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Abstract

Consider a distributed systemN in which each agent has an input value and each communica-
tion link has a weight. Given a global function, that is, a function f whose value depends on the
whole network, the goal is for every agent to eventually compute the valuef(N). We call this prob-
lem global function computation. Various solutions for instances of this problem, such as Boolean
function computation, leader election, (minimum) spanning tree construction, and network determi-
nation, have been proposed, each under particular assumptions about what processors know about
the system and how this knowledge can be acquired. We give a necessary and sufficient condition
for the problem to be solvable that generalizes a number of well-known results [Attyia, Snir, and
Warmuth 1988; Yamashita and Kameda 1996; Yamashita and Kameda 1999]. We then provide a
knowledge-based (kb) program(like those of Fagin, Halpern, Moses, and Vardi [1995, 1997]) that
solves global function computation whenever possible. Finally, we improve the message overhead
inherent in our initial kb program by giving acounterfactual belief-based program[Halpern and
Moses 2004] that also solves the global function computation whenever possible, but where agents
send messages only when they believe it is necessary to do so.The latter program is shown to be
implemented by a number of well-known algorithms for solving leader election.

1 Introduction

Consider a distributed systemN in which each agent has an input value and each communicationlink
has a weight. Given a global function, that is, a functionf whose value depends on the whole network,
the goal is for every agent to eventually compute the valuef(N). We call this problemglobal function
computation. Many distributed protocols involve computing some globalfunction of the network. This
problem is typically straightforward if the network is known. For example, if the goal is to compute
the spanning tree of the network, one can simply apply one of the well-known algorithms proposed
by Kruskal or Prim. However, in a distributed setting, agents may have only local information, which
makes the problem more difficult. For example, the algorithmproposed by Gallager, Humblet and Spira
[1983] is known for its complexity.1 Moreover, the algorithm does not work for all networks, although

∗Work supported in part by NSF under grants CTC-0208535, ITR-0325453, and IIS-0534064, by ONR under grant
N00014-02-1-0455, by the DoD Multidisciplinary University Research Initiative (MURI) program administered by the ONR
under grants N00014-01-1-0795 and N00014-04-1-0725, and by AFOSR under grants F49620-02-1-0101 and FA9550-05-1-
0055.

1Gallager, Humblet, and Spira’s algorithm does not actuallysolve the minimum spanning tree as we have defined it, since
agents do not compute the minimum spanning tree, but only learn relevant information about it, such as which of its edges
lead in the direction of the root.
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it is guaranteed to work correctly when agents have distinctinputs and no two edges have identical
weights.

Computing shortest paths between nodes in a network is another instance of global function com-
putation that has been studied extensively [Ford and Fulkerson 1962; Bellman 1958]. The well-known
leader election problem[Lynch 1997] can also be viewed as an instance of global computation in all
systems where agents have distinct inputs: the leader is theagent with the largest (or smallest) input.
The difficulty in solving global function computation depends on what processors know. For example,
when processors know their identifiers (names) and all ids are unique, several solutions for the leader
election problem have been proposed, both in the synchronous and asynchronous settings [Chang and
Roberts 1979; Le Lann 1977; Peterson 1982]. On the other hand, Angluin [1980], and Johnson and
Schneider [1985] proved that it is impossible to deterministically elect a leader if agents may share
names. In a similar vein, Attiya, Snir and Warmuth [1988] prove that there is no deterministic algorithm
that computes a non-constant Boolean global function in a ring of unknown and arbitrarily large size if
agents’ names are not necessarily unique. Attiya, Gorbach,and Moran [2002] characterize what can be
computed in what they calltotally anonymous shared memory systems, where access to shared memory
is anonymous.

We aim to better understand what agents need to know to compute a global function. We do this
using the framework ofknowledge-based (kb) programs, proposed by Fagin, Halpern, Moses and Vardi
[1995, 1997]. Intuitively, in a kb program, an agent’s actions may depend on his knowledge. To say
that the agent with identityi knows some factϕ we simply writeKiϕ. For example, if agenti sends
a messagemsg to agentj only if he does not know thatj already has the message, then the agent is
following a kb program that can be written as

if Ki(hasj(msg)) then skip else send(msg).

Knowledge-based programs abstract away from particular details of implementation and generalize
classes of standard programs. They provide a high-level framework for the design and specification
of distributed protocols. They have been applied to a numberof problems, such asatomic commitment
[Hadzilacos 1987],distributed commitment[Mazer and Lochovsky 1990], Byzantine agreement [Dwork
and Moses 1990; Halpern, Moses, and Waarts 2001], sequence transmission [Halpern and Zuck 1992],
and analyzing the TCP protocol [Stulp and Verbrugge 2002].

We first characterize when global function computation is solvable, i.e., for which networksN and
global functionsf agents can eventually learnf(N). As we said earlier, whether or not agents can learn
f(N) depends on what they initially know aboutN . We model what agents initially know as a setN
of networks; the intuition is thatN is the set of all networks such that it is common knowledge that N
belongs toN . For example, if it is commonly known that the network is a ring,N is the set of all rings;
this corresponds to the setting considered by Attiya, Snir and Warmuth [1988]. If, in addition, the size
n of N is common knowledge, thenN is the (smaller) set of all rings of sizen. Yamashita and Kameda
[1996] focus on three different types of setsN : (1) for a givenn, the set of all networks of sizen, (2)
for a fixedd, the set of all networks of diameter at mostd, and (3) for a graphG, the set of networks
whose underlying graph isG, for all possible labelings of nodes and edges. In general, the more that is
initially known, the smallerN is. Our problem can be rephrased as follows: givenN andf , for which
setsN is it possible for all agents inN to eventually learnf(N)?

For simplicity, we assume that the network is finite and connected, that communication is reliable,
and that no agent fails. Consider the following simple protocol, run by each agent in the network:
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agents start by sending what they initially know to all of their neighbors; agents wait until they receive
information from all their neighbors; and then agents transmit all they know on all outgoing links.
This is afull-information protocol, since agents send to their neighbors everything they know.Clearly
with the full-information protocol all agents will eventually know all available information about the
network. Intuitively, if f(N) can be computed at all, then it can be computed when agents runthis
full-information protocol. However, there are cases when this protocol fails; no matter how long agents
run the protocol, they will never learnf(N). This can happen because

1. although the agents actually have all the information they could possibly get, and this information
suffices to compute the value off , the agents do not know this;

2. although the agents have all the information they could possibly get (and perhaps even know this),
the information does not suffice to compute the function value.

In Section 2, we illustrate these situations with simple examples. We show that there is a natural way
of capturing what agents know in terms ofbisimilarity relations[Milner 1989], and use bisimilarity to
characterize exactly when global function computation is solvable. We show that this characterization
provides a significant generalization of results of Attiya,Snir, and Warmuth [1988] and Yamashita and
Kameda [1999].

We then show that the simple program where each agent just forwards all the new information
it obtains about the network solves the global function computation problem whenever possible. It is
perhaps obvious that, if anything works at all, this programworks. We show that the program terminates
with each agent knowing the global function value iff the condition that we have identified holds.

Our program, while correct, is typically not optimal in terms of the number of messages sent. Gen-
erally speaking, the problem is that agents may send information to agents who already know it or will
get it via another route. For example, consider an oriented ring. A simple strategy of always sending
information to the right is just as effective as sending information in both directions. Thus, roughly
speaking, we want to change the program so that an agent sendswhatever information he learns to a
neighbor only if he does not know that the neighbor will eventually learn it anyway.

Since agents decide which actions to perform based on what they know, this will be a kb program.
While the intuition behind this kb program is quite straightforward, there are subtleties involved in
formalizing it. One problem is that, in describing kb programs, it has been assumed that names are
commonly known. However, if the network size is unknown, then the names of all the agents in the
network cannot be commonly known. Things get even more complicated if we assume that identifiers
are not unique. For example, if identifiers are not unique, itdoes not make sense to write “agenti knows
ϕ”; Kiϕ is not well defined if more than one agent can have the idi.

We deal with these problems using techniques introduced by Grove and Halpern [1995, 1993].
Observe that it makes perfect sense to talk about each agent acting based on his own knowledge by
saying “if I know ϕ, then . . . ”. I here represents the name each agent uses to refer to himself.This
deals with self-reference; by using relative names appropriately, we can also handle the problem of how
an agent refers to other agents.

A second problem arises in expressing the fact that an agent should send information to a neighbor
only if the neighbor will not eventually learn it anyway. As shown by Halpern and Moses [2004]
the most obvious way of expressing it does not work; to capture this intuition correctly we must use
counterfactuals. These are statements of the formϕ > ψ, which are read “ifϕ thenψ”, but the “if
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... then” is not treated as a standard material implication.In particular, the formula is not necessarily
true if ϕ is false. In Section 3.1, we provide a kb program that uses counterfactuals which solves the
global function computation problem whenever possible, while considerably reducing communication
overhead.

As a reality check, for the special case of leader election innetworks with distinct ids, we show in
Section 5 that the kb program is essentially implemented by the protocols of Lann, Chang and Roberts
[Le Lann 1977; Chang and Roberts 1979], and Peterson [1982],which all work in rings (under slightly
different assumptions), and by the optimal flooding protocol [Lynch 1997] in networks of bounded
diameter. Thus, the kb program with counterfactuals shows the underlying commonality of all these
programs and captures the key intuition behind their design.

The rest of this paper is organized as follows. In Section 2, we give our characterization of when
global function computation is possible. In Section 3 we describe the kb program for global function
computation, and show how to optimize it so as to minimize messages. In Section 5, we show that the
program essentially implements some standard solutions toleader election in a ring. We remark that
to define kb programs with counterfactuals requires a lot of technical machinery, which can sometimes
obscure the essential simplicity of the ideas. Thus, we defer the detailed formal definitions and the
proofs of results to the appendix, giving only the essentialideas in the main part of the paper.

2 Characterizing when global function computation is solvable

We model a network as a directed, simple (no self-loops), connected, finite graph, where both nodes and
edges are labeled. Each node represents an agent; its label is the agent’s input, possibly together with
the agent’s name (identifier). Edges represent communication links; edge labels usually denote the cost
of message transmission along links. Communication is reliable, meaning that every message sent is
eventually delivered and no messages are duplicated or corrupted.

We assume that initially agents know theirlocal information, i.e., their own input value, the number
of outgoing links, and the weights associated with these links. However, agents do not necessarily know
the weights on non-local edges, or any topological characteristics of the network, such as size, upper
bound on the diameter, or the underlying graph. Additionally, agents may not know the identity of the
agents they can directly communicate with, or if they share their names with other agents. In order to
uniquely identify agents in a networkN of sizen, we label agents with “external names”1, . . ., n.
Agents do not necessarily know these external names; we use them for our convenience when reasoning
about the system. In particular, we assume that the global functionf does not depend on these external
names;f(N) = f(N ′) for any two networksN andN ′ that differ only in the way that nodes are labeled.

Throughout the paper we use the following notation: We writeV (N) for the set of agents inN and
E(N) for the set of edges. For eachi ∈ V (N), letOutN (i) be the set ofi’s neighbors on outgoing links,
so thatOutN (i) = {j ∈ V (N) | (i, j) ∈ E(N)}; let InN (i) be the set ofi’s neighbors on incoming
links, so thatInN (i) = {j ∈ V (N) | (j, i) ∈ E(N))}; let inN (i) denotei’s input value. Finally, ife is
an edge inE(N), letwN (e) denotee’s label.

We want to understand, for a given networkN and global functionf , when it is possible for agents to
eventually knowf(N). This depends on what agents know aboutN . As mentioned in the introduction,
the general (and unstated) assumption in the literature is that, besides their local information, whatever
agents know initially about the network iscommon knowledge. We start our analysis by making the
same assumption, and characterize the initial common knowledge as a setN of networks.
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In this section, we assume that agents are following a full-information protocol. We think of the
protocol as proceeding inrounds: in each round agents send to all neighbors messages describing all
the information they have; messages are stamped with the round number; roundk for agenti starts after
he has received all roundk − 1 messages from his neighbors (since message delivery is reliable, this is
guaranteed to happen). The round-based version of the full-information protocol makes sense both in
synchronous and asynchronous settings, and for any assumptions about the order in which messages are
delivered.

Intuitively, the full-information protocol reduces uncertainty. For example, suppose thatN consists
of all unidirectional 3-node rings, and letN be a three node ring in which agents have inputsa, b,
and c, and all edges have the same weightw. Let i be the external name of the agent with inputa.
Initially, i considers possible all 3-nodes rings in which the weight on his outgoing edge isw and his
input is a. After the first round,i learns from his incoming neighbor, who has external namej, that
j’s incoming edge also has weightw, and thatj has inputc. Agentj learns in the first round that his
incoming neighbor has inputb and that his incoming edge also has weightw. Agentj communicates
this information toi in round 2. At the end of round2, i knows everything about the networkN , as do
the other two agents. Moreover, he knows exactly what the network is. But this depends on the fact that
i knows that the ring has size3.

Round 0 Round 1 Round 2

Figure 1: Howi’s information changes with the full-information protocol.

Now consider the same networkN , but suppose that agents do not know the ring size, i.e.,N is
the set of all unidirectional rings, of all possible sizes and for all input and weight distributions. Again,
at the end of round 2, agenti has all the information that he could possibly get, as do the other two
agents. However, at no point are agents able to distinguish the networkN from a 6-node ringN ′ in
which agents look just like the agents on the 3-node ring (seeFigure 2). Consider the pair of agentsi
in N andi′ in N ′. It is easy to check that these agents get exactly the same messages in every round of
the full-information protocol. Thus, they have no way of distinguishing which is the true situation. If
the functionf has different values onN andN ′, then the agents cannot computef(N). On the other
hand, ifN consists only of networks where inputs are distinct, theni realizes at the end of round 2 that
he must bek’s neighbor, and then he knows the network configuration.

We want to characterize when agenti in networkN thinks he could be agenti′ in networkN ′.
Intuitively, at roundk, i thinks it possible that he could bei′ if there is a bijectionµ that mapsi’s
incoming neighbors toi′’s incoming neighbors such that, at the previous roundk − 1, each incoming
neighborj of i thought that he could beµ(j).

Definition 2.1: Given networksN andN ′ and agentsi ∈ V (N) andi′ ∈ V (N ′), i andi′ are0-bisimilar,
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Figure 2: Two indistinguishable networks.

written (N, i) ∼0 (N ′, i′), iff

• inN (i) = inN ′(i′);

• there is a bijectionf out : OutN (i) −→ OutN ′(i′) that preserves edge-labels; that is, for all
j ∈ OutN (i), we havewN (i, j) = wN ′(i′, f out(j)).

Fork > 0, i andi′ arek-bisimilar, written (N, i) ∼k (N ′, i′), iff

• (N, i) ∼0 (N ′, i′), and

• there is a bijectionf in : InN (i) −→ InN ′(i′) such that for allj ∈ InN (i)

– wN (j, i) = wN ′(f in(j), i′),

– the(j, i) edge is bidirectional iff the(f in(j), i′) edge is bidirectional, and

– (N, j) ∼k−1 (N ′, f in(j)).

Note that∼k is an equivalence relation on the set of pairs(N, i) with i ∈ V (N), and that∼k+1 is a
refinement of∼k.

The following lemma relates bisimilarity and the full-information protocol:

Lemma 2.2: The following are equivalent:

(a) (N, i) ∼k (N ′, i′).

(b) Agentsi ∈ V (N) and i′ ∈ V (N ′) have the same initial local information and receive the same
messages in each of the firstk rounds of the full-information protocol.

(c) If the system is synchronous, theni andi′ have the same initial local information and receive the
same messages in each of the firstk rounds of every deterministic protocol.

Proof: We first prove that (a) implies (c). LetP be an arbitrary deterministic protocol. The proof
proceeds by induction, with the base case following from thedefinition of∼0. Suppose that, if(N, i) ∼k

(N ′, i′), theni andi′ start with the same local information and receive same information in each of the
first k rounds of protocolP and that(N, i) ∼k+1 (N ′, i′). Then(N, i) ∼k (N ′, i′), and there exists
a bijectionf in : InN (i) −→ InN ′(i) such that(N, j) ∼k (N ′, f in(j)) for all j ∈ InN (i). From
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the inductive hypothesis, it follows thati andi′ have the same initial information and receive the same
messages in the firstk rounds ofP ; similarly, for eachj incoming neighbor ofi, j andf in(j) have same
initial information and receive same messages in each of thefirst k rounds ofP . Hence,j andf in(j)
have the same local state at timek and, sinceP is deterministic,j sendsi the same messages asf in(j)
sends toi′. Thus,i andi′ receive same messages in roundk + 1 of protocolP .

To prove that (c) implies (b), it suffices to notice that the full-information protocol is a special case
of a deterministic protocol and that, given how we have defined rounds in an asynchronous setting,i
receives the same messages in roundk of the full-information protocol in both the synchronous and
asynchronous case.

Finally, we prove that (b) implies (a) by induction onk. Fork = 0, it is clear from Definition 2.1
that (N, i) ∼0 (N ′, i′) exactly wheni andi′ have the same initial local information. For the inductive
step, suppose thati andi′ have the same initial local information and receive the samemessages at each
roundk′ ≤ k + 1. We can then construct a mapping, sayf in, from InN (i) to InN ′(i′) such that for all
j ∈ InN (i), the information thati receives fromj is the same as the information thati′ receives from
f in(j) in each of the firstk + 1 rounds. Sincej is following a full-information protocol, it follows that
j must have the same initial local information asj′ and thatj andj′ receive the same messages in each
of the firstk rounds. By the induction hypothesis,(N, j) ∼k (N ′, f in(j)). Since part ofi’s information
from j is also the weight of edge(j, i), f in must preserve edge-weights. Thus,(N, i) ∼k+1 (N ′, i′).

Intuitively, if the functionf can be computed onN , then it can be computed using a full-information
protocol. The value off can be computed whenf takes on the same value at all networks that the agents
consider possible. The round at which this happens may depend on the networkN , the functionf , and
what it is initially known. Moreover, if it does not happen, thenf is not computable. Using Lemma 2.2,
we can characterize if and when it happens.

Theorem 2.3: The global functionf can be computed on networks inN iff, for all networksN ∈ N ,
there exists a constantkN ,N,f , such that, for all networksN ′ ∈ N , all i ∈ V (N), and all i′ ∈ V (N ′),
if (N, i) ∼kN ,N,f

(N ′, i′) thenf(N ′) = f(N).

Proof: First suppose that the condition in the statement of the theorem holds. At the beginning of each
roundk, each agenti in the network proceeds as follows. Ifi received the value off in the previous
round, theni forwards the value to all of its neighbors and terminates; otherwise,i computesf ’s value
on all the networksN ′ such that there exists ani′ such that agenti′ would have received the same
messages in the firstk − 1 rounds in networkN ′ asi actually received. (By Lemma 2.2, these are just
the pairs(N ′, i′) such that(N ′, i′) ∼k−1 (N, i).) If all the values are equal, theni sends the value to
all his neighbors and terminates; otherwise,i sends whatever new information he has received about the
network to all his neighbors.

Let ki be the first round with the property that for allN ′ ∈ N andi′ in N ′, if (N, i) ∼ki
(N ′, i′),

then f(N ′) = f(N). (By assumption, such aki exists and it is at mostkN ,N,f .) It is easy to see
that, by roundki, i learns the value off(N), since eitheri gets the same messages that it gets in the
full-information protocol up to roundki or it gets the function value. Thus,i terminates by the end of
roundki +1 at the latest, after sending the value off , and the protocol terminates in at mostkN ,N,f +1
rounds. Clearly all agents learnf(N) according to this protocol.

Now suppose that the condition in the theorem does not hold and, by way of contradiction, that
the value off can be computed by some protocolP on all the networks inN . There must exist some
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networkN for which the condition in the theorem fails. Consider a run where all messages are delivered
synchronously. There must be some roundk such that all agents inN have computed the function value
by roundk. Since the condition fails, there must exist a networkN ′ ∈ N and agentsi ∈ V (N) and
i′ ∈ V (N ′) such that(N, i) ∼k (N ′, i′) andf(N) 6= f(N ′). By Lemma 2.2,i andi′ have the same
initial information and receive the same messages in the first k rounds of protocolP . Thus, they must
output the same value for the function at roundk. But sincef(N) 6= f(N ′), one of these answers must
be wrong, contradicting our assumption thatP computes the value off in all networks inN .

Intuitively, kN ,N,f is a round at which each agenti knows thatf takes on the same value at all the
networksi considers possible at that round. Since we are implicitly assuming that agents do not forget,
the set of networks that agenti considers possible never grows. Thus, if the functionf takes on the same
value at all the networks that agenti considers possible at roundk, thenf will take on the same value at
all networks thati considers possible at roundk′ > k, so every agent knows the value off(N) in round
kN ,N,f . In some cases, we can provide a useful upper bound onkN ,N,f . For example, ifN consists
only of networks with distinct identifiers, or, more generally, of networks in which no two agents are
locally the same, i.e.,(N, i) 6∼0 (N, j) for all i 6= j, then we can takekN ,N,f = diam(N) + 1, where
diam(N) is the diameter ofN .

Theorem 2.4: If initially it is common knowledge that no two agents are locally the same, then all global
functions can be computed; indeed, we can takekN ,N,f = diam(N) + 1.

Proof: Sincef(N) = f(N ′) if N andN ′ are isomorphic, it suffices to show that(N, i) ∼diam(N)+1

(N ′, i′) implies thatN andN ′ are isomorphic for allN,N ′ ∈ N . First observe that, by an easy
induction onk, if there is a path of lengthk ≤ diam(N) from i to j in N , then there must exist a
nodej′ ∈ V (N ′) such that there is a path fromi′ to j′ of lengthk and(N, j) ∼diam(N)+1−k (N ′, j′).
Moreover, note thatj′ must be unique, since if(N, j) ∼diam(N)+1−k (N ′, j′′), thenj, j′, andj′′ must
be locally the same and, by assumption, no distinct agents inN ′ are locally the same. Define a maph
from N to N ′ by takingh(j) = j′. This map is 1-1, since ifh(j1) = h(j2), thenj1 andj2 must be
locally the same, and hence identical.

Let N ′′ be the subgraph ofN ′ consisting of all nodes of distance at mostdiam(N) from i′. An
identical argument shows that there is a 1-1 maph′ from N ′′ to N such thatj′ andh′(j′) are locally
the same for allj′ ∈ V (N ′′). The functionh′ is the inverse ofh, sinceh(h′(j′)) andj′ are locally the
same, and hence identical, for allj′ ∈ V (N). Finally, we must have thath is a graph isomorphism from
N toN ′′, since the factj andh(j) are locally the same guarantee that they have the same labels, and if
(j1, j2) ∈ E(N), then(h(j), h(j′)) ∈ E(N ′′) and the two edges have the same label.

It remains to show thatN ′ = N ′′. Suppose not. Then there is a nodej1 ∈ V (N ′) of distance
diam(N) + 1 from i′. Let j2 ∈ V (N) be such thatj1 is an outgoing neighbor ofj2 and the distance
from i′ to j2 is diam(N). By construction,j2 ∈ V (N ′′); by our previous argument, there is a node
j3 ∈ V (N) such that(N, j3) ∼1 (N ′, j2). Sincej2 andj3 are locally the same, they must have the same
number of outgoing links, saym. That means that there arem nodes inN that havej3 as an incoming
neighbor, sayi1, . . . , im. Thus, each ofh(i1), . . . , h(im), all of which are inN ′′, must havej3 as an
incoming neighbor. Butj3 has onlym outgoing edges, and one of them goes toj2, which is not inN ′′.
This is a contradiction.

Attiya, Snir, and Warmuth [1988] prove an analogue of Lemma 2.2 in their setting (where all net-
works are rings) and use it to prove a number of impossibilityresults. In our language, these impossi-
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bility results all show that there does not exist ak such that(N, i) ∼k (N ′, i′) impliesf(N) = f(N ′)
for the functionsf of interest, and thus are instances of Theorem 2.3.2

Yamashita and Kameda characterize when global functions can be computed in undirected networks
(which have no weights associated with the edges), assumingthat an upper bound on the size of the
network is known. They define a notion ofviewand show that two agents have the same information
whenever their views aresimilar in a precise technical sense;f(N) is computable iff for all networks
N ′ such that agents inN andN ′ have similar views,f(N ′) = f(N). Their notion of similarity is
essentially our notion of bisimilarity restricted to undirected networks with no edge labels. Thus, their
result is a special case of Theorem 2.3 for the case thatN consists of undirected networks with no edge
labels of size at mostn∗ for some fixed constantn∗; they show thatkN ,N,f can be taken to ben∗ in that
case. Not only does our result generalize theirs, but our characterization is arguably much cleaner.

Theorem 2.4 sheds light on why the well-known protocol for minimum spanning tree construction
proposed by Gallager, Humblet, and Spira [1983] can deal both with systems with distinct ids (provided
that there is a commonly-known ordering on ids) and for networks with identical ids but distinct edge-
weights. These are just instances of situations where it is common knowledge that no two agents are
locally the same.

3 A standard program for global function computation

3.1 Standard programs with shared names

A standardprogramPg has the form
if t1 then act1
if t2 then act2
. . . ,

where thetjs are standard tests (possibly involving temporal operators such as♦), and theactjs are
actions. The intended interpretation is that agenti runs this program forever. At each point in time,i
nondeterministically executes one of the actionsactj such that the testtj is satisfied; if no such action
exists,i does nothing. We sometime use obvious abbreviations likeif . . . then . . . else.

Following Grove and Halpern [Grove 1995; Grove and Halpern 1993] (GH from now on), we dis-
tinguish between agents and their names. We assume that programs mention only names, not agents
(since in general the programmer will have access only to thenames, which can be viewed as denoting
roles). We useN to denote the set of all possible names and assume that one of the names isI. In
the semantics, we associate with each name the agent who has that name. We assume that each agent
has a way of naming his neighbors, and gives each of his neighbors different names. However, two
different agents may use the same name for different neighbors. For example, in a ring, each agent may
name his neighborsL andR; in an arbitrary network, an agent whose outdegree isd may refer to his
outgoing neighbors as1, 2, ...,d. We allow actions in a program to depend on names, so the meaning
of an action may depend on which agent is running it. For example, in our program for global function
computation, ifi uses namen to refer to his neighborj, we write i’s action of sending messagemsg

to j assendn(msg). Similarly, if A is a set of names, then we takesendA(msg) to be the action of

2We remark that Attiya, Snir, and Warmuth allow their global functions to depend on external names given to agents in the
network. This essentially amounts to assuming that the agent’s names are part of their input.

9



sendingmsg to each of the agents inA (and not sending anything to any other agents). LetNbr de-
note the neighbors of an agent, so thatsendNbr(msg) is the action of sendingmsg to all of an agent’s
neighbors.

We assume that message delivery is handled by the channel (and is not under the control of the
agents). In the program, we use a primitive propositionsome new info that we interpret as true for
agenti iff i has received some new information; in our setting, that means thati has learned about
another agent in the network and his input, has learned the weight labeling some edges, or has learned
that there are no further agents in the network. (Note that inthe latter case,i can also compute the
function value. For example, in doing leader election on a unidirectional ring, ifi gets its id back after
sending it around the network, theni knows that it has heard from all agents in the network, and can
then compute which agent has the highest id.) Note thatsome new info is a proposition whose truth is
relative to an agent. As already pointed out by GH, once we work in a setting with relative names, then
both propositions and names need to be interpreted relativeto an agent; we make this more precise in
the next section. In the program, the actionsendn(new info) has the effect ofi sendingn whatever
new informationi learned.

With this background, we can describe the program for globalfunction computation, which we call
PgGC ; each agent runs the program

if some new info then sendNbr(new info); receive ,

where thereceive action updates the agent’s state by receiving any messages that are waiting to be
delivered. As written,PgGC does not terminate; however, we can easily modify it so that it terminates
if agents learn the function value. (They will send at most one message after learning the function
value.)

We would like to prove thatPgGC solves the global function computation problem. To do this,we
need to give precise semantics to programs; that is the subject of the next section.

3.2 Protocols, systems, and contexts

We interpret programs in theruns and systemsframework of Fagin et al. [1995], adapted to allow for
names. We start with a possibly infinite setA of agents. At each point in time, only finitely many agents
are present. Each of these agentsi is in some local stateli. Theglobal stateof the system at a particular
point is a tuples consisting of the local states of the agents that exist at that point. Besides the agents, it
is also convenient to assume that there is anenvironment state, which keeps track of everything relevant
to the system not included in the agents’ states. In our setting, the environment state simply describes
the network.

A run is a function from time (which we take here to range over the natural numbers) to global
states. Intuitively, a run describes the evolution of the system over time. With each run, we associate the
set of agents that exist in that run. For simplicity, we assume that the set of agents is constant over the
run; that is, we are not allowing agents to enter the system orleave the system. However, different sets
of agent may be associated with different runs. (While this is appropriate in our setting, it is clearly not
appropriate in general. We can easily extend the framework presented here to allow agents to enter or
leave the system.) LetA(r) denote the agents present in runr. A pair (r,m) consisting of a runr and
timem is called apoint. If i ∈ A(r), we useri(m) to denote agenti’s local state at the point(r,m). A
systemR consists of a set of runs.
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In a system for global function computation, each agent’s initial local information is encoded in
the agent’s local state; it must be consistent with the environment. For example, if according to the
environment the network is a bidirectional ring, each agentmust have two outgoing edges according to
its local state. We assume that agents haveperfect recall, so that they keep track in their local states of
everything that they have heard and when they heard it. This means that, in particular, the local state of
an agent encodes whether the agent has obtained new information about the network in a given roundk.

We are particularly interested in systems generated by protocols. A protocolPi for agenti is a func-
tion from i’s local states to nonempty sets of actions thati may perform. If the protocol is deterministic,
thenPi(`) is a singleton for each local state`. A joint protocol is a tupleP = {Pi : i ∈ A}, which
consists of one protocol for each agent.

We can associate with each joint protocolP a system, given acontext. A context describes the
environment’s protocol, the initial states, the effect of actions, and the association of names with agents.
Since names are relative to agents, we do the association using anaming functionµ : G ×A×N → A,
whereG is the set of global states. Intuitively,µ(g, i,n) = j if agent i assigns namen to agentj at
the global stateg. Thus, we take a contextγ to be a tuple(Pe,G0, τ, µ), wherePe is a protocol for the
environment,G0 is a set of initial global states,τ is a transition function, andµ is a naming function.3

The environment is viewed as running a protocol just like theagents; its protocol is used to capture,
for example, when messages are delivered in an asynchronoussystem. The transition functionτ and
naming functionµ determine a mapping denotedτµ associating with eachjoint action(a tuple consisting
of an action for the environment and one for each of the agents) a global state transformer, that is, a
mapping from global states to global states. Note that we need the naming function since actions may
involve names. For the simple programs considered in this paper, the transition function will be almost
immediate from the description of the global states.

We focus in this paper on a family of contexts that we callcontexts for global function computation.
Intuitively, the systems that represent programs in a context for global function computation are systems
for global function computation. A contextγGC = (Pe,G0, τ, µ) for global function computation has
the following features:

• The environment’s protocolPe controls message delivery and is such that all messages are even-
tually delivered, and no messages are duplicated or corrupted.

• The initial global states are such that the environment’s state records the networkN and agenti’s
local state records agenti’s initial local information; we useNr to denote the network in a runr
(as encoded by the initial global state inr).

• The transition functionτµ is such that the agents keep track of all messages sent and delivered
and the set of agents does not change over time. That is, ifs is a global state,act is a joint action,
ands′ = τµ(act)(s), thenA(s) = A(s′) and agenti’s local state ins′ is the result of appending
all messages thati sent and received as a result of actionact to i’s local state ins. We assume that
τµ is such that the actionsendn(new info) has the appropriate effect, i.e., ifsendn(new info)
is agenti’s component of a joint actionact and agenti gives agentj namen in the global states
(note here we need the assumption that the naming functionµ depends only on the global state)

3Fagin et al. [1995] also have a component of the context that describes the set of “allowable” runs. This plays a role when
considering issues like fairness, but does not play a role inthis paper, so we omit it for simplicity. Since they do not consider
names, they do not have a componentµ in their contexts.
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ands′ = τµ(act)(s), then ins′, j’s local state records the fact thatj has received the information
from i.

In the following, we will denote the set of all networks encoded in the initial global states of a context
γGC for global function computation asN (γGC).

A run r is consistent with a joint protocolP if it could have been generated when runningP .
Formally, runr is consistent with joint protocolP in contextγ if its initial global stater(0) is one of
the initial global statesG0 given inγ, and for allm, the transition from global stater(m) to r(m + 1)
is the result of performing one of the joint actions specifiedby P according to the agents inr, and the
environment protocolPe (given inγ) in the global stater(m). That is, ifP = {Pi : i ∈ A} andPe is
the environment’s protocol in contextγ, thenr(0) ∈ G0, and ifr(m) = (`e, {`i : i ∈ A(r)}), then there
must be a joint action(acte, {acti : i ∈ r(A)}) such thatacte ∈ Pe(`e), acti ∈ Pi(`i) for i ∈ r(A),
andr(m+ 1) = τµ(acte, {acti : i ∈ r(A)})(r(m)) (so thatr(m+ 1) is the result of applying the joint
action(acte, {acti : i ∈ A}) to r(m). For future reference, we will say that a runr is consistent withγ
if r is consistent withsomejoint protocolP in γ. A systemR representsa joint protocolP in a context
γ if it consists of all runs consistent withP in γ. We useR(P, γ) to denote the system representingP
in contextγ.

We want to associate with a program a protocol. To do this, we need to interpret the tests in the
program. In doing so, we need to consider the fact that tests in the programs we consider here may
contain names. This is the case for example of leader election programs in a ring network, where
an agent may send a message only if his identifier is larger than his left neightbor’s. We can write
this asid I > idL, and clearly this test holds for the agent with maximum id, but does not hold for
the agent with minimum id. This is why we need to interpret thetests in a program relative to an
agent and with respect to a naming functionµ that resolves names relative to the agent. Given a set
Φ of primitive propositions, let aninterpretationπ be a mapping that associates with each naming
functionµ a functionπµ : G × A × Φ → {true, false}. Intuitively, πµ(g, i, p) = true if p is true at the
global stateg relative to agenti. Furthermore, we need to ensure that the interpretation is consistent,
in the sense that ifid I > idL is interpreted as true in a global stateg with respect to agenti, andi’s
left neighbor refers toi as his right neighbor, thenidR > id I is taken as true in same global state,
this time when interpreted relative toi’s left neighbor. To formalize this, we takeΦ′ to be the set of
all propositions inΦ with relative names replaced by “external names”1, . . ., n, and take functions
π′ : G × Φ′ → {true, false} to be objective interpretation functions. We say thatπµ is consistent
if there exists an objective interpretationπ′ such that, for all global statesg, agentsi and testsp in
Φ, πµ(g, i, p) = true if and only if π′(g, p′) = true, wherep′ is just like p, except that all namesn
are replaced by the external nameµ(g, i,n). In the following, we will focus only on contextsγ and
interpretationsπ such thatπµ (for µ the naming function inγ) is consistent. Of course, we can extend
πµ to arbitrary propositional formulas, in the standard way; for example, we takeπµ(g, i,¬ϕ) = true
iff πµ(g, i, ϕ) = false, πµ(g, i, ϕ ∧ ψ) = true iff πµ(g, i, ϕ) = true andπµ(g, i, ψ) = true, etc.

An interpretation islocal (for programPg and in contextγ) if the testsϕ in Pg depend only on the
local state, in the sense that if` is agenti’s local state in the global stateg and also agentj’s local state in
the global stateg′, thenπµ(g, i, ϕ) = true iff πµ(g′, j, ϕ) = true. In this case, we writeπµ(`, ϕ) = true.
Given an interpretationπ that is local, we can associate with a programPg for agenti a protocolPgπµ .
We definePgπµ(`) = {actj | πµ(`, tj) = true} if there exist teststj such thatπµ(`, tj) = true, and take
Pgπµ(`) = skip otherwise. DefineI(Pg, γ, π) = R(Pgπµ , γ), for µ the naming function in contextγ.

An interpreted context for global function computationis a pair(γ, π), whereγ is a context for
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global function computation andπµ interpretssome new info appropriately (so thatπµ(g, i, some new info)
= true if i received some new information about the network ing and has not sent a message since re-
ceiving that information).

For the purpose of global function computation, we often talk about agentsknowinga fact about the
network, some piece of information, or the function value, and how this knowledge changes during a
run of a protocol like(PgGC)

τµ . Intuitively, this says that, regradless of the agent’s uncertainity about
the network, and in general about the global state he is in,ϕ holds. i’s uncertainity about the global
world comes from two sources:i’s uncertainty about the local states of other agents, andi’s uncertainity
about his own identity and the identities of the other agentshe can refer to by certain names. More
precesily, when in some local state` = ri(m), i cannot distinguish between the global worldr(m) and
any global worldr′(m′) such that there exists an agenti′ with same local state asi, i.e.,r′i′(m

′) = `. In
the following, we will a tuple(r,m, i) asituation, and we will say that situations(r,m, i) and(r′,m′, i′)
are indistinguishable to agenti if i thinks possible he isi′ in r′(m′), i.e.,ri(m) = r′i′(m

′). We define
anextended interpreted systemto be a tupleI = (R, π, µ), whereR is a system,π is an interpretation,
andµ is a naming function. We say that factϕ holds at situation(r,m, i) and with respect to interpreted
systemI, denoted as(I, r,m, i) |= ϕ, precisely whenπµ(r(m), i, ϕ) = true. We can now formalize
the fact thati knowsϕ at point(r,m) as the condition thatϕ holds at all situations intistinguishable to
i from (r,m, i), i.e.,(I, r′,m′, i′) |= ϕ for all situations(r′,m′, i′) in I with r′i′(m

′) = ri(m).

ProgramPg solves the global function computation problem for function f in the interpreted context
(γGC , π) if and only if, in all runsr of I(Pg , γGC , π), eventually all agents inA(r) know the value
f(Nr). That is, for all such runsr, there exists a timem such that, for all agentsi in A(r), f takes the
same valuef(Nr) on all networksi thinks possible when in local stateri(m), i.e., on all networks in
runsr′ such that there exists a timem′ and an agenti′ with r′i′(m

′) = ri(m).

3.3 Proving the correctness ofPgGC

Theorem 3.1: If f andN (γGC) satisfy the condition in Theorem 2.3, thenPgGC solves the global
function computation problem forf in all interpreted contexts(γGC , π) for global function computation.

Proof: Let f be a global function and let(γGC , π) be an interpreted system for global function com-
putation such thatf andN (γGC) satisfy the condition in Theorem 2.3. Letr be a run in the system
I(PgGC , γGC , π).

We first show that at some point inr, some agent knowsf(Nr). Suppose not. Letr′ be the unique
run of the full-information protocol starting with the sameinitial global state asr. We show by induction
on k that there is a timemk such that, at time(r,mk), all the agents inA(r) have at least as much
information about the network as they do at the beginning of roundk in r′. That is, for all agentsi in
A(r), the set of networksi considers possible at timemk in r (i.e., the set of all networksNr′′ for r′′ run
in I(PgGC , γGC , π) such that there exists a situation(r′′,m′′, i′′) with r′′i′′(m

′′) = ri(mk)) is a subset
of the set of networksi considers possible at the beginning of roundk in r′ (i.e., ifm′

k is the time inr′

when roundk begins, the set of networksNr′′ for r′′ run of the full-information protocol such that there
exists a situation(r′′,m′′, i′′) with r′′i′′(m

′′) = r′i(m
′
k)).

The base case is immediate: we can takem1 = 0 since, by assumption, agents inr andr′ start with
the same initial states. For the inductive step, suppose that i learns some new information fromj in
roundk of r′. That meansj knew this information at the beginning of roundk in r′ so, by the induction
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hypothesis,j must have known this information by timemk in r. Thus, there is a timem′
k ≤ mk

such thatj first learns this information in runr (where we takem′
k = 0 if k = 1). It follows from

the semantics ofPgGC that j sends this information toi at timem′
k in r. Since we have assumed that

communication is reliable,i learns it by some timem′′
k. Sincei has only finitely many neighbors and

there are only finitely many pieces of information about the network, there must be a time inr by which
i learns all the information that it learns by the beginning ofroundk + 1 in r′. And since there are only
finitely many agents inA(r), there must be a timemk+1 by which all the agents inA(r) learn all the
information about the network that they know at the beginning of roundk + 1 in r′.

By Theorem 2.3, there exists a roundkN (γGC ),Nr,f such that, running the full-information protocol,
for all networksN ′ ∈ N (γGC), all i′ ∈ V (N ′), and alli ∈ V (Nr), we have thatf(Nr) = f(N ′) if
(Nr, i) ∼k

N (γGC ),Nr,f
(N ′, i′). Suppose thati is an agent inNr, r′ is a run inI(PgGC , γGC , π), andi′

is an agent inNr′ such thatri(mk
N (γGC ),Nr,f

) = r′i′(m
′). A straightforward argument now shows that

(Nr, i) ∼k
N (γGC ),Nr,f

(Nr′ , i
′). (Formally, we show by induction onk with a subinduction onk′ that if

k ≤ kN (γGC ),Nr,f , k′ ≤ k, andj is an agent at distancek′ from i in Nr, then there exists an agentj′

of distancek′ from i′ in Nr′ such that(Nr, i) ∼k−k′ (Nr′ , i
′), and similarly switching the roles ofi, i′,

Nr, andNr′ .) It follows thati knowsf(Nr) by timemk
N (γGC ),Nr,f

in r, contradicting the assumption

that no agent learnsf(Nr).

Suppose thati is the first agent to learn the function value inr, and does so at timem (or one of
the first, if there are several agents that learn the functionvalue at timem). We can now use the same
argument as above to show that eventually all agents learn the function value. A formal proof proceeds
by induction on the distance of agentj from i in Nr; we omit details here.

4 Improving message overhead

While sending only the new information that an agent learns at each step reduces the size of messages, it
does not preclude sending unnecessary messages. One way of reducing communication is to have agent
i not send information to the agent he namesn if he knowsthatn alreadyknowsthe information. Since
agenti is acting based on what he knows, this is aknowledge-based (kb) program. We now formalize
this notion.

4.1 Knowledge-based programs with shared names

Consider a language with a modal operatorKn for each namen ∈ N. When interpreted relative to
agenti,Knϕ is read as “the agenti namesn knowsϕ”. A knowledge-based programPgkb has the form

if t1 ∧ k1 do act1
if t2 ∧ k2 do act2
. . .

wheretj andactj are as for standard programs, andkj are knowledge tests (possibly involving belief
and counterfactual tests, as we will see later in the section).

Letcont(new info) be a primitive proposition that characterizes the content of the messagenew info.
For example, suppose thatN is a unidirectional ring, andnew info says thati’s left neighbor has input
valuev1. Thencont(new info) is true at all points wherei’s left neighbor has input valuev1. (Note
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thatcont(new info) is a proposition whose truth is relative to an agent.) Thus, it seems that the follow-
ing kb program should solve the global function computationproblem, while decreasing the number of
messages:

if some new info then

for each nonempty subset A of agents do

if A = {n ∈ Nbr : ¬KIKn(cont(new info))} then sendA(new info); receive .
(1)

There are, however, some subtleties involved giving semantics to this program; we consider these in the
next section. In the process, we will see that there are number of ways that the message complexity of
the program can be further improved.

4.2 Semantics of kb programs with shared names

We can use the machinery that we have developed to give semantics to formulas such asKnϕ. The
statementKnϕ holds with respect to a situation(r,m, i) and an interpreted systemI precisely when
the agentj = µ(r(m), i,n) i namesn knowsϕ when in local staterj(m), i.e., whenϕ holds in all
situations(r′,m′, j′) in I agentj cannot distinguish from(r,m, j). We can then define

(I, r,m, i) |= Knϕ iff, for all j, j′ and points(r′,m′) such thatµ(r(m), i,n) = j
andrj(m) = r′j′(m

′), we have(I, r′,m′, j′) |= ϕ.

As observed by GH, once we allow relative names, we must be careful about scoping. For example,
suppose that, in an oriented ring,i’s left neighbor isj andj’s left neighbor isk. What does a formula
such asKIKL(left input = 3) mean when it is interpreted relative to agenti? Does it mean thati
knows thatj knows thatk’s input is 3, or does it mean thati knows thatj knows thatj’s input is 3?
That is, do we interpret the “left” inleft input relative toi or relative toi’s left neighborj? Similarly,
to which agent does the secondL in KIKLKLϕ refer? That, of course, depends on the application.
Using a first-order logic of naming, as in [Grove 1995], allows us to distinguish the two interpretations
readily. In a propositional logic, we cannot do this. In the propositional logic, GH assumedinnermost
scoping, so that theleft in left input and the secondL in KIKLKLϕ are interpreted relative to the
“current” agent considered when they are evaluated (which is j). For the purpose of this paper, in
a formula such asKIKn cont(new info), we want to interpretcont(new info) relative to “I”, the
agenti that sends the message, not with respect to the agentj that is the interpretation ofn. To capture
this, we add limited quantification over names to the language. In particular, we allow formulas of the
form ∃n′(Calls(n, I,n′) ∧ Kn(n′’sϕ)), which is interpreted as “there exists a namen

′ such that the
agentI namesn gives namen′ to the agent that currently has nameI andn knows thatϕ interpreted
relative ton

′ holds”. Thus, to emphasize the scoping, instead of writingKIKncont(new info), we
writeKI(∃n

′(Calls(n, I,n′) ∧Kn(n′’scont(new info)))).

We can now give semantics to kb programs. We can associate with a kb programPgkb and an
extended interpreted systemI = (R, π, µ) a protocol for agenti denoted(Pgkb)

I
i . Intuitively, we

evaluate the standard tests inPgkb according toπ andµ and evaluate the knowledge tests according to
I. Formally, for each local statèof agenti, we define(Pgkb)

I
i (`) to consist of all actionsactj such

that the testtj ∧kj holds with respect to a tuple(r,m, i′) in I such thatri′(m) = ` (recall that protocols
can be nondeterministic); if there is no point inI where some agent has local state`, then(Pgkb)

I
i (`)

performs the null action (which leaves the state unchanged).
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A joint protocolP is said toimplementPgkb in interpreted context(γ, π) if, by interpretingPgkb

with respect toI(P, γ, π), we get back protocolP ; i.e., if, for each agenti, we havePi = (Pgkb)
I(P,γ,π)
i .

Here we seem to be implicitly assuming that all agents run thesame kb program. This is certainly true
for the programs we give for global function computation, and actually does not result in any loss of
generality. For example, if names are commonly known, the actions performed by agents can depend
on tests of the form “if your name isn then . . . ”. Similarly, if we have a system where some agents are
senders and others are receivers, the roles of agents can be encoded in their local states, and tests in the
program can ensure that all agents act appropriately, despite using the same program.

In certain cases we are interested in joint protocolsP that satisfy a condition slightly weaker than
implementation, first defined by Halpern and Moses [2004] (HMfrom now on). Joint protocolsP and
P ′ areequivalent in contextγ, denotedP ≈γ P

′, if Pi(`) = P ′
i (`) for every local statè = ri(m) with

r ∈ R(P, γ). We remark that ifP ≈γ P
′, then it easily follows thatR(P, γ) = R(P ′, γ): we simply

show by induction onm that every prefix of a run inR(P, γ) is a prefix of a run inR(P ′, γ), and vice

versa.P de facto implementsPgkb in contextγ if P ≈γ Pg
I(P,γ,π)
kb . Arguably, de facto implementation

suffices for most purposes, since all we care about are the runs generated by the protocol. We do not
care about the behavior of the protocol on local states that never arise when we run the protocol.

The kb programPgkb solves the global function computation problem forf in the interpreted con-
text (γGC , π) if, for all protocolsP that de facto implementPgkb in γGC and all runsr in R(P, γ),
eventually all agents inA(r) know the valuef(Nr).

We can now show that the kb program (1) solves the global function computation problem for all
functionsf and interpreted contexts(γGC , π) for global function computation such thatf andN (γGC)
satisfy the condition in Theorem 2.3. Rather than proving this result, we focus on further improving the
message complexity of the kb program, and give a formal analysis of correctness only for the improved
program.

4.3 Avoiding redundant communication with counterfactual tests

We can further reduce message complexity by not sending information not only if the recipient of the
message already knows the information, but also if he willeventuallyknow the information. It seems
relatively straightforward to capture this: we simply add a♦ operator to the kb program (1 to get

if some new info then

for each nonempty subset A of agents do

if A = {n ∈ Nbr : ¬KI♦(∃n′(Calls(n, I,n′) ∧Kn(n′’scont(new info))))}
then sendA(new info); receive .

Unfortunately, this modification will not work: as observedby HM, once we add the♦ operator,
the resulting program has no implementation in the contextγGC . For suppose there exists a protocolP
that implements it, and letI = I(P, γGC , π), that is, by interpreting the above program w.r.t.I, we get
back the protocolP . Doesi (the agent represented byI) sendnew info to n in I? If i sends its new
information ton at timem in a runr of I, then, as communication is reliable, eventuallyn will know
i’s new information andi knows that this is the case, i.e.,(I, r,m, i) |= KI♦(∃n′(Calls(n, I,n′) ∧
Kn(n′’scont(new info)))). AsP implements the above kb program andI = I(P, γGC , π), it follows
that i does not send its new information ton. On the other hand, if no one sendsnew info to n, then
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n will not know it, andi should send it. Roughly speaking,i should send the information iffi does not
send the information.

HM suggest the use of counterfactuals to deal with this problem. As we said in the introduction,
a counterfactual has the formϕ > ψ, which is read as “ifϕ were the case thenψ”. As is standard
in the philosophy literature (see, for example, [Lewis 1973; Stalnaker 1968]), to give semantics to
counterfactual statements, we assume that there is a notionof closenessdefined on situations. This
allows us to consider the situations closest to a given situation that have certain properties. For example,
if in a situation(r,m, i) agenti sends its new information to neighborn, we would expect that the
closest situations(r′,m, i) to (r,m, i) wherei doesnot send its new information ton are such that, in
r′, all agents use the same protocol inr′ as inr, excpet that, at timem in r′, i sends its new information
to all agents to which it sends its new information at the point (r,m) with the exception ofn. The
counterfactual formulaϕ > ψ is taken to be true if, in the closest situations to the current situation
whereϕ is true,ψ is also true.

Once we have counterfactuals, we must consider systems withruns that are not runs of the program.
These are runs where, for example, counter to fact, the agentdoes not send a message (although the
program says it should). Following HM, we can make these executions less likely relative to those
generated by running the program by associating to each run arank; the higher the rank, the less likely
the run. We then require that the runs of the program be the only ones of minimal rank. Once we work
with a system that includes runs other than those generated by the program, agents may no longerknow
that, for example, when the program says they should send a message to their neighbor, they actually
do so (since there could be an run in the system not generated by the program, in which at some point
the agent has the same local state as in a run of the program, but it does not send a message). Agents do
know, however, that they send the message to their neighbor in all runs of minimal rank, that is, in all
the runs consistent with the program. By associating a rank with each run, we can talk about formulas
ϕ that hold at all situations in runs of minimal rank among those an agenti cannot distinguish from
the current situation. Ifϕ holds at all points in runs of minimal rank thati considers possible then we
say thati believesϕ (althoughi may notknowϕ. We writeBnϕ to denote that the agent namedn

believesϕ, although this is perhaps better read as “the agent namedn knows thatϕ is (almost certainly)
true”. We provide the formal semantics of belief and counterfactuals, which is somewhat technical, in
Appendix A; we hope that the intuitions we have provided willsuffice for understanding what follows.

Using counterfactuals, we can modify the program to say thatagenti should send the information
only if i does not believe “if I do not send the information, thenn will eventually learn it anyway”. To
capture this, we use the propositiondo(sendn(new info)), which is true ifi is about to sendnew info

to n. If there are only finitely many possible values off , sayv1, . . . , vk, then the formulaBn(f =
v1)∨ . . . ∨Bn(f = vk) captures the fact that the agent with namen knows the value off . However, in
general, we want to allow an unbounded number of function values. For example, if agents have distinct
numerical ids, we are trying to elect as leader the agent withthe highest id, and there is no bound on
the size of the network, then the set of possible values off is unbounded. We deal with this problem by
allowing limited quantification over values. In particular, we use formulas of the form∃vBn(f = v),
which intuitively say that the agent with namen knows the value off . Let PgGC

cb denote the following
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modification ofPgGC :

if some new info then

for each nonempty subset A of agents do

if A = {n ∈ Nbr : ¬BI [¬do(sendn(new info)) >
♦(∃n′(Calls(n, I,n′) ∧Bn(n′’scont(new info))) ∨ ∃vBn(f = v))]}

then sendA(new info); receive .

In this program, the agenti representingI sendsn the new information ifi does not believe thatn will
eventually learn the new information or the function value in any case. As shown in Appendix B, this
improved program still solves the global function computation problem whenever possible.

Theorem 4.1: If f andN (γGC) satisfy the condition in Theorem 2.3, thenPgGC
cb solves the global

function computation problem forf in all interpreted contexts(γGC , π) for global function computation.

5 Case study: leader election

In this section we focus on leader election. If we take the functionf to describe a method for computing
a leader, and require that all agents eventually know who is chosen as leader, this problem becomes
an instance of global function computation. We assume that agents have distinct identifiers (which is
the context in which leader election has been studied in the literature). It follows from Corollary 2.4
that leader election is solvable in this context; the only question is what the complexity is. Although
leader election is only one instance of the global function computation problem, it is of particular in-
terest, since it has been studied so intensively in the literature. We show that a number of well-known
protocols for leader election in the literature essentially implement the programPgGC

cb . In particular, we
consider a protocol combining ideas of Lann [1977] and Changand Roberts [1979] (LCR from now on)
presented by Lynch [1997], which works in unidirectional rings, and Peterson’s [1982] protocol P1 for
unidirectional rings and P2 for bidirectional rings. We briefly sketch the LCR protocol and Peterson’s
protocols P1 and P2, closely following Lynch’s [1997] treatment.

The LCR protocol works in unidirectional rings, and does notassume a bound on their size. Each
agent starts by sending its id along the ring; whenever it receives a value, if the value is larger than the
maximum value seen so far, then the agent forwards it; if not,it does nothing, except when it receives
its own id. If this id isM , the agent then sends the message “the agent with idM is the leader” to
its neighbor. Each agent who receives such a message forwards it until it reaches the agent with idM
again. The LCR protocol is correct because it ensures that the maximum id travels along the ring and is
forwarded by each agent until some agent receives its own id back. That agent then knows that its id is
larger than that of any other agent, and thus becomes the leader.

Peterson’s protocol P2 for bidirectional rings operates inphases. In each phase, agents are desig-
nated as eitheractiveor passive. Intuitively, the active agents are those still competing in the election.
Once an agent becomes passive, it remains passive, but continues to forward messages. Initially all
agents are active. In each phase, an active agent compares its id with the ids of the closest active agent
to its right and the closest active agent to its left. If its idis the largest of the three, it continues to be
active; otherwise, it becomes passive. Just as with the LCR protocol, when an agent receives back its
own id, it declares itself leader. Then if its id isM , it sends the message “the agent with idM is the
leader”, which is forwarded around the ring until everyone knows who the leader is.
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Peterson shows that, at each phase, the number of active agents is at most half that of the previous
phase, and always includes the agent with the largest id. It follows that, eventually, the only active agent
is the one with the largest id. Peterson’s protocol terminates when the agent that has the maximum id
discovers that it has the maximum id by receiving its own id back. The message complexity of Peterson’s
protocol is thusO(n log n), wheren is the number of agents.

Peterson’s protocol P1 for unidirectional rings is similar. Again, passive agents forward all messages
they receive, at each round at most half of the agents remain active, and the agent with the largest value
becomes leader. There are, however, a number of differences. Agents now have “temporary”ids as
well as their ownids. It is perhaps better to think of an agent’sid as being active if it has an “active
temporaryid ”. (In the bidirectional case, we can identify the temporaryid with the actualid , so an
agent is active iff itsid is active.) We take a temporaryid to be active at phasep + 1 if it is larger
than the temporaryids that precede or follow it in phasep. But since messages can only be sent in one
direction, the way to discover this is for an active agent to forward its temporaryid to the following two
active agents. An active agent can then tell if the precedingactive agent’s temporaryid was greater than
the following and preceding active temporaryid ’s. If so, it remains active, and takes as its temporaryid

what was the temporaryid of the preceding active agent. Otherwise, the agent becomespassive. It is not
hard to check that an agent is active in the bidirectional protocol iff its id is active in the unidirectional
protocol (i.e., iff itsid is the temporaryid of an active agent in the unidirectional protocol). When an
agent receives its original value, then it declares itself leader and sends a message describing the result
of the election around the ring.

We remark that although they all work for rings, the LCR protocol is quite different from P1 and
P2. In the LCR protocol, agents forward their values along their unique outgoing link. Eventually, the
agent with the maximum input receives its own value and realizes that it has the maximum value. In P1
and P2, agents are eitheractiveor passive; in each round, the number of active agents is reduced, and
eventually only the agent with the maximum value remains active.

Despite their differences, LCR, P1, and P2 all essentially implementPgGC
cb . There are two reasons

we write “essentially” here. The first, rather trivial reason is that, when agents send information, they
do not send all the information they learn (even if the agent they are sending it to will never learn this
information). For example, in the LCR protocol, if agenti learns that its left neighbor has valuev and
this is the largest value that it has seen, it passes alongv without passing along the fact that its left
neighbor has this value. We can easily deal with this by modifying the protocols so that all the agents
sendnew info rather than whatever message they were supposed to send. However, this modification
does not suffice. The reason is that the modified protocols send some “unnecessary” messages. This is
easiest to see in the case of LCR. Suppose thatj is the processor with highest id. Whenj receives the
message with its id back and sends it around the ring again (this is essentially the message saying thatj
is the leader), in a full-information protocol,j’s second message will include the idj′ of the processor
just beforej. Thus, whenj′ receivesj’s second message, it will not need to forward it toj. If LCR′

is the modification of LCR where each process sendsnew info rather than the maximum id seen so
far, and the last message in LCR is not sent, then we can show that LCR′ indeed de facto implements
PgGC

cb . The modifications to P2 that are needed to get a protocol P2′ that de facto implementsPgGC
cb

are somewhat more complicated. Each processori running P2′ acts as it does in P2 (modulo sending
new info) until the point where it first gets a complete picture of who is in the ring (and hence who the
leader is). What happens next depends on whetheri is the first to find out who the leader is or not and
whetheri is active or not. We leave details to the Appendix C.
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Theorem 5.1:The following all hold:

(a) Given parameterd, the optimal flooding protocol [Lynch 1997] de facto implements PgGC
cb in

contexts where (i) all networks have diameter at mostd and (ii) all agents have distinct identifiers.

(b) LCR′ de facto implementsPgGC
cb in all contexts where (i) all networks are unidirectional rings

and (ii) agents have distinct identifiers.

(c) There exists a protocol P1′ that agrees with P1 up to the last phase (except that it sendsnew info)
and implementsPgGC

cb in all contexts where (i) all networks are unidirectional rings and (ii) agents
have distinct identifiers.

(d) There exists a protocol P2′ that agrees with P2 up to the last phase (except that it sendsnew info)
and de facto implementsPgGC

cb in all contexts where (i) all networks are bidirectional rings and
(ii) agents have distinct identifiers.

Theorem 5.1 brings out the underlying commonality of all these protocols. Moreover, it emphasizes
the connection between counterfactual reasoning and message optimality. Finally, it shows that reason-
ing at the kb level can be a useful tool for improving the message complexity of protocols. For example,
although P2′ has the same order of magnitude message complexity as P2 (O(n log n)), it typically sends
O(n) fewer messages. While this improvement comes at the price ofpossibly longer messages, it does
suggest that this approach can result in nontrivial improvements. Moreover, it suggests that starting with
a high-level kb program and then trying to implement it usinga standard program can be a useful design
methodology. Indeed, our hope is that we will be able to synthesize standard programs by starting with
high-level kb specifications, synthesizing a kb program that satisfies the specification, and then instan-
tiating the kb program as a standard program. We have some preliminary results along these lines that
give us confidence in the general approach [Bickford, Constable, Halpern, and Petride 2005]; we hope
that further work will lend further credence to this approach.

A Counterfactual belief-based programs with names

The standard approach to giving semantics to counterfactuals [Lewis 1973; Stalnaker 1968] is that
ϕ > ψ is true at a point(r,m) if ψ is true at all the points “closest to” or “most like”(r,m) whereϕ
is true. For example, suppose that we have a wet match and we make a statement such as “if the match
were dry then it would light”. Using⇒ this statement is trivially true, since the antecedent is false.
However, with>, we must consider the worlds most like the actual world wherethe match is in fact dry
and decide whether it would light in those worlds. If we thinkthe match is defective for some reason,
then even if it were dry, it would not light.

To capture this intuition in the context of systems, we extend HM’s approach so as to deal with
names. We just briefly review the relevant details here; we encourage the reader to consult [Halpern
and Moses 2004] for more details and intuition. Define anorder assignmentfor an extended interpreted
systemI = (R, π, µ) to be a function<< that associates with every situation(r,m, i) a partial order
relation<<(r,m,i) over situations. The partial orders must satisfy the constraint that(r,m, i) is a mini-
mal element of<<(r,m,i), so that there is no situation(r′,m′, i′) such that(r′,m′, i′)<<(r,m,i)(r,m, i).
Intuitively, (r1,m1, i1)<<(r,m,i)(r2,m2, i2) if (r1,m1, i1) is “closer” to the true situation(r,m, i) than
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(r2,m2, i2). A counterfactual systemis a pair of the formJ = (I, <<), whereI is an extended inter-
preted system and<< is an order assignment for the situations inI.

Given a counterfactual systemJ = (I, <<), a setA of situations, and a situation(r,m, i), we define
the situations inA that are closest to(r,m, i), denotedclosest(A, r,m, i), by taking

closest(A, r,m, i) =
{(r′,m′, i′) ∈ A : there is no situation(r′′,m′′, i′′) ∈ A
such that(r′′,m′′, i′′)<<(r,m,i)(r

′,m′, i′)}.

A counterfactual formula is assigned meaning with respect to a counterfactual systemJ by inter-
preting all formulas not involving> with respect toI using the earlier definitions, and defining

(J , r,m, i) |= ϕ > ψ iff for all (r′,m′, i′) ∈ closest([[ϕ]]J , r,m, i), (J , r′,m′, i′) |= ψ,

where[[ϕ]]J = {(r,m, i) : (J , r,m, i) |= ϕ}; that is,[[ϕ]]J consists of all situations inJ satisfyingϕ.

All earlier analyses of (epistemic) properties of a protocol P in a contextγ used the runs inR(P, γ),
that is, the runs consistent withP in contextγ. However, counterfactual reasoning involves events that
occur on runs that are not consistent withP (for example, we may need to counterfactually consider the
run where a certain message is not sent, althoughP may say that it should be sent). To support such
reasoning, we need to consider runs not inR(P, γ). The runs that must be added can, in general, depend
on the type of counterfactual statements allowed in the logical language. Thus, for example, if we allow
formulas of the formdo(i, act) > ψ for processi and actionact, then we must allow, at every point of
the system, a possible future in whichi’s next action isact. Following [Halpern and Moses 2004], we
do reasoning with respect to the systemR+(γ) consisting ofall runs compatible withγ, that is, all runs
consistent with some protocolP ′ in contextγ.

We want to define an order assignment in the systemR+(γ) that ensures that the counterfactual
tests inPgGC

cb , which have an antecedent¬do(sendn(msg), get interpreted appropriately. HM de-
fined a way of doing so for counterfactual tests whose antecedent has the formdo(i, act). We modify
their construction here. Given a contextγ, situation(r,m, i) in R+(γ), actionact, and a determin-
istic protocolP ,4 we define the closest set of situations to(r,m, i) wherei doesnot perform action
sendn(msg), close(sendn(msg), P, γ, r,m, i), as{(r′,m, i′) : (a) r′ ∈ R+(γ), (b) r′(m′) = r(m′)
for all m′ ≤ m, (c) if agenti performs some actionsendA(msg ′) according toP in local stateri(m)
andn /∈ A or msg ′ 6= msg , or if i does not perform actionsendA(msg ′) for any setA of agents
and messagemsg ′, thenr′ = r and i = i′, (d) if agenti performssendA(msg) according toP in
local stateri(m) andn ∈ A, theni performssendA−{n}(msg) in local stateri(m) in run r′, and fol-
lowsP in all other local states in runr′, (e) all agents other thani′ follow P at all points ofr′}. That
is, close(sendn(msg), P, γ, r,m, i) is {r,m, i} if i does not sendmsg to n at the local stateri(m);
otherwiseclose(sendn(msg), P, γ, r,m, i) is the set consisting of situations(r′,m, i′) such thatr′ is
identical tor up to timem and all the agents act according toP at later times, except that at the local
stater′i′(m) = ri(m) in r′, agenti′ who is indistinguishable fromi does not sendmsg to n, but does
send it to all other agents to which it sentmsg in ri(m).

Define anorder generatoro to be a function that associates with every protocolP an order assign-
ment<<P = o(P ) on the situations ofR+(γ). We are interested in order generators that prefer runs in

4We restrict in this paper to deterministic protocols. We cangeneralize this definition to randomized protocols in a straight-
forward way, but we do not need this generalization for the purposes of this paper.
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which agents follow their protocols as closely as possible.An order generatoro for γ respects protocols
if, for every (deterministic) protocolP , interpreted contextζ = (γ, π) for global computation, situation
(r,m, i) in R(P, γ), and actionact, closest([[¬sendA(msg)]]I(P,ζ), r,m, i) is a nonempty subset of

close(sendn(msg), P, γ, r,m, i) that includes(r,m, i) if (r,m, i) ∈ close(sendA(msg), P, γ, r,m, i).
Perhaps the most obvious order generator that respects protocols just setsclosest([[¬sendn(msg)]]I(P,ζ),

r,m, i) = close( sendn(msg), P, γ, r,m, i), although our results hold if= is replaced by⊆.

Reasoning in terms of the large set of runsR+(γ) as opposed toR(P, γ) leads to agents not knowing
properties ofP . For example, even if, according toP , some agenti always performs actionact when
in local stateli, in R+(γ) there are bound to be runsr and timesm such thatri(m) = li, but i does
not perform actionact at the point(r,m). Thus, when we evaluate knowledge with respect toR+(γ),
i no longer knows that, according toP , he performsact in stateli. Following HM, we deal with
this by adding extra information to the models that allows usto capture the agents’ beliefs. Although
the agents will notknow they are running protocolP , they will believethat they are. We do this by
associating with each runr ∈ R+(γ) a rank κ(r), which is either a natural number or∞, such that
minr∈R+(γ) κ(r) = 0. Intuitively, the rank of a run defines the likelihood of the run. Runs of rank 0 are
most likely; runs of rank 1 are somewhat less likely, those ofrank 2 are even more unlikely, and so on.
Very roughly speaking, ifε > 0 is small, we can think of the runs of rankk as having probabilityO(εk).
We can use ranks to define a notion of belief (cf. [Friedman andHalpern 1997]).

Intuitively, of all the points considered possible by a given agent in a situation(r,m, i), the ones
believed to have occurred are the ones appearing in runs of minimal rank. More formally, for a point
(r,m) define

minκ
i (r,m) = min{κ(r′) | r′ ∈ R+(γ) and r′i′(m

′) = ri(m) for somem′ ≥ 0 andi′ ∈ A(r′)}.

Thus,minκ
i (r,m) is the minimalκ-rank of runsr′ in which ri(m) appears as a local state at the point

(r′,m).

A counterfactual belief system(or just cb system for short) is a triple of the formJ = (I, <<, κ),
where(I, <<) is a counterfactual system, andκ is a ranking function on the runs ofI. In cb systems we
can define a notion of belief. We add the modal operatorBn to the language for eachn ∈ N, and define

(I, <<, κ, r,m, i) |= Bnϕ iff, for all j, j′ and points(r′,m′) such thatµ(r,m, i,n) = j,
rj(m) = r′j′(m

′), andκ(r′) = minκ
j (r,m), we have(I, r′,m′, j′) |= ϕ.

The following lemma illustrates a key feature of the definition of belief. What distinguishes knowl-
edge from belief is that knowledge satisfies theknowledge axiom: Kiϕ ⇒ ϕ is valid. WhileBiϕ ⇒ ϕ
is not valid, it is true in runs of rank 0.

Lemma A.1: [Halpern and Moses 2004]Suppose thatJ = (R, π, µ,<<, κ) is a cb system,r ∈ R, and
κ(r) = 0. Then for every formulaϕ and all timesm, we have(J , r,m, i) |= BIϕ⇒ ϕ.

By analogy with order generators, we want a uniform way of associating with each protocolP a
ranking function. Intuitively, we want to do this in a way that lets us recoverP . We say that a ranking
functionκ is P -compatible(for γ) if κ(r) = 0 if and only if r ∈ R(P, γ). A ranking generatorfor a
contextγ is a functionσ ascribing to every protocolP a rankingσ(P ) on the runs ofR+(γ). A ranking
generatorσ is deviation compatibleif σ(P ) isP -compatible for every protocolP . An obvious example
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of a deviation-compatible ranking generator is thecharacteristicranking generatorσξ, whereσξ(P ) is
the ranking that assigns rank0 to every run inR(P, γ) and rank1 to all other runs. This captures the
assumption that runs ofP are likely and all other runs are unlikely, without attempting to distinguish
among them. Another deviation-compatible ranking generator is σ∗, whereσ∗(P ) is the ranking that
assigns to a runr the total number of times that agents deviate fromP in r. Obviously,σ∗(P ) assignsr
the rank 0 exactly ifr ∈ R(P, γ), as desired. Intuitively,σ∗ captures the assumption that not only are
deviations unlikely, but they are independent.

It remains to give semantics to the formulas∃n′(Calls(n, I,n′) ∧ Bn(n′’sϕ)) and∃vBn(f = v).
Recall that we want∃n′(Calls(n, I,n′) ∧ Bn(n′’sϕ)) to be true at a situation(r,m, i) if there exists a
namen′ such that the agentj that agenti namesn calls i n′, andj knows thatϕ interpreted relative to
n
′ (i.e., i) holds. More formally,

(I, <<, κ, r,m, i) |= ∃n′(Calls(n, I,n′) ∧Bn(n′’sϕ)) iff, for all j, j′ and points(r′,m′)
such thatµ(r(m), i,n) = j, rj(m) = r′j′(m

′), andκ(r′) = minκ
j (r,m), we have

(I, r′,m′, i) |= ϕ.

Note that the semantics for∃n′(Calls(n, I,n′) ∧ Bn(n′’sϕ)) is almost the same as that forBnϕ. The
difference is that we evaluateϕ at (r′,m′) with respect toi (the interpretation ofI at the situation
(r,m, i)), not j′. We could give semantics to a much richer logic that allows arbitrary quantification
over names, and give separate semantics to formulas of the form Calls(n, I,n′) andn

′’sϕ, but what we
have done suffices for our intended application.

The semantics of∃vBn(f = v) is straightforward. Recall that the value off in run r is f(Nr). We
can then take∃vBn(f = v) to be true at a point(r,m) according so some agenti if all runsn believes
possible are associated with the same function value:

(I, <<, κ, r,m, i) |= ∃vBn(f = v) iff, for all j, j′ and points(r′,m′) such thatµ(r(m), i,n) = j,
rj(m) = r′j′(m

′), andκ(r′) = minκ
j (r,m), we havef(Nr) = f(Nr′).

With all these definitions in hand, we can define the semanticsof counterfactual belief-based pro-
grams such asPgGC

cb . A counterfactual belief-based program(or cbb program, for short)Pgcb is similar
to a kb program, except that the knowledge modalitiesKn are replaced by the belief modalitiesBn. We
allow counterfactuals in belief tests but, for simplicity,do not allow counterfactuals in the standard tests.

As with kb programs, we are interested in when a protocolP implementsa cbb programPgcb .
Again, the idea is that the protocol should act according to the high-level program, when the tests are
evaluated in the cb system corresponding toP . To make this precise, given a cb systemJ = (I, <<, κ),
an agenti, and a cbb programPgcb , let (Pgcb)

J
i denote the protocol derived fromPgcb by usingJ to

evaluate the belief tests. That is, a test inPgcb such asBnϕ holds at a situation(r,m, i) in J if ϕ holds
at all situations(r′,m′, j′) in J such thatµ(r(m), i,n) = j, r′j′(m

′) = rj(m), andκ(r′) = minκ
j (r,m).

Define acb contextto be a tuple(γ, π, o, σ), where(γ, π) is an interpreted context with naming function
µγ (for simplicity, we useµγ to refer to the naming function in contextγ), o is an order generator for
R+(γ) that respects protocols, andσ is a deviation-compatible ranking generator forγ. A cb system
J = (I, <<, κ) representsthe cbb programPgcb in cb context(γ, π, o, σ) if (a) I = (R+(γ), π, µγ),
(b)<< = o(PgJcb), and (c)κ = σ(PgJcb). A protocolP implementsPgcb in cb contextχ = (γ, π, o, σ)

if P = Pg
(I,o(P ),σ(P ))
cb . ProtocolP de facto implementsPgcb in χ if P ≈γ Pg

(I,o(P ),σ(P ))
cb .
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B Proof of correctness forPgGC
cb

Theorem 4.1: If f andN (γGC) satisfy the condition in Theorem 2.3, thenPgGC
cb solves the global

function computation problem forf in all interpreted contexts(γGC , π) for global function computation.

Proof: Let f andN be such that the condition in Theorem 2.3 is satisfied. Suppose thato is an
order generator that respects protocols,σ is a deviation-compatible ranking generator,γGC is a context
for global computation such that in all initial states the network encoded in the environment state is
in N , χGC is the cb context(γGC , π, o, σ), P is a protocol that de facto implementsPgGC

cb in χGC ,
J = (R+(γ), π, µγ , o(P ), σ(P )), andr ∈ R(P, γGC ). We prove that at some point in runr all agents
in Nr know f(Nr).

We proceed much as in the proof of Theorem 3.1; we just highlight the differences here. Again,
we first show that some agent inr learnsf(Nr). Suppose not. Letr′ be the unique run of the full-
information protocol in a synchronous context starting with the same initial global state asr. Again, we
show by induction onk that there is a timemk such that, at the point(r,mk), all the agents inA(r)
have at least as much information about the network as they doat the beginning of roundk in r′. The
base case is immediate, as before. For the inductive step, suppose thati learns some information about
the network fromj during roundk. Again, there must exist a timem′

k ≤ m wherej first learns this
information in runr. It follows that(J , r,m′

k, j) |= some new info.

Suppose thatj namesi n in r; that isµγ(r(mk), j,n) = i. Now either (a)j believes at timem′
k

that, if he does not perform asendA(new info) action withn ∈ A, i will eventually learn its new
information or the function value anyway, or (b)j does not believe this. In case (b), it follows that

(J , r,m′
k, j) |= ¬BI [¬do(sendn(new info)) > ♦((∃n′(Calls(n, I,n′)∧

Bn(n′ ’s cont(new info))) ∨ ∃vBn(f = v))].

SinceP implementsPgGC
cb in χGC , in case (b),j sendsi new info at timem′

k, so there is some round
m′′

k by whichi learns this information. On the other hand, in case (a), it must be the case that

(J , r,m′
k, j) |= BI [¬do(sendn(new info)) > ♦(∃n′(Calls(n, I,n′)∧

Bn(n′ ’s cont(new info))) ∨ ∃vBn(f = v))].

Sinceσ is deviation compatible by assumption, andr is a run ofP , it follows thatκ(r) = 0. Thus by
Lemma A.1,

(J , r,m′
k, j) |= ¬do(sendn(new info)) > ♦(∃n′(Calls(n, I,n′)∧

Bn(n′ ’s cont(new info))) ∨ ∃vBn(f = v)).

SinceP implementsPgGC
cb in χGC , in case (a),j does not sendnew info to i in roundm′

k. Thus,
(J , r,m′

k, j) |= ¬do(sendn(new info)). It follows that

(J , r,m′
k, j) |= ∃n′(Calls(n, I,n′) ∧Bn(n′ ’s cont(new info))) ∨ ∃vBn(f = v)).

Since, by assumption, no one learns the function value inr, we have that

(J , r,m′
k, j) |= ∃n′(Calls(n, I,n′) ∧Bn(n′ ’s cont(new info))).

Thus, it follows thati must eventually learnj’s information in this case too.

It now follows, just as in the proof of Theorem 3.1, that some agent learnsf(Nr) in r, and that
eventually all agents learn it. We omit details here.
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status := nonleader ; maxid := id ; valR :=⊥; done := 0

sendL(id)
do until done = 1

receive

if RQ 6= ⊥ then

valR := dequeue(RQ)
if (valR = id) then

status := leader ; sendL(“id is the leader”); done := 1

else if (valR > maxid) then

maxid := valR; sendL(maxid)
else if (valR is a leader message) then

sendL(valR); done := 1

Figure 3: The LCR protocol.

do until (id ∈ valR) ∧ (sent leader message ∨ maxid = idL)
receive

if some new info then

if ((id /∈ valR ∧max (valR) > maxid) ∨ (id ∈ valR) then sendL(new info)

Figure 4: The LCR′ protocol.

C Proof of Theorem 5.1

In this section we prove Theorem 5.1, which says that LCR′, P1′, and P2′ de facto implementPgGC
cb .

We start by sketching the proof for LCR′, and then provide a detailed proof for P2′. The proof for P1′ is
similar and is omitted here.

C.1 The argument for LCR′

The pseudocode for LCR and LCR′ is given in Figures 3 and 4 respectively. In the code for LCR, we use
id to denote the agent’s initial id. We assume that each agent has one queue, denotedRQ, which holds
messages received from the right. The placing of messages inthe queue is controlled by the channel, not
the agent. We useRQ = ⊥ to denote that the right queue is empty. We writevalR := dequeue(RQ) to
denote the operation of removing the top message from the right queue and assigning it to the variable
valR. If RQ = ⊥ when adequeue operation is performed, then the agent waits until it is nonempty.
Each agent has a local variablestatus that is initially set tononleader and is changed toleader only by
the agent with the maximum id in the ring when it discovers it is the leader. We takedone to be a binary
variable that is initialized to 0 and changed to 1 after the maximum id has been computed. Agents keep
track of the maximum id seen so far in the variablemaxid . We call a message of the form “M is the
leader” aleader message. Note that in our version of LCR, after the leader finds out that it is the leader,
it informs all the other agents of this fact. This is not the case for the original LCR protocol. We include
it here for compatibility with our global function computation protocol. (Similar remarks hold for P2.)

In the code for LCR′, valR encodes all the new information that the sender sends (and thus is not

25



just a single id). Letmax (valR) be the maximum id encoded invalR. Since an agent sends all the new
information it has, there is no need for special messages of the form “M is the leader”. The leader can
be computed fromvalR if the message has gone around the ring, which will be the caseif id ∈ valR.
Moreover, ifid ∈ valR, an agent can also compute whether the leader is its left neighbor, and whether
it has earlier essentially sent an “M is the leader message” (more precisely, an agent can tell if it has
earlier been in a state whereid ∈ valR and it sent a message). We take the testidL = maxid to be
true if an agent knows that the leader is its left neighbor (which means that a necessary condition for
idL = maxid to be true is thatid ∈ valR); we takesent leader messageto be true ifid ∈ valR and the
agent earlier sent a message wheni ∈ valR was true. Notice that in LCR′ we do not explicitly setvalR;
valR can be computed from the agent’s state, by looking at the new information received.

The basic idea of the proof is simple: we must show thatPgGC
cb and LCR′ act the same at all points

in a system that represent LCR′. That means showing that an agent sends a message iff it believes that,
without the message, its neighbor will not eventually learnthe information that it has or the function
value. Since LCR′ solves the leader election problem, when processors do not send a message, they
believe (correctly) that their neighbor will indeed learn the function value. So consider a situation
where a processori sends a message according to LCR′. That means that either it has gotten a message
valR such thatvalR > maxid or it has gotten a leader message. If it does not forward a leader message,
then it is clear that all the processors betweeni and the leader (of which there must be at least one)
will not learn who the leader is, because no further messageswill be sent. Ifi has received a message
with valR > maxid , then considermaxid is in fact the largest id. Then it is easy to see thati will
never receive any further messages, and no processor will ever find out who the leader is. Since this
ring is consistent withi’s information, i does not believe that, if it does not forward the message,i’s
left neighbor will learn the information or learn who the leader is. Thus, according toPgGC

cb , i should
forward the message. We omit the formal details of the proof here, since we do the proof for P2′ (which
is harder) in detail.

C.2 The argument for P2′

We start by describing P2. Since P2 works in bidirectional rings, rather than just having one queue, as
in LCR, in P2, each agent has two queues, denotedLQ andRQ, which hold messages received from
the left and right, respectively. While an agent is active, it processes a message fromRQ, thenLQ, then
RQ, and so on. The status of an agent, i.e., whether it is active,passive or the leader, is indicated by
the variablestatus . Initially, status is active. Finally, we takewl to be a binary variable that indicates
whether the agent is waiting to receive a message from its left. When an active agent receivesvalR, it
comparesvalR to its id. If valR = id (which can happen only ifi is active) then, as in the LCR protocol,
i declares itself to be the leader (by settingstatus to leader ), and it sends out a message to this effect.
If i is active andvalR > id , theni becomes passive; ifvalR < id , theni remains active and sends its
id to the right. Finally, ifi is passive, theni forwardsvalR to the left. The situation is symmetric ifi
receivesvalL. The pseudocode for P2 is given in Figure 5.

To understand in more detail how P2 and P2′ work, it is helpful to characterize the order in which
agents following P2 send and process messages. Since P2 and P2′ are identical up to the point that
an agent knows the leader, the characterization will apply equally well to P2′. We can get a complete
characterization despite the fact that we do not assume synchrony, nor that messages are received in
FIFO order. As usual, we use(a1, . . . , ak)

∗ to denote 0 or more repetitions of a sequence of actions

26



status := active; valL :=⊥; valR :=⊥; done := 0 ; wl = 0
sendL(id);
do until done = 1

if (RQ 6=⊥) ∧ (wl = 0) then

valR := dequeue(RQ)
wl := 1
if (valR = id) then status := leader ; sendR(“id is the leader”); done := 1

if status = active ∧ valR > id then status := passive

if status = active ∧ valR < id then sendR(id)
if status = passive then sendL(id); if (valR is a leader message) then done := 1

if (LQ 6=⊥) ∧ (wl = 1) then

valL := dequeue(LQ)
wl := 0
if (valL = id) then status := leader ; sendL(“id is the leader”); done := 1

if status = active ∧ valL > id then status := passive

if status = active ∧ valL < id then sendL(id)
if status = passive then sendR(id); if (valL is a leader message) then done := 1

Figure 5: Peterson’s protocol P2.

a1, . . . , ak. We denote the action of sending left (resp. right) asSL (resp. SR), and the action of
processing from the left (resp. right) asPL (resp.PR).

Lemma C.1: For all runs r of P2, timesm, and agentsi in Nr

(a) if i is active at timem, theni’s sequence of actions in the time interval[0,m) is a prefix of the
sequence (SL, PR, SR, PL)∗;

(b) if i is passive at timem, i does not yet know which agent has the maximum id, andi became
passive at timem′ ≤ m after processing a message from the right (resp., left), then i’s history in
the time interval[m′,m] is a prefix of the sequence (PL, SR, PR, SL)∗ (resp., (PR, SL, PL, SR)∗).

Proof: We proceed by induction on the timem. The result is trivially true ifm = 0, since no actions are
performed in the interval[0, 0]. Suppose the result is true for timem; we show it for timem+ 1. If i is
active at timem+ 1, then the result is immediate from the description of P2 (since it is immediate that,
as long asi is active, it cycles through the sequenceSL, PR, SR, PL). So suppose thati is passive at
timem+ 1. It is clear from the description of P2 that, whilei is passive,PL is immediately followed
by SR andPR is immediately followed bySL. Thus, it suffices to show that (i) ifi was active when
it performed its last action, and this action wasPR, theni’s next action isPL; (ii) if i was active when
it performed its last action, and this action wasPL, theni’s next action isPR; (iii) if i was passive
when it performed its last action, and this action wasSR, theni’s next action isPR; and (iv) if i was
passive when it performed its last action, and this action wasSL, theni’s next action isPL. The proofs
of (i)–(iv) are all essentially the same, so we just do (i) here.
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Suppose thati’s last action before timem+ 1 wasPR, and theni became passive. It is clear from
the description of P2 thati’s next action is eitherPR or PL. Suppose, by way of contradiction, thati
performsPR at timem+ 1. It follows from the induction hypothesis that there must exist somek such
that i performedSR k times andPR k + 2 times in the interval[0,m + 1]. But then the agentRi to
i’s right performedSL at leastk+ 2 times andPL at mostk in the interval[0,m]. This contradicts the
induction hypothesis.

Intuitively, P2 and P2′ act the same as long as agents do not know who the leader is. In P2′, they
will know who the leader is once they know all the agents on thering. To make this latter notion precise,
define the setsIL(i, r,m) andIR(i, r,m) of agents as follows:IR(i, r, 0) = IL(i, r, 0) = {i}. If, at
timem+ 1, i processes a message from its right, and this message was sentbyRi at timem′, then

IR(i, r,m+1) = IR(i, r,m)∪ IR(Ri, r,m
′) andIL(i, r,m+1) = IL(i, r,m)∪ IL(Ri, r,m

′)−{Ri}.

If, at timem+ 1, i processes a message from its left, and this message was sent by Li at timem′, then

IL(i, r,m+ 1) = IL(i, r,m) ∪ IL(Li, r,m
′) andIR(i, r,m+ 1) = IR(i, r,m)∪ IR(Li, r,m

′)−{Li}.

Finally, if i does not process a message at timem+ 1, then

IR(i, r,m + 1) = IR(i, r,m) andIL(i, r,m + 1) = IL(i, r,m).

IR(i, r,m) and IL(i, r,m) characterize the set of agents toi’s right and left, respectively, thati
knows about at the point(r,m). IL(i, r,m) andIR(i, r,m) are always intervals for agents running a
full-information protocol (we prove this formally below).Thus, agenti hasheard from everybody in the
ring, denotedheard from all , if IL(i, r,m)∪IR(i, r,m) contains all agents in the ring. More formally,
(J , r,m, i) |= heard from all if IL(i, r,m) ∪ IR(i, r,m) consists of all the agents in the network
N encoded in the environment state in(r,m). Note thatheard from all may hold relative to agenti
without i knowing it; i may consider it possible that there are agents between the rightmost agent in
IR(i, r,m) and the leftmost agent inIL(i, r,m). We define the primitive propositionhas all info to be
true at at the point(r,m) relative toi if IL(i, r,m)∩IR(i, r,m)−{i} 6= ∅. It is not difficult to show that
has all info is equivalent toKI(heard from all); thus, we say thati knows it has all the information
if has all info holds relative toi.

The pseudocode for P2′ while agents do not know that they have all the information isgiven in
Figure 6. (We describe what agents do when they know all the information at the end of this section.)
Note that the pseudocode does not describe what happens if anagent is active andvalR ≥ id. Intuitively,
at this point, the agent becomes passive, but with P2′ there is no action that changes an agent’s status;
rather, the status is inferred from the messages that have been received. (This is similar to the reason that
the LCR′ protocol had so many fewer steps than the LCR protocol.) Since agents running P2 perform
the same actions under essentially the same conditions as agents running P2′ up to the point that an
agent knows that it has all the information, Lemma C.1 also applies to all runsr of P2′, timesm, and
agentsi in Nr such thati did not know that it had all the information at timem− 1 in r.

We now prove a number of properties ofIL(i, r,m) andIR(i, r,m) that will be useful in our analysis
of P2′.

Lemma C.2: For all runs r of P2′ and timesm the following hold:
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sendL(new info);
do until has all info

if (RQ 6=⊥) ∧ (wl = 0) then

if status = active ∧ valR < id then sendR(new info)
if status = passive then sendL(new info);

if (LQ 6=⊥) ∧ (wl = 1) then

if status = active ∧ valL < id then sendL(new info)
if status = passive then sendR(new info);

Figure 6: The initial part of protocol P2′, run while agents do not know that they have all the information.

(a) IR(i, r,m) is an interval of agents starting withi and going to the right ofi, andIL(i, r,m) is an
interval of agents starting withi and going to the left ofi.

(b) If, at timem, i processes a message from the right sent byRi at timem′, andRi did not know
that it had all the information at timem′, then

(i) IR(Ri, r,m
′) ⊃ IR(i, r,m − 1) − {i}, IR(i, r,m) ⊃ IR(i, r,m − 1), andIR(i, r,m) =

{i} ∪ IR(Ri, r,m
′); and

(ii) IL(i, r,m) = IL(i, r,m − 1).

(c) If, at timem, i processes a message from the left sent byLi at timem′, andLi did not know that
it had all the information at timem′, then

(i) IL(Li, r,m
′) ⊃ IL(i, r,m − 1) − {i}, IL(i, r,m) ⊃ IL(i, r,m − 1), and IL(i, r,m) =

{i} ∪ IL(Li, r,m
′); and

(ii) IR(i, r,m) = IR(i, r,m − 1).

(d) If i processed a message from the right in the interval[0,m], andRi did not know that it had all
the information when it last sent a message toi, then

max
{m′≤m:valR(i,r,m′)6=⊥}

valR(i, r,m′)

is the maximum id of the agents inIR(i, r,m) − {i}, wherevalR(i, r,m′) is the value of agent
i’s variablevalR at the point(r,m′); if i processed a message from the left in the interval[0,m],
then

max
{m′≤m:valL(i,r,m′)6=⊥}

valL(i, r,m′)

is the maximum id inIL(i, r,m) − {i}.

(e) i is active at timem if and only ifi has the largest id inIL(i, r,m) ∪ IR(i, r,m).

Proof: We prove all parts of the lemma simultaneously by induction on m. The result is immediate if
m = 0, sincei is active at time 0,i does not process a message at time 0, andIL(i, r, 0) = IR(i, r, 0) =
{i}. Suppose that parts (a)–(e) hold for all timesm′ < m. We show that they also hold at timem. They
clearly hold if i does not process a message at timem, since in that caseIL(i, r,m) = IL(i, r,m − 1)
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andIR(i, r,m) = IR(i, r,m − 1). So suppose thati processes a messagemsg from its right at timem,
andmsg was sent byRi at timem′. (The proof is similar ifi receives from the left, and is left to the
reader.) Ifmsg is the first message received byi from the right, then it follows from Lemma C.1 thati
has sent no messages to the right, andRi has sent only one message toi. Thus,IR(i, r,m − 1) = {i}.
Parts (a)–(e) now follow easily from the induction hypothesis.

So suppose thatmsg is not the first message thati has received fromRi. Part (a) is immediate
from the induction hypothesis. To prove part (b), letm1 be the last time prior tom′ thatRi sent a
message, saymsg ′, to its left. It easily follows from Lemma C.1 (which, as we observed, also applies
to P2′ while agents do not know that they have all the information) that there are timesm2 andm3,
both in the interval(m1,m

′), such thati receivedmsg ′ at timem2 andRi processed a message from
its right atm3; moreover,i did not process any messages from the right between timem2 andm. By
the induction hypothesis,IR(i, r,m2) = {i} ∪ IR(Ri, r,m1), IL(i, r,m2) = IL(i, r,m2 − 1), and
IR(Ri, r,m3 + 1) ⊃ IR(Ri, r,m1). Sincem3 + 1 ≤ m′, it follows thatIR(Ri, r,m

′) ⊃ IR(Ri, r,m1).
Sincei does not process any messages from its right between timem2 andm, by definition,IR(i, r,m−
1) = IR(i, r,m2). It follows thatIR(Ri, r,m

′) ⊃ IR(i, r,m − 1) and that

IR(i, r,m) = IR(i, r,m − 1) ∪ IR(Ri, r,m
′) = {i} ∪ IR(Ri, r,m1) ∪ IR(Ri, r,m

′)
= {i} ∪ IR(Ri, r,m

′) ⊃ {i} ∪ IR(Ri, r,m1) = IR(i, r,m − 1).

This proves part (i) of (b) for timem. For part (ii), by definition,IL(i, r,m) = IL(i, r,m − 1) ∪
IL(Ri, r,m

′) − {Ri}. By the induction hypothesis, it easily follows thatIL(Ri, r,m
′) − {Ri} ⊆

IL(i, r,m′) ⊆ IL(i, r,m − 1). Thus,IL(i, r,m) = IL(i, r,m − 1).

Part (c) is immediate, sincei does not process a message from the left at timem.

For the first half of part (d), there are two cases to consider.If Ri was active at the point(r,m′), then
the result is immediate from part (e) of the inductive hypothesis. Otherwise, by the inductive hypothesis,
valR = valR(i, r,m) = valR(Ri, r,m

′). By the inductive hypothesis,valR is greater than or equal to
the maximum id inIR(Ri, r,m

′) − {Ri}. Since the first value ofvalR must beRi’s id, it follows that

max
{m′≤m:valR(i,r,m′)6=⊥}

valR(i, r,m′)

is greater than or equal to the maximum id inIR(i, r,m) − {i} = IR(Ri, r,m
′). SincevalR(i, r,m′)

must be an id inIR(i, r,m), we are done. The second half of part (d) is immediate from theinduction
hypothesis, sinceIL(i, r,m) = IL(i, r,m − 1) by part (b), andvalL(i, r,m) = val(i, r,m − 1).

Finally, part (e) is immediate from the induction hypothesis if i is passive at timem−1. So suppose
that i is active at timem − 1. By the induction hypothesis,i’s id is the largest inIL(i, r,m − 1) ∪
IR(i, r,m − 1). If i is active at timem then, by the description of P2′, i’s id must be greater than
valR(i, r,m). Applying part (d) of the induction hypothesis and the fact thati’s id is at least as large as
all those inIR(i, r,m−1), it follows thati’s id is at least as large asmax{m′≤m:valR(i,r,m′)6=⊥} valR(i, r,m′).
By part (d), at timem, i’s id is at least as large all those inIR(i, r,m). SinceIL(i, r,m) = IL(i, r,m−
1), it follows thati’s id is the maximum id inIR(i, r,m) ∪ IL(i, r,m). Conversely, ifi’s id is the maxi-
mum id inIR(i, r,m)∪ IL(i, r,m), then by part (d) at timem, i’s id must be greater thanvalR(i, r,m),
and hence by the description of P2′, i is active at(r,m).

It is not difficult to see that P2′ ensures that, for all agentsi, IL(i, r,m) ∪ IR(i, r,m) increases with
timem. Thus, eventually at least one agent must know it has all the information. (Recall that we have
not yet given the pseudocode for P2′ for the case that an agent knows it has all the information.)
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Corollary C.3: In all runs r consistent with P2′, eventually at least one agent knows that it has all the
information, i.e., there exist an agenti and timem such thatIL(i, r,m) ∩ IR(i, r,m) − {i} 6= ∅.

We say that messagemsg received byi at timem originated withj at timem′ if j is the active
agent who first sentmsg , andmsg was sent byj at timem′. More formally, we define origination
by induction on the timem that msg was received. Ifmsg is received byi from the right, thenmsg

originated withRi at the time thatRi sent it ifRi was not passive when it sentmsg ; otherwise, ifmsg

was received at some timem′′ < m byRi, then the messagemsg received byi atm originated with the
same agent and at the same time as the messagemsg received byRi atm′′. The definition is analogous
if msg is received byi from the left.

Let [i..j]R denote the agents toi’s right starting ati and going toj; similarly, let [i..j]L denote the
agents toi’s left starting ati and going toj.

Lemma C.4: For all runs r of P2′ and agentsi, j in r,

(a) if at timem agenti processes a messagemsg from the right that originated withj at m′, msg

is thepth messagej sent left, and no agent in[i..j]R knows that it has all the information when
it sendsmsg , thenmsg is thepth message thati processes from the right, andIR(i, r,m) =
IR(j, r,m′) ∪ [i..j]R.

(b) if at timem agenti processes a messagemsg from the left that originated withj at m′, and
msg is thepth messagej sent right, and no agent in[i..j]L knows that it has all the information
when it sendsmsg , thenmsg is thepth message thati processes from the left andIL(i, r,m) =
IL(j, r,m′) ∪ [i..j]L.

Proof: We do the proof for case (a); the proof of (b) is similar and left to the reader. The proof proceeds
by induction on the number of agents in[i..j]R. Sincei 6= j, there are at least two agents in[i..j]R. If
there are exactly two, thenj = Ri. Since the only messages thati processes from the right are those sent
by j, it is immediate thatmsg is thepth messagei processed from the right. Moreover, by definition
IR(i, r,m) = IR(j, r,m′) ∪ {i} = IR(j, r,m′) ∪ [i..j]R.

Now suppose that (a) holds for all pairs of agentsi′, j′ such that[i′..j′]R consists ofd ≥ 2 agents
and[i..j]R consists ofd+ 1 agents. LetmRi

be the timeRi sends the messagemsg to i. Since[i..j]R
consists of at least 3 agents, it cannot be the case thatRi = j. Thus,Ri was passive when it received
the messagemsg . Letm′

Ri
be the timeRi processedmsg . Since[Ri..j]R hasd agents, by the induction

hypothesis, it follows thatmsg was thepth message thatRi processed from the right. By Lemma C.1,
prior tom′

Ri
,Ri sent exactlyp−1 messages to the left. Moreover, sinceRi must processp−1 messages

from the left before processing itspth message from the right, it follows from Lemma C.1 thati must
have processed all thep− 1 messagesRi sent to it beforeRi processedmsg . It now easily follows that
msg is thepth message processed byi from the right. By the induction hypothesis,IR(Ri, r,m

′
Ri

) =
IR(j, r,m′) ∪ [Ri..j]R. Thus,IR(i, r,m) = IR(Ri, r,m

′
Ri

) ∪ {i} = IR(j, r,m′) ∪ [i..j]R.

By Lemma C.1, we can think of P2′ as proceeding in phases while agents do not know all the
information. Forp = 1, 2, 3, . . ., we say that in runr, phase2p − 1 begins for agenti wheni sends left
for thepth time and phase2p begins for agenti wheni sends right for thepth time; phasep for agenti
ends when phasep+ 1 begins.

The following lemma provides some constraints on what agents know about which agents are active
and passive.
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Lemma C.5: For all runs r of P2′, timesm, and agentsi, if m > 0, the last message thati processed
before timem was thepth message, and no agent knows all the information at timem− 1, then

(a) if j1, . . . , jk are the active agents at timem in IR(i, r,m), listed in order of closeness toi on the
right (so thatj1 is the closest active process toi’s right with j1 = i if i is active, andjk is the
farthest) then (i)id j1 > . . . > idjk

, (ii) if j1 6= i, thenjl will be passive after having processed its
(p− l+1)st message, forl = 2, . . . , k, provided thatjl processes its(p− l+1)st message before
knowing all the information; (iii) ifj1 = i, thenjl will be passive after after having processed its
(p− l+3)rd message, forl = 2, . . . , k, provided thatjl processes its(p− l+3)rd message before
knowing all the information; and (iv) the last message thati processed from the right originated
with j1.

(b) if h1, . . . , hk′ are the active agents at timem in IL(i, r,m) listed in order of closeness toi on the
left, then (i)idh1 > . . . > idhk′

, (ii) if h1 6= i, thenhl will be passive after having processed
its (p − l + 1)st message, forl = 2, . . . , k′, provided thathl processes its(p − l + 1)st message
before knowing all the information; (iii) ifh1 = i, thenhl will be passive after having processed
its (p− l+ 3)rd message, provided that it processes its(p− l+ 3)rd message before knowing all
the information; and (iv) the last message thati processed from the left originated withh1.

Proof: We proceed by induction onm. The lemma is trivially true ifm = 1, sinceIL(i, r, 1) =
IR(i, r, 1) = {i}. If m > 1, then the result is trivially true ifi does not process a message at timem− 1
(sinceIL(i, r,m) = IL(i, r,m−1) unlessi processes a message from the left at timem−1, and similarly
for IR(i, r,m); and even if some agents inIL(i, r,m) ∪ IR(i, r,m) may become passive between time
m − 1 and timem, the result continues to hold). So suppose thati processes a message from the left
at timem− 1. SinceIR(i, r,m) = IR(i, r,m − 1), it is immediate from the induction hypothesis that
part (a) continues to hold. For part (b), by Lemma C.4, we havethatIL(i, r,m) = IL(j, r,m′)∪ [i..j]L,
where the message thati processed from the left at timem − 1 originated withj at timem′. By the
definition of origination, all agents in[i..j]L − {i, j} must be passive at timem − 1. Thus, the result
follows immediately from the induction hypothesis appliedto j and timem′, together with the following
observations:

• If j originated the message at timem′, then it follows easily from Lemma C.1 that it is thepth
message sent byj. Moreover, eitherIL(j, r,m′) = {j} or IL(j, r,m′) = IL(j, r,m′′), where
m′′ − 1 is the time thatj processed its(p − 2)nd message (since this is the last message thatj
processed from the left prior to timem′).

• If i is active at timem, thenid i > id j , and the(p + 1)st message thatj processes will originate
from i (if j does not know all the information before processing the message) and will causej to
become passive.

The argument is similar ifi processes a message from the right at timem− 1.

We say that agenti can be the first to learn all the information in networkN if there is a runr of P2′

such thatNr = N and, in runr, i knows all the information at some timem and no agent knows all the
information at the point(r,m − 1). Our goal is to prove that there can be at most two agents that can
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be first to learn all the information in a networkN .5 To prove this result, we first show that, although
we are considering asynchronous systems, what agents know depends only on how many messages they
have processed.

Lemma C.6: If Nr = Nr′ = N , no agent knows all the information at the point(r,m) or the point
(r′,m′), and agenti has processed exactlyk messages at both the points(r,m) and (r′,m′), then
IL(i, r,m) = IL(i, r′,m′) andIR(i, r,m) = IR(i, r′,m′). Moreover, thekth message thati processed
in run r originated withj iff thekth message thati processed in runr′ originated withj.

Proof: We proceed by a straightforward induction onm+m′. Clearly the result is true ifm = m′ = 1.
If i does not process a message at the point(r,m − 1), thenIL(i, r,m) ∪ IR(i, r,m) = IL(i, r,m −
1) ∪ IR(i, r,m − 1), and the result is immediate from the induction hypothesis;similarly, the result
follows if i does not process a message at the point(r′,m′ − 1). Thus, we can assume thati processes
a message at both(r,m − 1) and (r′,m′ − 1). Moreover, it follows from Lemma C.1 thati either
processes from the left at both(r,m − 1) and(r′,m′ − 1) or processes from the right at both of these
points. Assume without loss of generality thati processes from the left. Then, using the induction
hypothesis, we have thatIR(i, r,m) = IR(i, r,m − 1) = IR(i, r′,m′ − 1) = IR(i, r′,m′). Moreover,
IL(i, r,m) = IL(Li, r,m1) ∪ {i}, wherem1 is the timeLi sent the message thati processes at time
m − 1 in r; IL(i, r′,m′) = IL(Li, r

′,m′
1) ∪ {i}, wherem′

1 is the time thatLi sent the message that
i processes at timem′ − 1 in r′. It follows from Lemma C.1 that we must havek = 2k′, Li has
sentk′ messages left at the points(r,m1) and(r′,m′

1), and has processedk − 1 messages at both of
these points. By the induction hypothesis,IL(Li, r,m1) = IL(Li, r

′,m′
1). The desired result follows

immediately.

Lemma C.7: There are at most two agents that can be first to learn all the information in networkN .
If an agent that can be first to learn all the information is active when it learns all the information, then
it must be the agent with the highest id.

Proof: Suppose, by way of contradiction, that three agents can be the first to learn all the information,
sayi1, i2, andi3. Suppose thati∗ is the agent inN with the highest id. Suppose that the message that
ih processed which caused it to know all the information was thephth message thatih processed, for
h = 1, 2, 3. First assume thati∗ /∈ {i1, i2, i3}. It easily follows from Lemma C.5 that, forh = 1, 2, 3,
either thephth message or the(ph − 1)st message thatih processed must have come fromi∗. Suppose
that for two ofi1, i2, or i3, the message thatih processed fromi∗ came from the right. Suppose, without
loss of generality, that these two agents arei1 andi2. Now a simple case analysis shows that eitheri1
knows all the information beforei2 in all runs of P2′ whereNr = N , or i2 knows all the information
beforei1 in all runs whereNr = N . For example, suppose that the message that originated withi∗ is
thep′hth message thatih processed, forh = 1, 2; note thatp′h is eitherph or ph − 1. (By Lemma C.6,p′h
is same in all runsr such thatNr = N .) If p′1 > p′2 then it follows from Lemma C.1 thatp′1 ≥ p′2 + 2,
and it is easy to see thati1 must learn all the information beforei2. Similarly, if p′2 > p′1, then it is easy
to see thati2 must learn all the information beforei1. Finally, suppose thatp′ = p′1 = p′2. Without loss

5In all the examples we have constructed, there is in fact onlyone agent that can be first to learn all the information in
networkN , although that agent may not be the eventual leader. However, we have not been able to prove that this must be the
case.
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of generality, assume that going fromi∗ left on the ring, we reachi1 beforei2. Then it is easy to see
that if p′1 = p1, so thati1 knows it has all the information after processing the message fromi∗, theni1
knows it has all the information beforei2 in all runsr with Nr = N , while if p1 = p′1 + 1, theni1 must
learn it afteri2 in all runs (since thep1th message processed byi1 must originate with a process farther
to the left ofi∗ thani2). Thus, it cannot be the case that bothi1 andi2 can be first to learn the message,
a contradiction. A similar contradiction arises if bothi1 andi2 processi∗’s message from the left.

Thus, it follows thati∗ ∈ {i1, i2, i3}; without loss of generality, assume thati∗ = i3. Again, if
both of i1 and i2 processi∗’s message from the left, or both process it from the right, then we get
a contradiction as above. So suppose without loss of generality that i1 processesi∗’s message from
the left, i2 processesi∗’s message from the right, andi∗ = i3 processes itsp3th message from the
left. Again, it is easy to show that ifp1 ≤ p3, then in all runsr with Nr = N , i1 knows it has all
the information beforei3 = i∗; if p1 > p3, then in all runsr with Nr = N , i∗ knows it has all the
information beforei1. Either way, we have a contradiction.

We can now describe the remainder of protocol P2′, after an agenti learns all the information. What
happens depends on (a) which agents can be first to learn all the information, and whetheri is one
of them; (b) whetheri is active or passive just after learning all the information, and (c) whether the
message that results ini learning all the information is processed from the left or the right. Note that
when an agent learns all the information, it can easily determine which agents can be first to learn all
the information. Rather than writing the pseudocode for P2′, we give just an English description; we do
not think that the pseudocode will be more enlightening.

• Suppose that the only agent that can be first to learn all the information is the leader. We now
do essentially what is done in Peterson’s algorithm. Suppose that the message that resulted in
the leader learning all the information was processed from the left (if the message was processed
from the right, the rest of the argument remains the same, replacing left by right everywhere), the
message originated with agenti, and was thepth message processed by the leader. We claim that
after processing thepth message, all agents other than the leader will be passive.If i is the leader,
this is almost immediate. Ifi is not the leader, then it follows from Lemma C.5. The leader then
sends its(p + 1)st message to the left. After an agent processes the leader’s(p + 1)st message,
it will then know all the information. We require it to send a message to the left with all the
information unless it is the leader’s right neighbor. (Of course, once it knows all the information,
the leader’s right neighbor will realize that the neighbor to the left is the leader and that the leader
already knows all the information, so it does not need to forward the information.) After this
process is completed, all the agents know all the information.

• Suppose that agenti is the only agent that can know all the information andi is passive when
it first knows all the information. Suppose that the message that resulted ini’s learning all the
information was processed from the left (again, the argument is similar if it was processed from
the right), the message originated with agentj, and was thepth message processed byi. It is
easy to see thati must have been active just prior to processing thepth message, for otherwise
the agent toi’s left will learn all the information beforei. Moreover,i’s pth message must have
originated with the leader (sincei could not have known about the leader prior to receiving the
message, or it would not have been active). Theni sends the message with all the information
back to the leader, who forwards the message all the way around the ring up to the agent toi’s
right, at which point all the agents know all the information.
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• Suppose that two passive agents, sayi andi′, can be first to learn all the information. Again, it
is not hard to see thati andi′ must have been active just before learning all the information. If i
andi′ both first learn all the information after processing thepth message, then by Lemma C.5,
thepth message of one of them, sayi, originated withi∗. Suppose without loss of generality that
i andi′ received this message from the left. Theni sends a message with all the information to
the left, where it is forwarded up to and includingi∗; similarly, i′ sends a message to the left,
which is forwarded up to but not includingi. Note thati′ will also receive a(p + 1)st message
that originates withi∗ from the right. After receiving this message,i′ sends a message with all
the information to the right up to but not includingi∗.

• Suppose that one passive agent, sayi, andi∗ can be first to learn all the information. If they both
learn all the information after receiving theirpth message, thenimust have been active just before
receiving the message,i’s message originated withi∗, andi∗’s message either originated withi or
with an agenti′ such that thepth message received byi′ originated withi, andi′ becomes passive
after receiving this message. Suppose without loss of generality that thepth message was received
from the left. Theni sends a message with all the information to the left where it is forwarded up
to but not includingi∗; similarly, i∗ sends a message with all the information to the left, where
it is forwarded up to but not includingi. A straightforward case analysis shows that it cannot be
the case that there existp andp′ with p 6= p′ such thati learns all the information after receiving
its pth message andi∗ learns all the information after receiving thep′th message. For ifp < p′,
theni must learn all the information beforei∗ in all runs, and ifp′ < p, theni∗ must learn all the
information beforei in all runs.

This completes the description of P2′.

Having completed the description of P2′, we can finally prove that P2′ de facto implementsPgGC
cb

in contexts where (i) all networks are bidirectional rings and (ii) agents have distinct identifiers. Let
(γbr ,u , π) denote the interpreted context for global computation where the initial states are the bidi-
rectional rings with unique identifiers. Suppose thato is an order generator that respects protocols,
σ is a deviation-compatible ranking function, andJ = (R+(γbr ,u), π, µγbr,u , o(P2 ′), σ(P2 ′)) is the
interpreted system corresponding to P2′ in the cb contextχbr ,u = (γbr ,u , π, o, σ). Proving that P2′

de facto implementsPgGC
cb in the cb contextχbr ,u amounts to showing thatP2′i(`) = PgGC

cb

J
i (`) for

every local statè such that there existsr ∈ R(P2′, γur ,u ) andm such that̀ = ri(m). That is, for all
r ∈ R(P2′, γur ,u ) and timesm, we must show thatP2′i(ri(m)) = act iff (J , r,m, i) |= ϕact, where
ϕact is the precondition inPgcb for actionact.

Lemma C.8: For all runs r of P2′ in the contextγbr ,u , timesm, and agentsi in Nr, P2′i(ri(m)) =

PgGC
cb

J
i (ri(m)).

Proof: As we observed above, we must show that for allr ∈ R(P2′, γbr ,u) and timesm, we have that
P2′i(ri(m)) = act iff (J , r,m, i) |= ϕact. So suppose thatP2′i(ri(m)) = act. The relevant actionsact
have the formsendn(new info), wheren ∈ {L,R}. We consider the case thatn = L here; the proof
for n = R is almost identical, and left to the reader. The precondition of sendL(new info) is

¬BI [¬do(sendL(new info)) > ♦(∃n′(Calls(L, I,n′)∧BL(n′’scont(new info)))∨∃vBL(f = v))].
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SinceR is the unique name thati’s left nieghbor callsi in a ring, we have that(J , r,m, i) |= Calls(L, I,R).
By the definitions in Section A,(J , r,m, i) |= ϕsendL(new info) if and only if there exists a situation
(r′,m′, i′) such that

(a) r′i′(m
′) = ri(m),

(b) σ(P2′)(r′) = min
σ(P2′)
i (r,m), and

(c) (I, r′,m′, i′) |= ¬[¬do(sendL(new info)) > ♦(∃n′(Calls(L, I,n′)∧BL(n′’scont(new info)))∨
∃vBL(f = v))], so there exists a situation(r′′,m′′, i′′) ∈ closest([[¬do(sendn (new info))]]I(P2′ ,χbr,u),
r′,m′, i′) such that

(J , r′′,m′′, i′′) |= (¬BL(R’s cont(new info)) ∧ ¬∃v. BL(f = v)).

Thus, we must show that there exists a situation(r′,m′, i′) satisfying conditions (a), (b), and (c)
above iffP2′i(ri(m)) = sendL(new info). To prove this, we need to consider the various cases where
i sends left.

• Case 1: at(r,m), i is active, does not know it has all the information, and sendsits first message
at timem. In this case, we can taker′ to be a run of P2′ on the network[i] (i.e., the network
where the only agent isi), m′ = 0, andi′ = i, and take(r′′,m′′, i′′) to be an arbitrary situation
in close(do(sendL(new info)), P2′, γbr ,u , r′,m′, i′) such that|Nr′′ | > 1. In r′′, Li′′ does not
receive a message fromi′′, so will never process any message. It easily follows that, in r′′, Li′′

does not learn the content(i′′)’s initial information, nor does it learn who the leader is.

• Case 2:i is active, does not know all the information, and does not send its first message to the
left at timem. In this case,Li must be passive. Suppose thati is about to send itskth message
left at the point(r,m). By Lemma C.1,i must have receivedk − 1 message fromLi, soLi must
have processedk − 1 messages fromi. Moreover,i considers it possible thatLi has already sent
its kth message left, and is waiting to process itskth message fromi. Sincei does not have all
the information at timem, it is easy to see thati must also consider it possible thatLi does not
have all the information at timem. Thus, there exists a runr′ such thatri(m) = r′i(m) and, at the
point (r′,m), Li does not have all the information and is waiting to process thekth message from
i. Let (r′′,m′′, i′′) be an arbitrary situation inclose(do(sendL(new info)), P2′, γbr ,u , r′,m, i).
Sincei′′ does not send left at(r′′,m′′), Li′′ will wait forever to process a message fromi′′. Thus,
in r′′, Li′′ never learns the content of(i′′)’s kth message, nor does it learn who the leader is.

• Case 3:i is passive at the point(r,m) and does not have all the information. Sincei is about
to send left and it is passive,i must have last processed a message from its right; without loss
of generality, assume thati has processedp messages from its right, and so must have processed
(p− 1) messages from its left by timem. It easily follows from Lemma C.1 thatp > 1. Suppose
that the(p − 1)st message thati processed from its left originated withk. Sincei does not have
all the information at timem, k did not have all the information when it sent this message to the
right. After receiving its(p − 1)st message from the left,i must consider it possible that the ring
is sufficiently large that, even afterk processes its(p− 1)st message from the left,k will still not
know all the information. That is, there exists a situation(r′,m′, i′) with r′ ∈ R(P2′, γbr ,u) such
that conditions (a) and (b) are satisfied, and ifi′’s (p− 1)st message from the left inr′ originated
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with k′, thenk′ does not have all the information at the point(r′,m′), despite have processed
its (p − 1)st message from the left by this point. Let(r′′,m′′, i′′) be an arbitrary situation in
close(do(sendL(new info)), P2′, γbr ,u , r′,m′, i′). Suppose that(i′′)’s (p− 1)st message from
the left in r′′ originated withk′′. At the point(r′′,m′′), k′′ has already processes its(p − 1)st
message from the left and does not have all the information (because this was the case for the
agentk′ corresponding tok′′ in r′). In r′′, all processes betweeni′′ andk′′ are passive. Thus,
regardless of whetherk′′ is active or passive, inr′′, k′′ andi′′ and all agents between them are
deadlocked, becausek′′ is waiting from a message from the right, which must pass through i′′,
andi′′ is waiting for a message from its left, which must pass through k′′. It easily follows that
Li′′ does not learn(i′′)’s new information inr′′, nor doesLi′′ learn who the leader is.

• Case 4:i has all the information at timem in r. There are a number of subcases to consider.
We focus on one of them here, where two agents, the leaderi∗ andi, are the first to learn all the
information; the arguments for the other cases are similar in spirit, and left to the reader. We have
shown that, in this case,i turns passive when it learns all the information as a result of processing
a messagemsg that originated withi∗, and that the number of messagesi∗ andi have processed
by the time they learn all the information is the same. Without loss of generality, assume that
bothi∗ andi first learned all the information after processing theirpth message from the left. We
showed that either thepth message thati∗ processed from its left originated withi, or it originated
with some agenti′ whosepth message from the left originated withi. It is easy to see that all
agents other thani∗ and i are passive after they process theirpth message, do not have all the
information, and are waiting to receive a message from the right. Thus, ifi does not send left,
then all agents to the left ofi up to but not includingi∗ are deadlocked. Sincei is supposed to
send left, it cannot be the case thatLi = i∗. It easily follows that ifi does not send left, and
(r′,m, i′) is an arbitrary situation inclose(do(sendL(new info)), P2′, γbr ,u , r,m, i), thenLi′

does not learn(i′)’s new information nor who the leader is inr′.

We have shown that, for allr ∈ R(P2′, γbr ,u) and timesm, if P2′i(ri(m)) = act then(J , r,m, i) |=
ϕact. For the converse, suppose thatP2′i(ri(m)) 6= act. Again, suppose thatact is sendL(new info).
Let (r′,m′, i′) be a situation thati considers possible at timem in runr (i.e., such that conditions (a) and
(b) above hold). Sincei does not send left at the point(r,m), i′ does not send left at the point(r′,m′).
Thus, by definition,close(do(sendn(new info)), P2′, γbr ,u , r′,m′, i′) = {(r′,m′, i′)}. Sincer′ is
a run of P2′, and every agent eventually learns who the leader is in everyrun of P2′, it follows that
(J , r′,m′, i′) |= ♦BL(f = v), and hence

(J , r,m, i) |= ¬doi(sendn(new info)) > ♦(∃n′(Calls(L, I,n′)∧BL(n′’scont(new info)))∨∃vBL(f = v)).

Thus,(J , r,m, i) |= ¬ϕsendL(new info). This completes the proof.
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