∑|f |
j=1m

′({w1,j , . . . , wk,j}){|γi|}M∗(wi,j)
=

∑|f |
j=1m

′({w1,j , . . . , wk,j}) min1≤r≤k({|γi|}M ′(wr,j)) (by (12))
=

∑
U⊆W ′ m′(U) minw ∈ U({|γi|}M ′(w)) (adding sets for which m′(U) = 0)

= EBel′({|γi|}M ′).

From this result, it is easy to see that M ′ |= f ′, and hence M ′ |= f . This establishes
the small-model result for LE interpreted over belief functions.

Essentially the same argument works in the case of possibility measures. Recall
that a possibility measure Poss is just a plausibility function. whose corresponding
mass function m is consonant ; that is, for all sets U, V such that m(U) > 0 and
m(V ) > 0, we have either U ⊆ V or V ⊆ U [Dubois and Prade 1982]. In other
words, the sets of positive mass U1, . . . , Uk can be ordered such that U1 ⊆ . . . ⊆
Uk. We then proceed much as for belief functions. We construct a system of
inequalities over the variables x1, . . . , xk, where, Using Lemma A.8 again, because
f ′ is satisfiable in M , there is a small nonnegative solution x∗1, . . . , x

∗
k, with at

most |f | positive entries, each of small size. We can then use this solution to build
a structure satisfying f where the mass function is consonant and positive on at
most |f | sets. This follows directly from the fact that the only sets of positive
mass will be among U1, . . . , Uk, which are already such that U1 ⊆ . . . ⊆ Uk.) The
remainder of the proof goes through as in the belief function case.

Theorem 6.3. The problem of deciding whether a formula in LE is satisfiable
in Mprob (resp., Mlp, Mbel , Mposs) is NP-complete.

Proof. The result for Mprob is immediate from the proof that the satisfiability
problem for LQU1 (the restriction of LQU to rational coefficents) is NP-complete,
together with the argument in Theorem 4.1 showing that every formula in LE is
equivalent to a formula in LQU1 of the same length (where the formula is essentially
given by the translation of Lemma A.4).

Consider Mlp . The lower bound follows from the fact that we can reduce
propositional satisfiability to the decision problem for LE ; hence the problem is
NP-hard (by replacing each proposition p by the formula e(p) = 1). The upper
bound follows from Theorem 6.1. Given a formula f , first guess a small model
M = (W,P, π), of the form guaranteed to exist by Theorem 6.1. (The fact that
π(w)(p) = false for every world w ∈ W and every primitive proposition p not
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appearing in f means that we must describe π only for propositions that appear in
f .) We can verify that M |= f inductively. For inequality formulas, let e(γ) be an
arbitrary expectation term in the formula, with γ of the form b1ϕ1 + · · · + bnϕn.
For each ϕ in γ, we compute [[ϕ]]M by checking the truth assignment of each world
in W and seeing whether this truth assignment makes ϕ true. We then replace
each occurrence of e(γ) by minµ∈P{

∑n
i=1

∑
w∈[[ϕi]]M

biµ(w)} and verify that the
resulting inequality holds. It is easy to see that this verification can be done in
time polynomial in |f | and ||f ||. Therefore, the decision problem is in NP, and
hence is NP-complete.

Finally, consider Mbel and Mposs . As earlier, the lower bound follows from the
fact that we can reduce propositional satisfiability to the decision problem for LE ;
hence, the problem is NP-hard. Again, the upper bound follows from Theorem 6.2.
Given a formula f , guess a small model M = (W, ν, π) of the form guaranteed
to exist by Theorem 6.2, along with sets U1, . . . , Us (s ≤ |f |) such that the mass
function corresponding to the belief function (respectively, possibility measure) ν
is positive only on U1, . . . , Us. We then verify that f is indeed true at some (and
hence all) states in the model, just as in the case of Mlp .

A.5 Proofs for Section 7

The following lemmas are useful in the proof of Theorem 7.1.

Lemma A.12. The formula ϕ ≥ 0̃ is provable in AXg .

Proof. Here is a sketch of the derivation:

(1) true = 1̃ (G3)
(2) ϕ ∨ ¬ϕ = true (G4)
(3) ϕ ∨ ¬ϕ = ϕ+ ¬ϕ (G1)
(4) ϕ+ ¬ϕ = 1̃ (1, 2, 3, IneqF, Taut, MP)
(5) ϕ+ ¬ϕ ≥ 0̃ (4, IneqF)
(6) ϕ ≥ 0̃ (5, G2).

Lemma A.13. The formula (aϕ+ b¬ϕ ≥ 0̃) ⇒ (ϕ = 0̃) is provable in AXg , for
a < 0.

Proof. Here is a sketch of the derivation:

(1) aϕ+ b¬ϕ ≥ 0̃ ⇒ aϕ ≥ 0̃ (G2,Taut,MP)
(2) aϕ ≥ 0̃ ⇒ ϕ ≤ 0̃ (IneqF, since a < 0)
(3) ϕ ≥ 0̃ (Lemma A.12)
(4) aϕ+ b¬ϕ ≥ 0̃ ⇒ ϕ = 0̃ (1, 2, 3, Taut, MP, definition of =).

Theorem 7.1. AXg is a sound and complete axiomatization of Lg with respect
to Mg.
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Proof. Soundness is straightforward. For completeness, we show that an un-
satisfiable formula f is inconsistent. We first reduce f to a canonical form. Let
g1 ∨ . . . ∨ gr be a disjunctive normal form expression for f (where each gi is
a conjunction of gamble inequalities and their negations). Using propositional
reasoning (axioms Taut and MP), we can show that f is provably equivalent to
this disjunction. Since f is unsatisfiable, each gi must also be unsatisfiable. Thus,
it is sufficient to show that any unsatisfiable conjunction of gamble inequalities and
their negations is inconsistent.

Let f be such an unsatisfiable conjunction of gamble inequalities and their
negations. Let p1, . . . , pN be the primitive propositions appearing in f , and let
δ1, . . . , δ2N be a canonical listing of the atoms over p1, . . . , pN . We first show
that any gamble inequality γ ≥ c̃ is provably equivalent to a gamble inequality
a1δ1 + · · · + a2N δ2N ≥ 0̃. Consider a term aϕ appearing in γ ≥ c̃. Since ϕ is
equivalent to a disjunction δi1 ∨ . . .∨ δik , we have that ϕ = δi1 ∨ . . .∨ δik , and hence
aϕ = a(δi1 ∨ . . . ∨ δik), is provable by G4 and IneqF. By repeated applications of
G1, we have that a(δi1 ∨ . . . ∨ δik) = aδi1 + · · ·+ aδik is provable. (Note that if ϕ
and ϕ′ are mutually exclusive, then ϕ ∨ ϕ′ is equivalent to ϕ ∧ ϕ ∨ ϕ′ ∧ ¬ϕ, so by
G1, ϕ ∨ ϕ′ = ϕ + ϕ′.) By IneqF, aϕ = aδi1 + · · · + aδik is provable too. Using
IneqF again, it follows that aϕ = a1δ1 + · · · + a2N δ2N is provable, where ai = a
if i ∈ {i1, . . . , ik}, and ai = 0 otherwise. Doing this to every term in γ shows that
here exist b1, . . . , b2n such that γ = b1δ1 + · · · + b2N δ2N is provable. Hence, using
IneqF, so is a1δ1 + · · · + a2N δ2N ≥ c̃. By G3, true = 1̃ is provable, hence so is
c true = c̃. It then easily follows using IneqF that cδ1 + · · ·+ cδ2N = c̃ is provable.
Thus, γ ≥ c̃ is provably equivalent to (a1−c)δ1+ · · ·+(a2N −c)δ2N ≥ 0̃, as required.

It immediately follows that f is provably equivalent to a formula f ′ that is a
conjunction of gamble inequalities of the form a1δ1 + · · · + a2N δ2N ≥ 0̃ and their
negations. Say that f ′ consists of r gamble inequalities and s negations of gamble
inequalities. Consider two arrays of coefficients of f ′′: P = (ai,j), where ai,j is
the coefficient of δj in ai,1δ1 + · · · + ai,2N δ2N ≥ 0̃ (1 ≤ i ≤ r), and N = (bi,j),
where bi,j is the coefficient of δj in ¬(bi,1δ1 + · · · + bi,2N δ2N ≥ 0̃) (1 ≤ i ≤ s). Let
I = {1, . . . , 2N}. Note that, since f is unsatisfiable, so is f ′. If ai,j < 0 for some
i, j, then, by Lemma A.13, we must have δj = 0̃. Let I ′′ = {j : ai,j < 0 for some i};
let I ′ = I − I ′′. Let P ′ and N ′ be the result of setting all entries in column j of
P (resp., N) to 0, for all j ∈ I ′′. The formula f ′′ corresponding to the matrices
P ′ and N ′ is provably equivalent to the original f ′, by IneqF: since δj = 0̃ for all
j ∈ I ′′, it must be the case that aδj = 0̃. By construction, all entries in P ′ and N ′

are nonnegative; moreover, N ′ is nonempty (since ¬(−δ1− · · ·− δ2N ≥ 0̃) is in f ′′).
There are now two cases. Taking N ′ = (b′i,j), note that if N ′ has a row i with

all entries nonnegative, then f ′′ provably implies that ¬(0δ1 + · · ·+0δ2N ≥ 0̃). But
using IneqF, it is easy to show that 0δ1 + · · · + 0δ2N = 0̃. This shows that f ′′,
and hence f ′ and f , is inconsistent. On the other hand, if all the rows in N ′ have
a negative entry, then the formula corresponding to P ′, N ′ is in fact satisfiable.
We can construct a structure M satisfying f ′ by taking M = ({δi : i ∈ I ′}, π),
where π(δi)(p) = true if δi ⇒ p is a propositional tautology. This contradicts the
assumption that f ′ is unsatisfiable.

The proof of Theorem 7.2 relies on the following small-model result.
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Lemma A.14. Suppose that f ∈ Lg1 is satisfied in some structure in Mg. Then
f is satisfied in a structure (W,π) where |W | ≤ |f |, and π(w)(p) = false for every
world w ∈W and every primitive proposition p not appearing in f .

Proof. Suppose that f ∈ Lg1 is satisfied in a structure M = (W,π). conjunction
of gamble inequalities and their negations. We want to show that f is in fact
satisfied in a small structure. As usual, we can assume without loss of generality
that f is a conjunction of gamble inequalities and their negations.

Suppose that there are r gamble inequalities in f and s negations of gamble
inequalities. We consider two cases. If s = 0, then pick any w ∈ W and let M ′ =
(W ′, π′), with W ′ = {w}, and π′ is the restriction of π to {w} (setting π(w)(p) =
false for every primitive proposition p not appearing in f . It is easy to check that
M ′ |= f , since w ∈ W . If s > 0, then for every negation of gamble inequality
¬(γ ≥ c̃) appearing in f , there exists a world w ∈ W such that {|γ|}M (w) < c̃. Let
w1, . . . , ws be such worlds, one corresponding to each of the s negation of gamble
inequalities appearing in f . Let M ′ = (W ′, π′), where W ′ = {w1, . . . , ws}, and π′ is
the restriction of π to W ′ (setting π′(w)(p) = false for primitive propositions p not
appearing in f). Clearly, every gamble inequality in f is satisfied in M ′, since W ′

is a subset of W . Moreover, by choice of W ′, every negation of gamble inequality
in f is also satisfied in M ′ (since our construction guarantees that there is world
in M ′ that is a witness to the falsity of all the negated gamble inequalities in f).
Since |W ′| = s < |f |, the result follows.

Theorem 7.2. The problem of deciding whether a formula of Lg1 is satisfiable
in Mg is NP-complete.

Proof. For the lower bound, observe that Lg1 includes propositional reasoning.
Hence, the decision problem for Lg1 is at least as hard as propositional reasoning.

For the upper bound, let f be a satisfiable formula of Lg1. We first guess a
small model M = (W,π) for the formula, of the form guaranteed to exist by
Lemma A.14. (As usual, the fact that π(w)(p) = false for every world w ∈ W
and every primitive proposition p not appearing in f means that we must describe
π only for propositions that appear in f .) We verify that M |= f inductively. For
basic formulas of the form γ ≥ c, we must check that for all w ∈W , {|γ|}M (w) ≥ c.
If γ is of the form b1ϕ1 + · · ·+ bnϕn, then we can compute {|γ|}M (w) by summing
all the bi such that ϕi is true at w (i.e., π(w)(ϕi) = true). It is easy to see that
this verification can all be done in time polynomial in |f | and ||f ||.

The following notation is useful for the proofs of Theorem 7.3 and Lemma A.18.
Given a linear inequality formula f (over real-valued functions) t ≥ c̃, we write f̂
for the linear inequality formula t ≥ c over the reals. We extend this to Boolean
combinations of linear inequality formulas in the obvious way.

For the sake of our proof of completeness of AXf , we need also to show that the
following formula is provable:

0v1 + . . .+ 0vn ≥ 0̃ (13)

This formula can be viewed as saying that the right implication of axiom I5 holds
when d = 0.

Lemma A.15. The formula (13) is provable from AXf .
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Proof. By F1, v1 ≥ v1, that is, v1 − v1 ≥ 0̃, is provable. By axiom F3, so
is −v1 + v1 ≥ 0̃. If we add these latter two inequalities by F4, and delete a 0
term by F2, we obtain 0v1 ≥ 0̃. By using F2 to add 0 terms, it follows that
0v1 + . . .+ 0vn ≥ 0̃ is provable, as desired.

Theorem 7.3. AXf is sound and complete for reasoning about formulas about
linear inequalities over real-valued functions with nonempty domain.

Proof. Soundness is straightforward. For completeness, we show that an un-
satisfiable formula f is inconsistent. So suppose that f is unsatisfiable. As usual,
without loss of generality, we can assume that f is a conjunction of inequalities
and their negations, say, with r inequalities and s negations of inequalities. We
prove the result by reducing satisfiability of inequalities over real-valued functions
to satisfiability of inequalities over real numbers, and then apply techniques from
FHM.

There are two cases. First, suppose that s = 0, so that there are no negations
of inequalities in f . It is easy to see that since f is unsatisfiable over functions, f̂
must be unsatisfiable over the reals. For if f̂ were satisfiable over the reals with
a solution x∗1, . . . , x

∗
k, then f would be satisfied by taking xi to be the constant

function that always returns x∗i .
Write f̂ in matrix form as A~x ≥ ~b, where A is the r× k matrix of coefficients on

the left-hand side of the inequalities, ~x is the column vector (x1, . . . , xk), and~b is the
column vector of the right-hand sides of the inequalities. Since f̂ is unsatisfiable,
A~x ≥ ~b is unsatisfiable. As in FHM, we make use of the following variant of Farkas’
lemma [Farkas 1902] (see Schrijver [1986, page 89]) from linear programming.

Lemma A.16. If A~x ≥ ~b is unsatisfiable, then there exists a row vector ~σ such
that

(1 ) ~σ ≥ ~0;
(2 ) ~σA = ~0;
(3 ) ~σ ·~b > 0.

Intuitively, ~σ is a “witness” or “blatant proof” of the fact that Ax ≥ b is un-
satisfiable. This is because if there were a vector ~x satisfying A~x ≥ ~b, then
0 = (~σA)~x = ~σ(A~x) ≥ ~σ~b > 0, a contradiction.

We now show that f must be inconsistent. Let ~σ = (σ1, . . . , σr) be the row
vector guaranteed to exist by Lemma A.16. Either by F5 or by Lemma A.15
(depending on whether σj > 0 or σj = 0), we can multiply both sides of the jth

conjunct of f by σj (for 1 ≤ j ≤ r), and then use F4 to add the resulting inequality
formulas together. The net result (after deleting some 0 terms by F2) is the formula
(0v1 ≥ c̃), where c = ~σ ·~b > 0. From this formula, by F6, we can conclude (0v1 > 0̃),
which by the definition of > implies ¬(0v1 ≤ 0̃), which is in turn an abbreviation
for ¬(−0v1 ≥ −̃0), that is, ¬(0v1 ≥ 0̃). Thus f ⇒ ¬(0v1 ≥ 0̃) is provable. However,
by Lemma A.15, (0v1 ≥ 0̃) is also provable. It follows by propositional reasoning
that ¬f is provable, that is, f is inconsistent, as required.

Now suppose that s > 0. Let f+ be the conjunction of the inequalities in f , and
let g1, . . . , gs be the negations of inequalities in f . That is, f = f+∧g1∧. . .∧gs. We
first show that, f̂+ ∧ ĝi must be unsatisfiable over the reals for some i ∈ {1, . . . , s}.
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Assume by way of contradiction that this is not the case, that is, for all 1 ≤ i ≤ s,
f̂+ ∧ ĝi is satisfiable over the reals. Let x∗1,i, . . . , x

∗
k,i be the real number solution to

the inequalities f̂+ ∧ ĝi, and let D = {d1, . . . , ds}. Define the functions F ∗1 , . . . , F
∗
k

over D by taking F ∗j (di) = x∗j,i. It is easy to verify that f = f+ ∧ g1 ∧ . . . ∧ gs is
satisfied by those functions. Intuitively, for every element di of the domain, f̂+ is
satisifed by F ∗1 (di), . . . , F ∗k (di), so that f+ is satisfied by F ∗1 , . . . , F

∗
k ; moreover, each

gi is also satisfied, since by the choice of di, we have a1F
∗
1 (di)+ . . .+ akF

∗
k (di) < c.

Hence, f is satisfiable over real-valued functions, a contradiction. Therefore, f̂+∧ĝi0
is unsatisfiable over the real numbers for some i0. As in the case s = 0, we use this
fact to show that f is inconsistent.

As before, we can write f̂+ in matrix form as A~x ≥ ~b. Similarly, the formula
ĝi0 = ¬(a1x1 + . . .+ akxk ≥ c) can be written in matrix form as A′~x > −c, where
A′ is the 1×s matrix [−a1, . . . ,−ak], and ~x is the column vector (x1, . . . , xk). Since
f̂+∧ĝi0 is unsatisfiable, the system A~x ≥ ~b,A′~x > −c must be unsatisfiable. Farkas’
lemma does not apply, but a variant of it, called Motzkin’s transposition theorem,
which is due to Fourier [1826], Kuhn [1956], and Motzkin [1956] (see Schrijver [1986,
page 94]), does.

Lemma A.17. If the system A~x ≥ ~b,A′~x > −c is unsatisfiable, then there exist
a row vector ~σ and a real σ′ such that

(1 ) ~σ ≥ ~0 and σ′ ≥ ~0;
(2 ) ~σA+ σ′A′ = ~0;
(3 ) either

(a) σ′ = 0 and ~σ ·~b > 0, or
(b) σ′ > 0 and ~σ ·~b− σ′c ≥ 0

Since Ax ≥ b, A′x > −c is unsatisfiable, let ~σ = (σ1, . . . , σr) and σ′ be the row
vector and real guaranteed to exist by Lemma A.17.

If case 3(a) of Lemma A.17 applies, then the situation is identical to that of
Lemma A.16, and the same argument shows that f is inconsistent. If case (3b) of
Lemma A.17 applies, then σ′ > 0. As before, either by axiom F5 or by Lemma A.15,
we can multiply both sides of the jth conjunct in the formula f+ by σj , for 1 ≤ j ≤ r.
This results in the following system of inequalities:

σ1a1,1v1 + · · ·+ σ1a1,kvk ≥ σ̃1c1

· · · (14)
σrar,1v1 + · · ·+ σrar,kvk ≥ σ̃rcr.

Similarly, by F5, we can multiply both sides of gi0 by σ′ to get ¬(σ′a1v1 +
. . . σ′akvk ≥ σ̃′c′).

Let a′′1v1 + · · · + a′′kvk ≥ d̃ be the result of “adding” all the inequalities in (14).
This inequality is provable from f using F4. Since ~σA + σ′A′ = ~0, and A′ =
[−a1, . . . ,−ak], we must have that −σ′aj = −a′′j , for j = 1, . . . , k. Thus, gi0 ⇒
¬(a′′1v1 + · · ·+a′′kvk ≥ ˜σ′c′) is provable. Since σb−σ′c′ ≥ 0, it follows that d ≥ σ′c′.
Therefore, by F6, a′′1v1 + · · · a′′kvk ≥ d̃⇒ a′′1v1 + · · · a′′kvk ≥ σ̃′c′ is provable. Taking
the contrapositive, we get that gi0 ⇒ ¬(a′′1v1 + · · · + a′′kvk ≥ d̃) is provable. But
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f+ ⇒ a′′1v1 + · · · + a′′kvk ≥ d̃ is also provable. Since f ⇒ f+ ∧ gi0 is obviously
provable, it follows by propositional reasoning that ¬f is provable, that is, f is
inconsistent, as desired.

As with Lg1, the proof of NP-completeness for the decision problem of formulas
about linear inequalities (with integer coefficients) over real-valued functions with
nonempty domain relies on the following small-model result. Here, a “small model”
for a formula is an assignment of functions with a small domain. This can be done
quickly, as we shall see.

Lemma A.18. Suppose that f is a satisfiable inequality formula. Then f has a
satisfying assignment where there are at most |f | functions in the assignment with
a non-zero range, the functions in the assignment have a domain of size at most
|f |, and every value in the range of the functions is a rational number with size
O(|f |||f ||+ |f | log(|f |)).

Proof. As usual, we can assume without loss of generality that f is a conjunc-
tion of inequality formulas and their negations. Suppose that f has a satisfying
assignment v∗1 , . . . , v

∗
k, over a domainD. Let f+ be the conjunction of the inequality

formulas in r, and let g1, . . . , gs be the negations of inequality formulas in f .
Consider two cases, depending on whether s = 0. If s = 0, pick some element
d of D. Clearly, v∗1(d), . . . , v∗k(d) is a solution to f̂ , and thus f̂ is satisfiable over the
reals. By Theorem 4.9 in FHM, f̂ is satisfiable with a solution x∗1, . . . , x

∗
k where at

most |f | entries are nonzero, and each nonzero value is a rational number of size
O(|f |||f ||+ |f | log(|f |)). From this solution, we can construct a solution F ∗1 , . . . , F

∗
k

on the domain D′ = {d} satisfying the conditions of the theorem, by simply taking
F ∗i (d) = x∗i .

Now suppose that s > 0. Assume f is satisfiable over functions, with a solution
F ∗1 , . . . , F

∗
k over a domain D. Clearly, for any d ∈ D, F ∗1 (d), . . . , F ∗k (d) is a solution

to f̂+. For any 1 ≤ i ≤ s, consider gi = ¬(a1v1 + . . . + akvk ≥ c̃). There must
be a d ∈ D such that a1F

∗
1 (d) + . . . + akF

∗
k (d) < c. Thus, F ∗1 (d), . . . , F ∗k (d) is a

solution to ĝi, and by the above is also a solution to f̂+. Thus, f̂+ ∧ ĝ is satisfiable
over the reals. Again by Theorem 4.9 in FHM, we have a solution x∗1,i, . . . , x

∗
k,i of

the inequalities f̂+ ∧ ĝi such that at most |f | entries in the solution are nonzero,
and each nonzero value is of size O(|f |||f || + |f | log(|f |)). Let D = {d1, . . . , ds}.
We construct a solution to f+ ∧ g1 ∧ · · · ∧ gs from those solutions. Define the
functions F ∗1 , . . . , F

∗
k over D such that F ∗j (di) = x∗j,i. it is easy to verify that

f = f+ ∧ g1 ∧ . . . ∧ gs is satisfied by those functions. Intuitively, for every element
di of the domain, f̂+ is satisfied by F ∗1 (di), . . . , F ∗k (di); moreover, each gi (of the
form ¬(a1F1 + . . . + akFk ≥ c̃) must be satisfied, since by choice of di, we have
a1F

∗
1 (di) + . . . + akF

∗
k (di) < c. Clearly this assignment F ∗1 , . . . , F

∗
k satisfies the

statement of the lemma.

Theorem 7.4. The problem of deciding whether a formula about linear inequali-
ties (with integer coefficients) is satisfiable over real-valued functions with nonempty
domain is NP-complete.

Proof. For the lower bound, note that we can reduce propositional satisfiability
to satisfiability in the logic of linear inequalities by simply replacing each primitive
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proposition pi in a propositional formula by the inequality vi > 0.
For the upper bound, let f be a satisfiable inequality formula. We guess a small

satisfying assignment where the domain D of the functions has size at most |f |;
such an assignment is guaranteed to exist if f is satisfiable, by Lemma A.18. It is
easy to verify that this assignment does indeed satisfy f in time polynomial in |f |
and ||f ||.
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