
Computer Science and Game Theory: A Brief Survey

Joseph Y. Halpern∗

Cornell University
Computer Science Department

Ithaca, NY 14853
halpern@cs.cornell.edu

http://www.cs.cornell.edu/home/halpern

May 18, 2007

1 Introduction

There has been a remarkable increase in work at the interface of computer science and game theory in the
past decade. Game theory forms a significant component of some major computer science conferences
(see, for example, [Kearns and Reiter 2005; Sandholm and Yakoo 2003]); leading computer scientists
are often invited to speak at major game theory conferences, such as the World Congress on Game
Theory 2000 and 2004. In this article I survey some of the main themes of work in the area, with
a focus on the work in computer science. Given the length constraints, I make no attempt at being
comprehensive, especially since other surveys are also available, including [Halpern 2003; Linial 1994;
Papadimitriou 2001], and a comprehensive survey book will appear shortly [Nisan et al. 2007].

The survey is organized as follows. I look at the various roles of computational complexity in game
theory in Section 2, including its use in modeling bounded rationality, its role in mechanism design,
and the problem of computing Nash equilibria. In Section 3, I consider a game-theoretic problem that
originated in the computer science literature, but should be of interest to the game theory community:
computing theprice of anarchy, that is, the cost of using decentralizing solution to a problem. In Sec-
tion 4 I consider interactions between distributed computing and game theory. I conclude in Section 6
with a discussion of a few other topics of interest.

2 Complexity Considerations

The influence of computer science in game theory has perhaps been most strongly felt through com-
plexity theory. I consider some of the strands of this research here. There are a numerous basic texts
on complexity theory that the reader can consult for more background on notions like NP-completeness
and finite automata, including [Hopcroft and Ullman 1979; Papadimitriou 1994a].
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Bounded Rationality: One way of capturing bounded rationality is in terms of agents who have
limited computational power. In economics, this line of research goes back to the work of Neyman
[1985] and Rubinstein [1986], who focused on finitely repeated prisoner’s dilemma. Inn-round finitely
repeated prisoner’s dilemma, there are22n−1 strategies (since a strategy is a function from histories to
{cooperate, defect}, and there are clearly2n − 1 histories of length< n). Finding a best response to
a particular move can thus potentially be difficult. Clearly people do not find best responses by doing
extensive computation. Rather, they typically rely on simple heuristics, such as “Tit for Tat” [Axelrod
1984]. Such heuristics can often be captured by finite automata; both Neyman and Rubinstein thus focus
on finite automata playing repeated prisoners dilemma. Two computer scientists, Papadimitriou and
Yannakakis [1994], showed that if both players in ann-round prisoners dilemma are finite automata with
at least2n−1 states, then the only equilibrium is the one where they defect in every round. This result
says that a finite automaton with exponentially many states can compute best responses in prisoners
dilemma.

We can then model bounded rationality by restricting the number of states of the automaton. Ney-
man [1985] showed, roughly speaking, that if the two players inn-round prisoner’s dilemma are mod-
eled by finite automata with a number of states in the interval[n1/k, nk] for somek, then collaboration
can be approximated in equilibrium; more precisely, if the payoff for (cooperate,cooperate) is (3,3) there
is an equilibrium in the repeated game where the average payoff per round is greater than3− 1

k for each
player. Papadimitriou and Yannakakis [1994] sharpen this result by showing that if at least one of the
players has fewer than2cεn states, wherecε = ε

12(1+ε) , then for sufficiently largen, then there is an
equilibrium where each player’s average payoff per round is greater than3 − ε. Thus, computational
limitations can lead to cooperation in prisoner’s dilemma.

There have been a number of other attempts to use complexity-theoretic ideas from computer science
to model bounded rationality; see Rubinstein [1998] for some examples. However, it seems that there is
much more work to be done here.

Computing Nash Equilibrium: Nash [1950] showed every finite game has a Nash equilibrium in
mixed strategies. But how hard is it to actually find that equilibrium? On the positive side, there are well
known algorithms for computing Nash equilibrium, going back to the classic Lemke-Howson [1964]
algorithm, with a spate of recent improvements (see, for example, [Govindan and Wilson 2003; Blum
et al. 2003; Porter et al. 2004]). Moreover, for certain classes of games (for example, symmetric games
[Papadimitriou and Roughgarden 2005]), there are known to be polynomial-time algorithms. On the
negative side, many questions about Nash equilibrium are known to be NP-hard. For example, Gilboa
and Zemel [1989] showed that, for a game presented in normal form, deciding whether there exists a
Nash equilibrium where each player gets a payoff of at leastr is NP-complete. (Interestingly, Gilboa
and Zemel also show that computing whether there exists acorrelatedequilibrium [Aumann 1987]
where each player gets a payoff of at leastr is computable in polynomial time. In general, questions
regarding correlated equilibrium seem easier than the analogous questions for Nash equilibrium; see also
[Papadimitriou 2005; Papadimitriou and Roughgarden 2005] for further examples.) Chu and Halpern
[2001] prove similar NP-completeness results if the game is represented in extensive form, even if all
players have the same payoffs (a situation which arises frequently in computer science applications,
where we can view the players as agents of some designer, and take the payoffs to be the designer’s
payoffs). Conitzer and Sandholm [2003] give a compendium of hardness results for various questions
one can ask about Nash equilibria.

Nevertheless, there is a sense in which it seems that the problem of finding a Nash equilibrium is
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easier than typical NP-complete problems, because every game is guaranteed to have a Nash equilib-
rium. By way of contrast, for a typical NP-complete problem like propositional satisfiability, whether
or not a propositional formula is satisfiable is not known. Using this observation, it can be shown
that if finding a Nash equilibrium is NP-complete, then NP = coNP. Recent work has in a sense has
completely characterized the complexity of finding a Nash equilibrium in normal-form games: it is a
PPPAD-completeproblem [Chen and Deng 2006; Daskalis, Goldberg, and Papadimitriou 2006]. PPAD
stands for “polynomial party argument (directed case)”; see [Papadimitriou 1994b] for a formal def-
inition and examples of other PPAD problems. It is believed that PPAD-complete problems are not
solvable in polynomial time, but are simpler than NP-complete problems, although this remains an open
problem. See [Papadimitriou 2007] for an overview of this work.

Algorithmic Mechanism Design: The problem of mechanism design is to design a game such that
the agents playing the game, motivated only by self-interest, achieve the designer’s goals. This problem
has much in common with the standard computer science problem of designing protocols that satisfy
certain specifications (for example, designing a distributed protocol that achieves Byzantine agreement;
see Section 4). Work on mechanism design has traditionally ignored computational concerns. But
Kfir-Dahav, Monderer, and Tennenholtz [2000] show that, even in simple settings, optimizing social
welfare is NP-hard, so that perhaps the most common approach to designing mechanisms, applying the
Vickrey-Groves-Clarke (VCG) procedure [Clarke 1971; Groves 1973; Vickrey 1961], is not going to
work in large systems. We might hope that, even if we cannot compute an optimal mechanism, we
might be able to compute a reasonable approximation to it. However, as Nisan and Ronen [2000, 2001]
show, in general, replacing a VCG mechanism by an approximation does not preserve truthfulness. That
is, even though truthfully revealing one’s type is an optimal strategy in a VCG mechanism, it may no
longer be optimal in an approximation. Following Nisan and Ronen’s work, there has been a spate
of papers either describing computationally tractable mechanisms or showing that no computationally
tractable mechanism exists for a number of problems, ranging from task allocation [Archer and Tardos
2001; Nisan and Ronen 2001] to costsharing for multicast trees [Feigenbaum et al. 2000] (where the
problem is to share the cost of sending, for example, a movie over a network among the agents who
actually want the movie) to finding low-cost paths between nodes in a network [Archer and Tardos
2002].

The problem that has attracted perhaps the most attention iscombinatorial auctions, where bidders
can bid on bundles of items. This becomes of particular interest in situations where the value to a bidder
of a bundle of goods cannot be determined by simply summing the value of each good in isolation. To
take a simple example, the value of a pair of shoes is much higher than that of the individual shoes;
perhaps more interestingly, an owner of radio stations may value having a license in two adjacent cities
more than the sum of the individual licenses. Combinatorial auctions are of great interest in a variety
of settings including spectrum auctions, airport time slots (i.e., takeoff and landing slots), and industrial
procurement. There are many complexity-theoretic issues related to combinatorial auctions. For a
detailed discussion and references, see [Cramton et al. 2006]; I briefly discuss a few of the issues
involved here.

Suppose that there aren items being auctioned. Simply for a bidder to communicate her bids to the
auctioneer can take, in general, exponential time, since there are2n bundles. In many cases, we can
identify a bid on a bundle with the bidder’s valuation of the bundle. Thus, we can try to carefully design
a bidding language in which a bidder can communicate her valuations succinctly. Simple information-
theoretic arguments can be used to show that, for every bidding language, there will be valuations that
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will require length at least2n to express in that language. Thus, the best we can hope for is to design
a language that can represent the “interesting” bids succinctly. See [Nisan 2006] for an overview of
various bidding languages and their expressive power.

Given bids from each of the bidders in a combinatorial auction, the auctioneer would like to then
determine the winners. More precisely, the auctioneer would like to allocate them items in an auction
so as to maximize his revenue. This problem, called thewinner determination problem, is NP-complete
in general, even in relatively simple classes of combinatorial auctions with only two bidders making
rather restricted bids. Moreover, it is not even polynomial-time approximable, in the sense that there is
no constantd and polynomial-time algorithm such that the algorithm produces an allocation that gives
revenue that is at least1/d of optimal. On the other hand, there are algorithms that provably find a good
solution, seem to work well in practice, and, if they seem to taking too long, can be terminated early,
usually with a good feasible solution in hand. See [Lehmann et al. 2006] for an overview of the results
in this area.

In most mechanism design problems, computational complexity is seen as the enemy. There is
one class of problems in which it may be a friend: voting. One problem with voting mechanisms
is that of manipulationby voters. That is, voters may be tempted to vote strategically rather than
ranking the candidates according to their true preferences, in the hope that the final outcome will be
more favorable. This situation arises frequently in practice; in the 2000 election, American voters who
preferred Nader to Gore to Bush were encouraged to vote for Gore, rather than “wasting” a vote on
Nader. The classic Gibbard-Satterthwaite theorem [Gibbard 1973; Satterthwaite 1975] shows that, if
there are at least three alternatives, then in any nondictatorial voting scheme (i.e., one where it isnot
the case that one particular voter dictates the final outcome, irrespective of how the others vote), there
are preferences under which an agent is better off voting strategically. The hope is that, by constructing
the voting mechanism appropriately, it may be computationally intractable to find a manipulation that
will be beneficial. While finding manipulations for majority voting (the candidate with the most votes
wins) is easy, there are well-known voting protocols for which manipulation is hard in the presence of
three or more candidates. See [Conitzer et al. 2007] for a summary of results and further pointers to the
literature.

Communication Complexity: Communication complexity[Kushilevitz and Nisan 1997] studies how
much communication is needed for a set ofn agents to compute the value of a functionf : ×n

i=1Θi →
X, where each agenti knowsθi ∈ Θi. To see the relevance of this to economics, consider, for exam-
ple, the problem of mechanism design. Most mechanisms in the economics literature are designed so
that agents truthfully reveal their preferences (think ofθi as characterizing agenti’s preferences here).
However, in some settings, revealing one’s full preferences can require a prohibitive amount of com-
munication. For example, in a combinatorial auction ofm items, revealing one’s full preferences may
require revealing what one would be willing to pay for each of the2m − 1 possible bundles of items.
Even ifm = 30, this requires revealing more than one billion numbers. This leads to an obvious ques-
tion: how much communication is required by various mechanisms? Nisan and Segal [2005] show that
a standard approach for conducting combinatorial auctions, where prices are listed, agents are expected
to make demands based on these prices, and then prices are adjusted (according to some pre-specified
rule) based on demand, requires an exponential amount of communication for a certain class of valua-
tions. This is among the first of preliminary steps to understanding the communication complexity of
mechanisms; the general problem remains wide open.
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3 The Price of Anarchy

In a computer system, there are situations where we may have a choice between invoking a centralized
solution to a problem or a decentralized solution. By “centralized” here, I mean that each agent in
the system is told exactly what to do and must do so; in the decentralized solution, each agent tries to
optimize his own selfish interests. Of course, centralization comes at a cost. For one thing, there is a
problem of enforcement. For another, centralized solutions tend to be more vulnerable to failure. On
the other hand, a centralized solution may be more socially beneficial. How much more beneficial can
it be?

Koutsoupias and Papadimitriou [1999] formalized this question by comparing the ratio of the social
welfare of the centralized solution to that of the social welfare of the Nash equilibrium with the worst
social welfare (assuming that the social welfare function is always positive). They called this ratio the
the price of anarchy, and proved a number of results regarding the price of anarchy for a scheduling
problem on parallel machines. Since the original paper, the price of anarchy has been studied in many
settings, including traffic routing [Roughgarden and Tardos 2002], facility location games (e.g., where
is the best place to put a factory) [Vetta 2002], and spectrum sharing (how should channels in a WiFi
network be assigned) [Halldórsson et al. 2004].

To give a sense of the results, consider the traffic-routing context of Roughgarden and Tardos [2002].
Suppose that the travel time on a road increases in a known way with the congestion on the road. The
goal is to minimize the average travel time for all drivers. Given a road network and a given traffic load,
a centralized solution would tell each driver which road to take. For example, there could be a rule that
cars with odd-numbered license plates take road 1, while those with even-numbered plates take road
2, to minimize congestion on either road. Roughgarden and Tardos show that the price of anarchy is
unbounded if the travel time can be a nonlinear function of the congestion. On the other hand, if it is
linear, they show that the price of anarchy is at most4/3.

The price of anarchy is but one way of computing the “cost” of using a Nash equilibrium. Others
have been considered in the computer science literature. For example, Tennenholtz [2002] compares the
safety levelof a game—the optimal amount that an agent can guarantee himself, independent of what
the other agents do—to what the agent gets in a Nash equilibrium, and shows, for interesting classes of
games, including load-balancing games and first-price auctions, the ratio between the safety level and
the Nash equilibrium is bounded. For example, in the case of first-price auctions, it is bounded by the
constante.

4 Game Theory and Distributed Computing

Distributed computing and game theory are interested in much the same problems: dealing with sys-
tems where there are many agents, facing uncertainty, and having possibly different goals. In practice,
however, there has been a significant difference in emphasis in the two areas. In distributed computing,
the focus has been on problems such as fault tolerance, asynchrony, scalability, and proving correctness
of algorithms; in game theory, the focus has been on strategic concerns. I discuss here some issues of
common interest.1

To understand the relevance of fault tolerance and asynchrony, consider theByzantine agreement
problem, a paradigmatic problem in the distributed systems literature. In this problem, there are assumed

1Much of the discussion in this section is taken from [Halpern 2003].
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to ben soldiers, up tot of which may be faulty (thet stands fortraitor); n andt are assumed to be
common knowledge. Each soldier starts with an initial preference, to either attack or retreat. (More
precisely, there are two types of nonfaulty agents—those that prefer to attack, and those that prefer to
retreat.) We want a protocol that guarantees that (1) allnonfaultysoldiers reach the same decision,
and (2) if all the soldiers are nonfaulty and their initial preferences are identical, then the final decision
agrees with their initial preferences. (The condition simply prevents the obvious trivial solutions, where
the soldiers attack no matter what, or retreat no matter what.)

This was introduced by Pease, Shostak, and Lamport [1980], and has been studied in detail since
then; Chor and Dwork [1989], Fischer [1983], and Linial [1994] provide overviews. Whether the Byzan-
tine agreement problem is solvable depends in part on what types of failures are considered, on whether
the system issynchronousor asynchronous, and on the ratio ofn to t. Roughly speaking, a system is
synchronous if there is a global clock and agents move in lockstep; a “step” in the system corresponds
to a tick of the clock. In an asynchronous system, there is no global clock. The agents in the system can
run at arbitrary rates relative to each other. One step for agent 1 can correspond to an arbitrary number of
steps for agent 2 and vice versa. Synchrony is an implicit assumption in essentially all games. Although
it is certainly possible to model games where player 2 has no idea how many moves player 1 has taken
when player 2 is called upon to move, it is not typical to focus on the effects of synchrony (and its lack)
in games. On the other hand, in distributed systems, it is typically a major focus.

Suppose for now that we restrict tocrash failures, where a faulty agent behaves according to the
protocol, except that it might crash at some point, after which it sends no messages. In the round in
which an agent fails, the agent may send only a subset of the messages that it is supposed to send
according to its protocol. Further suppose that the system is synchronous. In this case, the following
rather simple protocol achieves Byzantine agreement:

• In the first round, each agent tells every other agent its initial preference.

• For rounds 2 tot + 1, each agent tells every other agent everything it has heard in the previous
round. (Thus, for example, in round 3, agent 1 may tell agent 2 that it heard from agent 3 that its
initial preference was to attack, and that it (agent 3) heard from agent 2 that its initial preference
was to attack, and it heard from agent 4 that its initial preferences was to retreat, and so on. This
means that messages get exponentially long, but it is not difficult to represent this information in
a compact way so that the total communication is polynomial inn, the number of agents.)

• At the end of roundt + 1, if an agent has heard from any other agent (including itself) that its
initial preference was to attack, it decides to attack; otherwise, it decides to retreat.

Why is this correct? Clearly, if all agents are correct and want to retreat (resp., attack), then the final
decision will be to retreat (resp., attack), since that is the only preference that agents hear about (recall
that for now we are considering only crash failures). It remains to show that if some agents prefer to
attack and others to retreat, then all the nonfaulty agents reach the same final decision. So suppose thati
andj are nonfaulty andi decides to attack. That means thati heard that some agent’s initial preference
was to attack. If it heard this first at some roundt′ < t + 1, theni will forward this message toj, who
will receive it and thus also attack. On the other hand, suppose thati heard it first at roundt + 1 in a
message fromit+1. Thus, this message must be of the form “it said at roundt that . . . thati2 said at
round 2 thati1 said at round 1 that its initial preference was to attack.” Moreover, the agentsi1, . . . , it+1

must all be distinct. Indeed, it is easy to see thatik must crash in roundk before sending its message to
i (but after sending its message toik+1), for k = 1, . . . , t, for otherwisei must have gotten the message
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from ik, contradicting the assumption thati first heard at roundt+1 that some agent’s initial preference
was to attack. Since at mostt agents can crash, it follows thatit+1, the agent that sent the message to
i, is not faulty, and thus sends the message toj. Thus,j also decides to attack. A symmetric argument
shows that ifj decides to attack, then so doesi.

It should be clear that the correctness of this protocol depends on both the assumptions made: crash
failures and synchrony. Suppose instead thatByzantinefailures are allowed, so that faulty agents can
deviate in arbitrary ways from the protocol; they may “lie”, send deceiving messages, and collude to
fool the nonfaulty agents in the most malicious ways. In this case, the protocol will not work at all. In
fact, it is known that agreement can be reached in the presence of Byzantine failures ifft < n/3, that
is, iff fewer than a third of the agents can be faulty [Pease et al. 1980]. The effect of asynchrony is even
more devastating: in an asynchronous system, it is impossible to reach agreement using a deterministic
protocol even ift = 1 (so that there is at most one failure) and only crash failures are allowed [Fischer
et al. 1985]. The problem in the asynchronous setting is that if none of the agents have heard from,
say, agent 1, they have no way of knowing whether agent 1 is faulty or just slow. Interestingly, there are
randomized algorithms (i.e., behavior strategies) that achieve agreement with arbitrarily high probability
in an asynchronous setting [Ben-Or 1983; Rabin 1983].

Byzantine agreement can be viewed as a game where, at each step, an agent can either send a
message or decide to attack or retreat. It is essentially a game between two teams, the nonfaulty agents
and the faulty agents, whose composition is unknown (at least by the correct agents). To model it as
a game in the more traditional sense, we could imagine that the nonfaulty agents are playing against a
new player, the “adversary”. One of adversary’s moves is that of “corrupting” an agent: changing its
type from “nonfaulty” to “faulty”. Once an agent is corrupted, what the adversary can do depends on
the failure type being considered. In the case of crash failures, the adversary can decide which of a
corrupted agent’s messages will be delivered in the round in which the agent is corrupted; however, it
cannot modify the messages themselves. In the case of Byzantine failures, the adversary essentially gets
to make the moves for agents that have been corrupted; in particular, it can send arbitrary messages.

Why has the distributed systems literature not considered strategic behavior in this game? Crash
failures are used to model hardware and software failures; Byzantine failures are used to model random
behavior on the part of a system (for example, messages getting garbled in transit), software errors, and
malicious adversaries (for example, hackers). With crash failures, it does not make sense to view the
adversary’s behavior as strategic, since the adversary is not really viewed as having strategic interests.
While it would certainly make sense, at least in principle, to consider the probability of failure (i.e., the
probability that the adversary corrupts an agent), this approach has by and large been avoided in the
literature because it has proved difficult to characterize the probability distribution of failures over time.
Computer components can perhaps be characterized as failing according to an exponential distribution
(see [Babaoglu 1987] for an analysis of Byzantine agreement in such a setting), but crash failures can be
caused by things other than component failures (faulty software, for example); these can be extremely
difficult to characterize probabilistically. The problems are even worse when it comes to modeling
random Byzantine behavior.

With malicious Byzantine behavior, it may well be reasonable to impute strategic behavior to agents
(or to an adversary controlling them). However, it is often difficult to characterize the payoffs of a
malicious agent. The goals of the agents may vary from that of simply trying to delay a decision
to that of causing disagreement. It is not clear what the appropriate payoffs should be for attaining
these goals. Thus, the distributed systems literature has chosen to focus instead on algorithms that are
guaranteed to satisfy the specification without making assumptions about the adversary’s payoffs (or
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nature’s probabilities, in the case of crash failures).

Recently, there has been some working adding strategic concerns to standard problems in distributed
computing (see, for example, [Halpern and Teague 2004]) as well as adding concerns of fault tolerance
and asynchrony to standard problems in game theory (see, for example, [Eliaz 2002; Monderer and
Tennenholtz 1999a; Monderer and Tennenholtz 1999b] and the definitions in the next section). This
seems to be an area that is ripe for further developments. One such development is the subject of the
next section.

5 Implementing Mediators

The question of whether a problem in a multiagent system that can be solved with a trusted mediator can
be solved by just the agents in the system, without the mediator, has attracted a great deal of attention in
both computer science (particularly in the cryptography community) and game theory. In cryptography,
the focus on the problem has been onsecure multiparty computation. Here it is assumed that each
agenti has some private informationxi. Fix functionsf1, . . . , fn. The goal is have agenti learn
fi(x1, . . . , xn) without learning anything aboutxj for j 6= i beyond what is revealed by the value of
fi(x1, . . . , xn). With a trusted mediator, this is trivial: each agenti just gives the mediator its private
valuexi; the mediator then sends each agenti the valuefi(x1, . . . , xn). Work on multiparty computation
[Goldreich et al. 1987; Shamir et al. 1981; Yao 1982] provides conditions under which this can be
done. In game theory, the focus has been on whether an equilibrium in a game with a mediator can be
implemented using what is calledcheap talk—that is, just by players communicating among themselves
(cf. [Barany 1992; Ben-Porath 2003; Heller 2005; Urbano and Vila 2002; Urbano and Vila 2004]).
As suggested in the previous section, the focus in the computer science literature has been in doing
multiparty computation in the presence of possibly malicious adversaries, who do everything they can
to subvert the computation, while in the game theory literature, the focus has been on strategic agents.
In recent work, Abraham et al. [2006, 2007] considered deviations by both rational players, deviations
by both rational players, who have preferences and try to maximize them, and players who can viewed
as malicious, although it is perhaps better to think of them as rational players whose utilities are not
known by the other players or mechanism designer. I briefly sketch their results here.2

The idea of tolerating deviations by coalitions of players goes back to Aumann [1959]; more recent
refinements have been considered by Moreno and Wooders [1996]. Aumann’s definition is essentially
the following.

Definition 1 ~σ is a k-resilient′ equilibrium if, for all setsC of players with|C| ≤ k, it is not the case
that there exists a strategy~τ such thatui(~τC , ~σ−C) > ui(~σ) for all i ∈ C.

As usual, the strategy(~τC , ~σ−C) is the one where each playeri ∈ C playsτi and each playeri /∈ C
playsσi. As the prime notation suggests, this is not quite the definition we want to work with. The
trouble with this definition is that it suggests that coalition members cannot communicate with each
other beyond agreeing on what strategy to use. Perhaps surprisingly, allowing communication can
preventcertain equilibria (see [Abraham et al. 2007] for an example). Since we should expect coalition
members to communicate, the following definition seems to capture a more reasonable notion of resilient
equilibrium. Let the cheap-talk extension of a gameΓ be, roughly speaking, the the game where players

2Much of the discussion in this section is taken from [Abraham et al. 2007].
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are allowed to communicate among themselves in addition to performing the actions ofΓ and the payoffs
are just as inΓ.

Definition 2 ~σ is ak-resilient equilibriumin a gameΓ if ~σ is ak-resilient′ equilibrium in the cheap-talk
extension ofΓ (where we identify the strategyσi in the gameΓ with the strategy in the cheap-talk game
where playeri never sends any messages beyond those sent according toσi).

A standard assumption in game theory is that utilities are (commonly) known; when we are given a
game we are also given each player’s utility.When players make decision, they can take other players’
utilities into account. However, in large systems, it seems almost invariably the case that there will be
some fraction of users who do not respond to incentives the way we expect. For example, in a peer-to-
peer network like Kazaa or Gnutella, it would seem that no rational agent should share files. Whether
or not you can get a file depends only on whether other people share files; on the other hand, it seems
that there are disincentives for sharing (the possibility of lawsuits, use of bandwidth, etc.). Nevertheless,
people do share files. However, studies of the Gnutella network have shown almost 70 percent of users
share no files and nearly 50 percent of responses are from the top 1 percent of sharing hosts [Adar and
Huberman 2000].

One reason that people might not respond as we expect is that they have utilities that are different
from those we expect. Alternatively, the players may be irrational, or (if moves are made using a
computer) they may be playing using a faulty computer and thus not able to make the move they would
like, or they may not understand how to get the computer to make the move they would like. Whatever
the reason, it seems important to design strategies that tolerate such unanticipated behaviors, so that
the payoffs of the users with “standard” utilities do not get affected by the nonstandard players using
different strategies. This can be viewed as a way of adding fault tolerance to equilibrium notions.

Definition 3 A joint strategy~σ is t-immuneif, for all T ⊆ N with |T | ≤ t, all joint strategies~τ , and
all i /∈ T , we haveui(~σ−T , ~τT ) ≥ ui(~σ).

The notion oft-immunity andk-resilience address different concerns. Fort immunity, we consider
the payoffs of the players not inC; for resilience, we consider the payoffs of players inC. It is natural to
combine both notions. Given a gameΓ, let ΓT

~τ be the game that is identical toΓ except that the players
in T are fixed to playing strategy~τ .

Definition 4 ~σ is a (k, t)-robustequilibrium if~σ is t-immune and, for allT ⊆ N such that|T | ≤ t and
all joint strategies~τ , ~σ−T is ak-resilient strategy ofΓ~τ

T .

To state the results of Abraham et al. [2006, 2007] on implementing mediators, three games need to
be considered: anunderlying gameΓ, an extensionΓd of Γ with a mediator, and a cheap-talk extension
ΓCT of Γ. Assume thatΓ is a normal-form Bayesian game: each player has a type from some type
space with a known distribution over types, and the utilities of the agents depend on the types and
actions taken. Roughly speaking, a cheap talk gameimplementsa game with a mediator if it induces
the same distribution over actions in the underlying game, for each type vector of the players. With this
background, I can summarize the results of Abraham et al. [2006, 2007].

• If n > 3k + 3t, a (k, t)-robust strategy~σ with a mediator can be implemented using cheap talk
(that is, there is a(k, t)-robust strategy~σ′ in a cheap talk game such that~σ and~σ′ induce the
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same distribution over actions in the underlying game). Moreover, the implementation requires
no knowledge of other agents’ utilities, and the cheap talk protocol has bounded running time that
does not depend on the utilities.

• If n ≤ 3k + 3t then, in general, mediators cannot be implemented using cheap talk without
knowledge of other agents’ utilities. Moreover, even if other agents’ utilities are known, mediators
cannot, in general, be implemented without having a(k+t)-punishment strategy (that is, a strategy
that, if used by all but at mostk + t players, guarantees that every player gets a worse outcome
than they do with the equilibrium strategy) nor with bounded running time.

• If n > 2k + 3t, then mediators can be implemented using cheap talk if there is a punishment
strategy (and utilities are known) in finite expected running time that does not depend on the
utilities.

• If n ≤ 2k + 3t then mediators cannot, in general, be implemented, even if there is a punishment
strategy and utilities are known.

• If n > 2k + 2t and there are broadcast channels then, for allε, mediators can beε-implemented
(intuitively, there is an implementation where players get utility withinε of what they could get
by deviating) using cheap talk, with bounded expected running time that does not depend on the
utilities.

• If n ≤ 2k+2t then mediators cannot, in general, beε-implemented, even with broadcast channels.
Moreover, even assuming cryptography and polynomially-bounded players, the expected running
time of an implementation must depend on the utility functions of the players andε.

• If n > k + 3t then, assuming cryptography and polynomially-bounded players, mediators can be
ε-implemented using cheap talk, but ifn ≤ 2k +2t, then the running time depends on the utilities
in the game andε.

• If n ≤ k + 3t, then even assuming cryptography, polynomially-bounded players, and a(k + t)-
punishment strategy, mediators cannot, in general, beε-implemented using cheap talk.

• If n > k + t then, assuming cryptography, polynomially-bounded players, and a public-key
infrastructure (PKI), we canε-implement a mediator.

The proof of these results makes heavy use of techniques from computer science. All the possibility
results showing that mediators can be implemented use techniques from secure multiparty computation.
The results showing that that ifn ≤ 3k + 3t, then we cannot implement a mediator without knowing
utilities, even if there is a punishment strategy, uses the fact that Byzantine agreement cannot be reached
if t < n/3; the impossibility result forn ≤ 2k + 3t also uses a variant of Byzantine agreement.

A related line of work considers implementing mediators assuming stronger primitives (which can-
not be implemented in computer networks); see [Izmalkov et al. 2005; Lepinski et al. 2004] for details.

6 Other Topics

There are many more areas of interaction between computer science than I have indicated in this brief
survey. I briefly mention a few others here:
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• Interactive epistemology:Since the publication of Aumann’s [1976] seminal paper, there has been
a great deal of activity in trying to understand the role of knowledge in games, and providing epis-
temic analyses of solution concepts (see [Battigalli and Bonanno 1999] for a survey). In computer
science, there has been a parallel literature applying epistemic logic to reason about distributed
computation. One focus of this work has been on characterizing the level of knowledge needed to
solve certain problems. For example, to achieve Byzantine agreement common knowledge among
the nonfaulty agents of an initial value is necessary and sufficient. More generally, in a precise
sense, common knowledge is necessary and sufficient for coordination. Another focus has been
on defining logics that capture the reasoning of resource-bounded agents. This work has ranged
from logics for reasoning about awareness, a topic that has been explored in both computer sci-
ence and game theory (see, for example, [Dekel, Lipman, and Rustichini 1998; Fagin and Halpern
1988; Halpern 2001; Halpern and Rêgo 2006; Heifetz, Meier, and Schipper 2006; Modica and
Rustichini 1994; Modica and Rustichini 1999]) and logics for capturingalgorithmic knowledge,
an approach that takes seriously the assumption that agents must explicitly compute what they
know. See [Fagin et al. 1995] for an overview of the work in epistemic logic in computer science.

• Network growth:If we view networks as being built by selfish players (who decide whether or
not to build links), what will the resulting network look like? How does the growth of the network
affect its functionality? For example, how easily will influence spread through the network? How
easy is it to route traffic? See [Fabrikant et al. 2003; Kempe et al. 2003] for some recent computer
science work in this burgeoning area.

• Efficient representation of games:Game theory has typically focused on “small” games, often 2-
or 3-player games, that are easy to describe, such as prisoner’s dilemma, in order to understand
subtleties regarding basic issues such as rationality. To the extent that game theory is used to
tackle larger, more practical problems, it will become important to find efficient techniques for
describing and analyzing games. By way of analogy,2n − 1 numbers are needed to describe a
probability distribution on a space characterized byn binary random variables. Forn = 100 (not
an unreasonable number in practical situations), it is impossible to write down the probability
distribution in the obvious way, let alone do computations with it. The same issues will surely
arise in large games. Computer scientists use graphical approaches, such asBayesian networks
andMarkov networks[Pearl 1988], for representing and manipulating probability measures on
large spaces. Similar techniques seem applicable to games; see, for example, [Koller and Milch
2001; La Mura 2000; Kearns et al. 2001], and [Kearns 2007] for a recent overview. Note that
representation is also an issue when we consider the complexity of problems such as computing
Nash or correlated equilibria. The complexity of a problem is a function of the size of the input,
and the size of the input (which in this case is a description of the game) depends on how the input
is represented.

• Learning in games:There has been a great deal of work in both computer science and game theory
on learning to play well in different settings (see [Fudenberg and Levine 1998] for an overview
of the work in game theory). One line of research in computer science has involved learning
to play optimally in a reinforcement learning setting, where an agent interacts with an unknown
(but fixed) environment. The agent then faces a fundamental tradeoff betweenexplorationand
exploitation. The question is how long it takes to learn to play well (i.e., to get a reward within
some fixedε of optimal); see [Brafman and Tennenholtz 2002; Kearns and Singh 1998] for the
current state of the art. A related question is efficiently finding a strategy minimizesregret—that

11



is, finding a strategy that is guaranteed to do not much worse than the best strategy would have
done in hindsight (that is, even knowing what the opponent would have done). See [Blum and
Mansour 2007] for a recent overview of work on this problem.
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