
An Almost-Surely Terminating Polynomial Protocol for
Asynchronous Byzantine Agreement with Optimal

Resilience

Ittai Abraham
Hebrew University

ittaia@cs.huji.ac.il

Danny Dolev∗

Hebrew University

dolev@cs.huji.ac.il

Joseph Y. Halpern†

Cornell University

halpern@cs.cornell.edu

ABSTRACT
Consider an asynchronous system with private channels and
n processes, up to t of which may be faulty. We settle a long-
standing open question by providing a Byzantine agreement
protocol that simultaneously achieves three properties:

1. (optimal) resilience: it works as long as n > 3t;

2. (almost-sure) termination: with probability one, all
nonfaulty processes terminate;

3. (polynomial) efficiency : the expected computation time,
memory consumption, message size, and number of
messages sent are all polynomial in n.

Earlier protocols have achieved only two of these three prop-
erties. In particular, the protocol of Bracha is not polyno-
mially efficient, the protocol of Feldman and Micali is not
optimally resilient, and the protocol of Canetti and Rabin
does not have almost-sure termination. Our protocol uti-
lizes a new primitive called shunning (asynchronous) veri-
fiable secret sharing (SVSS), which ensures, roughly speak-
ing, that either a secret is successfully shared or a new faulty
process is ignored from this point onwards by some nonfaulty
process.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distrib-
uted SystemsF.0 [Theory of Computation]: General.

General Terms
Security, Theory

∗Part of the work was done while the author visited Cornell
university. The work was funded in part by ISF, NSF, CCR,
and AFOSR.
†Supported in part by NSF under grants ITR-0325453 and
IIS-0534064, and by AFOSR under grant FA9550-05-1-0055.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PODC’08,August 18–21, 2008, Toronto, Ontario, Canada.
Copyright 2008 ACM 978-1-59593-989-0/08/08 ...$5.00.

Keywords
Distributed computing, secret sharing, Byzantine agreement.

1. INTRODUCTION
The Byzantine agreement problem, introduced in 1980 by

Pease, Shostak, and Lamport [13], has emerged as one of the
most fundamental problems in Distributed Computing. The
problem is easy to describe: each process has an input value;
the goal is for all processes to agree on a consensus value that
is an input value of one of the processes. The challenge lies in
reaching agreement despite the presence of faulty processes.
Many variants of the problem have been studied. After three
decades of extensive research, tight bounds have been ob-
tained for almost all of the variants, with one significant
exception: asynchronous Byzantine agreement, where com-
munication channels between processes have unbounded de-
lay (although messages are guaranteed to arrive eventually),
and the faulty processes are malicious in an arbitrary way
(though nonfaulty processes have secure private channels).

An execution of a Byzantine agreement protocol is non-
terminating if some nonfaulty process does not output a
value. The celebrated result of Fischer, Lynch, and Pater-
son [11] shows that any protocol that never reaches disagree-
ment (i.e., has no executions where two nonfaulty processes
output different values) must have some nonterminating ex-
ecutions. For a protocol that never reaches disagreement,
the best we can hope for is that the set of nonterminat-
ing executions has probability 0. We say such protocols are
almost-surely terminating. Ben-Or [1] showed that almost-
surely terminating asynchronous Byzantine agreement can
be achieved as long as n > 5t, where n is the number of
processes in the system and t is a bound on the number of
faulty processes. However, his protocol required an expected
number of rounds that is exponential in n. This started
a lengthy sequence of research on asynchronous Byzantine
agreement; see, for example, [1, 3, 4, 9, 12, 14]. It is well
known that Byzantine agreement for n processes cannot be
reached if n ≤ 3t [13]. Therefore the best resilience one can
hope for is n > 3t. We will call such protocols optimally
resilient. Bracha [3] provides an almost-surely terminating
protocol that is optimally resilient. However his protocol
does not scale well with the size of the system, since, like
Ben-Or’s, the expected number of messages and rounds is
exponential in n. Feldman and Micali [9] provide a Byzan-
tine agreement protocol for the synchronous model with op-
timal resilience and constant expected running time. They
extend their result to the asynchronous model, where they

provide a polynomial-time algorithm that almost-surely ter-
minates, but does not have optimal resilience; their protocol
requires that n > 4t. Canetti and Rabin [4, 5] provide a pro-
tocol that is optimally resilient (n > 3t) and polynomially
efficient. Their result uses ideas from Rabin and Ben-Or
[14] on verifiable secret sharing (VSS) in synchronous sys-
tems equipped with a broadcast channel. The techniques of
[14] have an inherent nonzero probability of failure; as a re-
sult, in the asynchronous implementation of [4], the protocol
is not almost-surely terminating. Indeed, in [5], the authors
explicitly highlighted the problem of finding a protocol that
simultaneously achieves optimal resilience, almost-sure ter-
mination, and polynomial efficiency. Up to now, despite
repeated efforts, this has not been done. The main result of
this paper is to provide such a protocol.

Pretty much all protocols following Bracha’s [3] used his
idea of reducing the problem of Byzantine agreement to that
of implementing a shared coin. We do that as well. We
obtain a shared coin using an approach that goes back to
Feldman and Micali [9, 10], who essentially reduce the prob-
lem of efficiently implementing a shared coin to that of effi-
ciently implementing VSS. Roughly speaking, the secrets in
VSS are used to generate a shared coin. We refer the reader
to Canetti’s thesis [6] (Chapters 4 and 5) for a comprehen-
sive account of the rather complex reduction from VSS to
Byzantine agreement in the asynchronous model.

The protocol of Canetti and Rabin [4] also uses the re-
duction from verifiable secret sharing to Byzantine agree-
ment. The only reason that their protocol is not almost-
surely terminating is that they use a protocol that they call
Asynchronous Verifiable Secret Sharing (AVSS), which has
a small (but nonzero) probability of not terminating. Our
protocol has essentially the same structure as the Canetti-
Rabin protocol. Indeed, it uses the same reduction from
AVSS to Byzantine agreement as in [4], except that the use
of AVSS is replaced by a variant of AVSS that we call shun-
ning (asynchronous) verifiable secret sharing (SVSS). which
is guaranteed to terminate almost-surely.

To explain the properties of SVSS, we first review the
properties of standard VSS (verifiable secret sharing). VSS
involves a dealer who has a value to share, which we think
of as the dealer’s secret. It has two key properties, known as
validity and binding. Informally, the validity property guar-
antees that, if the dealer is nonfaulty, then all nonfaulty
processes will reconstruct the dealer’s value; the binding
property guarantees that a faulty dealer must commit to
a value during what is called the share phase of the pro-
tocol. Our SVSS scheme has weaker validity and binding
properties. Specifically, we require that in each invocation
where the validity or binding properties do not hold, at least
one nonfaulty process ignores at least one new faulty process
from that invocation on. The key observation is that this
limits the adversary to breaking the validity and binding
properties at most a polynomial number of times.

The SVSS protocol uses a weaker protocol called moder-
ated weak shunning (asynchronous) VSS (MW-SVSS). The
MW-SVSS protocol is a variant of VSS with a dealer and
an additional entity called a moderator. In MW-SVSS the
dealer has some input value s and the moderator has some
input value s′. The nonfaluty moderator’s task is to enforce
during the share phase that the value that the dealer shares
is s′ (hence s = s′ if both are nonfaulty). The initials MWS
characterize how MW-SVSS differs from standard VSS:

• Moderated. A faulty dealer must commit to the
value of the nonfaulty moderator in order to complete
the share protocol. (Katz and Koo [12] use a modera-
tor for VSS in a somewhat similar way.)

• Weak. As in weak VSS [4, 14], the binding property
of VSS is weakened so that each process reconstructs
either the committed value or a default value (denoted
⊥).

• Shunning. Like SVSS, it is possible that neither va-
lidity nor the weaker binding property hold, but in that
case at least one nonfaulty process ignores at least one
new faulty process from this stage on.

As in the VSS scheme used in [2, 9, 10], the SVSS scheme
starts with a dealer who shares a degree-t bivariate polyno-
mial f(x, y) such that f(0, 0) is the secret. Each process i
gets t+1 values of each of the polynomials g(y) = f(i, y) and
h(x) = f(x, i), which is enough to reconstruct them, since
they both have degree t. Then, roughly speaking, each pair
(i, j) of processes uses MW-SVSS to commit to f(i, j) and
f(j, i). This ensures that if either i or j is nonfaulty then
the reconstructed values of the MW-SVSS protocol will be
either ⊥ or the required values (f(i, j), f(j, i)). We then use
this fact to prove the properties of the SVSS protocol.

The key property of the MW-SVSS protocol is its use of
a fault-detection mechanism. The mechanism has the prop-
erty that a nonfaulty process might not explicitly know it has
detected a faulty process. The only guarantee is that it will
act as if it has detected a faulty process, by ignoring all mes-
sages from the detected process for the rest of the protocol.
This behavior is somewhat reminiscent of the failure detec-
tor �W [7] in the sense that a nonfaulty process might reach
a state of permanently suspecting a faulty process without
being explicitly aware of this fact. Since the details of the
MW-SVSS protocol are somewhat technical, we refer the
reader to Section 3.1 for a high-level description.

The rest of this paper is organized as follows. In Sec-
tion 2, we state the properties of SVSS and MW-SVSS. In
Section 3, we provide an implementation of MW-SVSS and
prove that it has the required properties. In Section 4, we
do the same for SVSS, using MW-SVSS as a subroutine. A
description of Bracha’s Reliable Broadcast protocol, which
we use as a subroutine, is given in the appendix.

2. SHUNNING VSS
As we mentioned above, in SVSS, if either the binding

property or the validity property does not hold, then a new
faulty process is ignored in all future invocations by some
nonfaulty process. To implement this, each process needs
to keep track of the processes it knows to be faulty. Thus,
the SVSS scheme actually has two components: a detection
and message management protocol (DMM protocol) and a
VSS protocol. Each process uses its DMM protocol to de-
cide which messages to discard, which to ignore for now,
and which to act on, and to keep track of the processes it
knows to be faulty. The DMM protocol is invoked when
the SVSS scheme is initialized, and then runs indefinitely
and concurrently with all the invocations of the VSS proto-
cols. The VSS protocol may be invoked a number of times
while the SVSS scheme runs, and several invocations may
be running concurrently. The VSS protocol is composed of
a pair of protocols S (for share) and R (for reconstruct).
These protocols are called separately; R is never called un-

less S completes, but R may not be called at all even if S
completes. We associate with each VSS invocation a unique
session identifier (c, i) that is composed of a counter c and
the dealer’s identifier i. We tag all events of that invocation
with its session identifier, so that it is always clear which
invocation of the VSS protocol an event belongs to.

We say that a VSS invocation has completed for process j
if process j completed the reconstruct associated with that
session. Given a process j and two VSS invocations with
session identifiers (c, i) and (c′, i′), we write (c, i) →j (c′, i′)
if process j completes the invocation of the VSS (c, i) before
process j begins the invocation of the VSS (c′, i′).

As we said in the introduction, our VSS scheme is shun-
ning. Process i may start shunning j well before i is sure
that j is faulty; indeed, i may shun j without ever knowing
that j is faulty.

Definition 1. Process j is shunned by process i start-
ing in session (c, l) of MW-SVSS (resp., SVSS) if process i
does not ignore some message from j during session (c, l),
but ignores or discards all messages from j associated with
every session (c′, l′) of MW-SVSS (resp., SVSS) such that
(c, l) →i (c′, l′).

2.1 Properties of SVSS
Each VSS invocation has one process d designated as the

dealer ; the dealer has some input value s. For ease of ex-
position, we do not include the session identifier in our de-
scription of the properties of the VSS protocol when they
are clear from the context, although we do include them in
the description of the protocols. Each VSS invocation must
satisfy the following properties (in runs with at most t faulty
processes); we call these the SVSS properties.

1. Validity of Termination. If a nonfaulty dealer initi-
ates protocol S, then each nonfaulty process will even-
tually complete protocol S.

2. Termination. If a nonfaulty process completes proto-
col S, then all nonfaulty processes will eventually com-
plete protocol S. Moreover, if all nonfaulty processes
begin protocol R, then all nonfaulty processes will
eventually complete protocol R (note, however, that
if only some but not all nonfaulty processes begin pro-
tocol R, then there is no termination requirement).

3. Binding. Once the first nonfaulty process completes
an invocation of S with session id (c, d), there is a value
r such that either

• the output of each nonfaulty process that com-
pletes protocol R is r; or

• there exists a nonfaulty process i and a faulty
process j such that j is shunned by i starting in
session (c, d).

4. Validity. If the dealer is nonfaulty, then either

• the output of each nonfaulty process that com-
pletes protocol R is s; or

• there exists a nonfaulty process i and a faulty
process j such that j is shunned by i starting in
session (c, d).

5. Hiding. If the dealer is nonfaulty and no nonfaulty
process invokes protocol R, then the faulty processes
learn nothing about the dealer’s value.1

1To make this precise, assume that the adversary determines

2.2 Properties of MW-SVSS
In order to implement the VSS protocol, we use a weaker

protocol called moderated weak shunning (asynchronous) VSS
(MW-SVSS). Just as VSS, the MW-SVSS protocol is com-
posed of a share protocol S ′ and a reconstruction protocol
R′. As in weak VSS, we weaken the Binding property so
that each nonfaulty process reconstructs either r or ⊥. But
now, in addition to having one process d designated as the
dealer, there is an additional process designated as the mod-
erator. Both the dealer and the moderator have (possibly
different) input values, denoted s and s′, respectively. Each
MW-SVSS invocation must satisfy Termination and Valid-
ity, just like VSS, and the following variants of the proper-
ties of VSS (in runs with at most t faulty processes); we call
these the MW-SVSS properties.

1′. Moderated Validity of Termination. If a non-
faulty dealer initiates protocol S ′, the moderator is
nonfaulty, and s = s′, then each nonfaulty process will
eventually complete protocol S ′.

3′. Weak and Moderated Binding. Once the first non-
faulty process completes an invocation of protocol S ′

with session id (c, d), there is a value r (possibly ⊥)
such that

• if the moderator is nonfaulty, then r = s′.

In addition, either

• the output of each nonfaulty process that com-
pletes protocol R′ is either r or ⊥; or

• there exists a nonfaulty process i and a faulty
process j such that j is shunned by i starting in
session (c, d).

5′. Moderated Hiding. If the dealer and moderator are
nonfaulty and no nonfaulty process invokes protocol
R′, then the faulty processes learn nothing about the
dealer’s value.

It might seem surprising that in the second condition of
Validity and (Weak and Moderated) Binding, we talk about
shunning rather than just saying that a faulty process is
detected. The reason is that, as we show in Example 1 (after
we give the implementation of the MW-SVSS protocol), it
is possible that two nonfaulty processes will complete an
invocation of the MW-SVSS protocol with different values
without (explicitly) detecting a new faulty process; however,
in that case, at least one of them will shun a faulty process
that was not shunned before.

3. IMPLEMENTING DMM AND MW-SVSS

3.1 A high-level description
In this section, we provide an implementation of DMM

and MW-SVSS. We start with a high-level description of
both. Both protocols use the Reliable Broadcast protocol
(RB) of Bracha [3]. RB guarantees that messages are indeed
broadcast; if a nonfaulty sender sends a message m, then all

the scheduling protocol : how long each message will take to
arrive as a function of the history. Note that once we fix
the inputs, the faulty processes, the protocols used by the
faulty processes, and the scheduling protocol, the VSS pro-
tocol (which is used by the nonfaulty processes) determines
a distribution on runs. Formally, hiding requires that for
all distributions determined this way, the dealer’s value is
independent of the histories of the faulty processes.

nonfaulty processes eventually receive m, and nothing else.
(The properties of RB are stated carefully in the appendix,
where, for completeness, an implementation is provided.)

We assume that the dealer creates n + 1 degree-t poly-
nomials f, f1, . . . , fn over some finite field F with |F | > n
such that f(0) is the secret (i.e., f(0) = s) and fl(0) = f(l).
Then the dealer shares the polynomials f1, . . . , fn and also
gives each process j the polynomial fj . We can think of
process j as a potential “monitor” for fj . The dealer shares
the polynomial fj by sending each process k the value fj(k).
This means that, if the dealer is correct, any t+1 nonfaulty
processes can reconstruct fj . In addition, the dealer sends f
to the moderator. Each process k that receives fj(k) sends
this value to j and broadcasts a confirmation. In this case,
we can think of process k as a “confirmer” for fj(k). When
j receives confirmations and values that agree with the poly-
nomial fj sent by the dealer from at least n− t processes, j
becomes a “monitor” for fj , sends fj(0) to the moderator,
and broadcasts the set Lj of at least n− t confirmers whose
value it accepted. Intuitively, each monitor j is responsible
for validating the value of one point on the polynomial f ,
namely, f(j) = fj(0). When the moderator receives at least
n − t values all of which agree with the polynomial f from
different monitors and receives confirmations from their as-
sociated Lj sets, then the moderator broadcasts the set of
n − t monitors’ indexes it accepted. The dealer broadcasts
a confirmation when it learns that the moderator, its moni-
tors, and their confirmers have acted in a nonfaulty manner.
This allows nonfaulty processes to know which confirmers
they need to wait for in order to complete their execution of
the share protocol.

In the reconstruct phase, processes send their values using
the RB protocol. If the dealer is nonfaulty, then it can check
the values sent by all processes and detect faulty processes.
If the dealer is faulty, then there are at least t + 1 nonfaulty
monitors l that can monitor their polynomial fl. If they do
not detect problems with their confirmers, then the Weak
Binding property must hold.

We now explain how processes shun other processes if a
problem is detected. Before a process i “sees” a message
in the MW-SVSS protocol (or the SVSS protocol that we
present later), the message is filtered by the DMM proto-
col. The DMMi protocol decides whether to discard the
message, ignore it for now, or pass it on for action. In
order to do this, DMMi must maintain a number of data
structures. First, it maintains the partial order →i on ses-
sions described above, where (c1, j1) →i (c2, j2) if i started
the share protocol of VSS session (c2, j2) after completing
the reconstruct protocol of VSS session (c1, j1). In addi-
tion, the DMMi protocol uses a variable Di that repre-
sents a set of processes. Intuitively, the processes in Di

are ones known by i to be faulty. Any message sent by a
process j ∈ Di is discarded by i. To decide which mes-
sages to ignore for now and which to pass on for action,
DMMi maintains two arrays. The first array, denoted ACKi,
consists of tuples in {1, . . . , n} × {1, . . . , n} × IN × F . In-
tuitively, (j, l, c, x) ∈ ACKi if i is expecting to receive a
broadcast sent by j using RB saying fl(j) = x as part of
a VSS session (c, i) (thus, this is a session for which i is
the dealer). The second array, denoted DEALi, consists
of tuples in {1, . . . , n} × IN × {1, . . . , n} × F . Intuitively,
(j, c, l, x) ∈ DEALi if i is expecting to receive a message
broadcast by j (using RB) saying fi(j) = x as part of VSS

session (c, l). Both ACKi and DEALi are initially empty.
We will explain how tuples are added to ACKi and DEALi

when we describe the MW-SVSS protocol.
Process i ignores (that is, saves but does not act on) all

messages from process j that are part of a session (c′, k)
such that either (j, l, c, s) ∈ ACKi and (c, i) →i (c′, k) or
(j, c, l, s) ∈ DEALi and (c, l) → (c′, k). That is, newer mes-
sages from j are ignored by i if i is expecting to receive
something from j that it has not yet received. When a mes-
sage that i expects to hear from j that is associated with
either with (j, l, c, s) ∈ ACKi or with (j, c, l, s) ∈ DEALi,
then the relevant tuple is removed from ACKi or DEALi.
Once there are no messages that i expects to hear from j
from a session that precedes (c′, k), then the DMMi proto-
col enables the MW-SVSS protocol to act on messages from
session (c′, k).

Finally, process j is added to Di if a message is received
from j that is inconsistent with what is expected according
to a tuple in ACKi or DEALi. For example, if (j, l, c, s) ∈
ACKi and i receives a message as part of session (c, i) from
j saying fl(j) = s′, with s′ 6= s, then j is added to Di, and
messages sent by j in all sessions (c′, k) such that (c, l) →i

(c′, k) will be discarded by i.

3.2 Implementing MW-SVSS
We now show how to implement MW-SVSS. We start

with the share protocol S ′. We assume that the field F being
used is common knowledge and |F | > n. In the S ′ protocol
(and a number of our later protocols), we have variables that
are tagged by the session id (c, d). If the session id is clear
from context, we omit it.

Share protocolS ′:
1. If a dealer i wants to invoke S ′ with a secret s it first

updates c to c+1 and then selects n+1 random degree-
t polynomials f(x), f1(x), . . . , fn(x) over field F such
that f(0) = s and fl(0) = f(l) for all l ∈ {1, . . . , n}. It
sends each process j a message f1(j), . . . , fn(j), (c, i).
In addition, it sends each process l a message fl(1), . . . , fl(t+
1), (c, i) (note that this allows l to compute fl, so we
sometimes say “l receives fl” in this message), and
sends the moderator yet another message, f(1), . . . , f(t+
1), (c, i) (so that the moderator can compute f).

2. If process j receives values f̂ j
1 , . . . , f̂ j

n and polynomial

f̂j from a dealer i in session (c, i), then, for each process

l, j sends f̂ j
l , (c, i) to l. (Note that f̂ j

k is supposed to
be fk(j), but if the dealer is faulty, it may not be.

We continue to use the notation f̂ and f̂ j
k to denote

the polynomials and values actually received.) It also
broadcasts ack , (c, i) to all processes using RB.

3. If process j receives f̂ l
j , (c, i) and ack , (c, i) from process

l, receives f̂j , (c, i) from the dealer i, and f̂ l
j = f̂j(l),

it adds (l, c, i, f̂j(l)) to DEALj . Intuitively, the mes-

sage f̂ l
j = f̂j(l) provides confirmation to j that the

dealer sent fl(j) to both j and l. The fact that j adds

(l, c, i, f̂ l
j) to DEALj means that j expects l to confirm

publicly (using RB) that indeed it received f̂ l
j from the

dealer i, which is what l told j privately.

4. Let Lj,(c,i) = {l : (l, c, i, f̂j(l)) ∈ DEALj}. If |Lj | ≥
n−t, then j sends Lj , (c, i) to all processes using RB, It

also sends f̂j(0), (c, i) to the moderator. Intuitively, if
|Lj | ≥ n−t, then j has gotten as much confirmation as
it can expect to get that the dealer i correctly shared
the polynomial fj . By broadcasting Lj , it is broad-
casting the set of processes from which it expects to
hear public confirmation of this fact. By sending f̂j(0)
to the moderator, j is giving the moderator a share of
the information that the moderator needs for comput-
ing the secret.

5. If the moderator receives f̂ , (c, i) from the dealer, f̂ j
0 , (c, i)

and L̂j , (c, i) from process j, and ack , (c, i) message

from all processes l ∈ L̂j , f̂ j
0 = f̂(j), and f̂(0) = s′,

the moderator adds j to the set M(c,i), which is initial-
ized to ∅. Intuitively, if the values that the modera-
tor receives from j are compatible with the values the
moderator received from the dealer, and the dealer’s
values are compatible with the moderator’s value s′,
then the moderator adds j for the session (c, i) to M .

6. If |M(c,i)| ≥ n− t, the moderator sends M(c,i), (c, i) to
all processes using RB.

7. If the dealer i receives M̂, (c, i) from the moderator, re-

ceives L̂j , (c, i) from each process j ∈ M̂ , and receives

ack , (c, i) from each process l ∈ L̂j such that j ∈ M̂ ,

then it adds (l, j, c, fj(l)) to ACKi for all j ∈ M̂ and

l ∈ L̂j , and sends OK , (c, i) using RB. Note that if the
moderator is nonfaulty and it sends these messages
to the dealer, then it really did receive L̂j , (c, i) from

each process j ∈ M̂ and ack , (c, i) from each process l

in L̂j , and these messages were sent using RB. Thus,
the dealer will eventually receive all these messages too
and, if nonfaulty, will broadcast the OK message.

8. If process j receives M̂, (c, i) from the moderator and

j /∈ M̂ then j removes from DEALj all entries of the
form (·, c, i, ·) that are associated with session (c, i).

Intuitively, since j /∈ M̂ for session (c, i), we do not
care about the values of fj for this session.

9. If process j receives an OK , (c, i) message from the

dealer, M̂, (c, i) from the moderator, L̂l, (c, i) from each

process l ∈ M̂ , and ack , (c, i) from each k ∈ L̂l such

that l ∈ M̂ , it completes this invocation of the share
protocol S ′.

Reconstruct protocolR′:

1. If process j ∈ L̂l for l ∈ M̂ , then j broadcasts l, f̂ j
l , (c, i)

using RB, where f̂ j
l is what j received from the dealer

at step 2 of S ′.

2. Process j initializes Kj,l,(c,i) to ∅ for each process l for
which it has received a set Ll. If j receives a message
l, f̄k

l , (c, i) from process k at step 1, and k ∈ L̂l, then
j adds (l, f̄k

l) to Kj,l. Intuitively, (l, f̄k
l) should be the

point (k, fl(k)) on the polynomial fk.

3. If |Kj,l| = t + 1, then j finds the unique degree t poly-
nomial f̄l that interpolates the points in |Kj,l|.

4. After computing f̄l for all l ∈ M̂ , j tries to interpolate
a polynomial f̄ such that f̄(l) = f̄l(0) for all l ∈ M̂ . If
f̄ exists, j outputs f̄(0); otherwise, j outputs ⊥.

3.3 Implementing DMM
We now describe the implementation of DMMi.

Protocol DMMi

1. Initialize an empty set of processes Di, an empty array
ACKi consisting of tuples in {1, . . . , n} × {1, . . . , n} ×
IN×F , and an empty array DEALi consisting of tuples
in {1, . . . , n}× IN ×{1, . . . , n}×F . As we said earlier,
intuitively, (j, l, c, x) ∈ ACKi if i is expecting to receive
a broadcast sent by j using RB saying fl(j) = x as
part of VSS session (c, i) and (j, c, l, x) ∈ DEALi if i
is expecting to receive a message broadcast by j using
RB saying fi(j) = x as part of VSS session (c, l).

2. If (j, l, c, x) ∈ ACKi and a broadcast message x′, j, (c, i)
is received then

• if x = x′, then remove (j, l, c, x) from ACKi;
• otherwise, add j to Di.

(See line 7 of protocol S ′ for the condition that causes
a tuple (j, l, c, x) to be added to ACKi.)

3. If (j, c, l, x) ∈ DEALi and a broadcast message x′, i, (c, j)
is received, then

• if x = x′ then remove (j, c, l, x) from DEALi;
• otherwise, add j to Di.

(See line 3 of protocol S ′ for the condition that causes
a tuple (j, c, l, x) to be added to DEALi.)

4. If a message sent from j is received and j ∈ Di, then
discard the message.

5. If a message with session identifier (c′, i′) sent from
j /∈ Di is received, then delay this message if there is
a tuple (j, l, c, x) ∈ ACKi such that (c, i) →i (c′, i′) or
a tuple (j, c, l, x) ∈ DEALi such that (c, j) →i (c′, i′).
If there is no such tuple in ACKi or DEALi (or after
all such tuples have been removed), then forward the
message to the VSS invocation of session (c′, i′).

We now show that the MW-SVSS protocol satisfies the
MW-SVSS properties. To do this, we first must establish
two key properties of the DMM protocol.

Lemma 1. If i is nonfaulty, then DMMi satisfies the fol-
lowing two properties:

(a) if j ∈ Di, then j is a faulty process;
(b) if j is nonfaulty, (j, l, c, x) ∈ ACKi (resp., (j, c, l, x) ∈

DEALi), and all nonfaulty processes complete session
(c, i) (resp. (c, l)), then eventually (j, l, c, x) is removed
from ACKi (resp., (j, c, l, x) is removed from DEALi).

Proof. For part (a), note that the only reason that i
adds j to Di is if (j, l, c, x) ∈ ACKi (resp., (j, c, l, x) ∈
DEALi) and the DMM protocol detects that process j sent
a message f̄ j

l , l, (c, i) (resp., f̄ j
i , i, (c, l)) using RB such that

f̄ j
l 6= x (resp., f̄ j

i 6= x). If j is nonfaulty then x = fl(j)

(resp., x = f̂i(i)), hence i would not add j to Di if j is
nonfaulty.

Part (b) follows from the observation that if (j, l, c, x) ∈
ACKi or (j, c, l, x) ∈ DEALi, then the tuple was added
during the share phase. If (j, l, c, x) ∈ ACKi and session

(c, i) completed, then it must be the case that j ∈ L̂l and

l ∈ M̂(c,i). Since j is nonfaulty, then the message required
to remove the tuple from ACKi will be sent using RB by

j during the reconstruct phase, and will eventually be re-
ceived by i. If (j, c, l, x) ∈ DEALi then there are two cases.
If this entry was removed in line 8 of protocol S ′, then we
are done. Otherwise, since session (c, l) completed, it must

be the case that j ∈ L̂i and i ∈ M(c,l). Hence the message
required to remove the tuple from DEALi will be sent using
RB by j during the reconstruct phase, and will eventually
be received by i.

We now prove that all the MW-SVSS properties hold.

Lemma 2. The MW-SVSS protocol satisfies the
MW-SVSS properties.

Proof. We consider the properties in turn.
Moderated Validity of Termination. If the dealer

and the moderator are nonfaulty and s = s′ then, for all
nonfaulty processes j and l, eventually (j, c, i, f̂ j

l) will be in
DEALl. Hence, eventually |Ll| will be at least n− t. Thus,
eventually l will complete step 4 of the share protocol. (For
future reference, note that although the first n− t elements
of Ll may not all be nonfaulty, at least t+1 of the elements of
Ll will be nonfaulty.) Moreover, since j′ ∈ Ll only if j′ sent
an ack , (c, i) message using RB, eventually the moderator
will receive an ack , (c, i) message from all j ∈ Ll. Thus, if
l is nonfaulty, a nonfaulty moderator will eventually add l
to M in step 5 of the share protocol. Since there are n − t
nonfaulty processes, eventually we must have |M | ≥ n − t,
so the moderator completes step 6 of the share protocol. We
already gave the intuition that a nonfaulty dealer will then
broadcast OK at step 7. Thus, all nonfaulty processes will
eventually complete protocol S ′.

Termination. If a nonfaulty process j completes proto-
col S ′, then, since all the messages that caused j to complete
the protocol are sent using RB, it follows that all nonfaulty
processes eventually complete S ′. The fact that they all
complete R′ follows since, as observed above, the set Ll for
each l ∈ M contains at least t + 1 nonfaulty processes, each
of which eventually sends its value in step 1 of R′. Thus,
each nonfaulty process outputs either some value in F or ⊥
at step 3 of R′.

Validity. Suppose that the dealer i is nonfaulty. There
are two cases. If some faulty process j such that (j, l, c, x) ∈
ACKi sends a message x′, l, (c, i) at step 1 of R′ such that
x 6= x′, then i did not ignore some message from j during
session (c, i), (j, l, c, x) will never be removed from ACKi,
and eventually j will be added to Di by line 2 in the DMMi

protocol. Hence, j is shunned by i starting in session (c, i).
Thus, if no process is shunned by i for the first time in (c, i),

it must be the case that, for each process l ∈ M̂ , all the
values broadcast by processes in L̂l agree with fl. Since
there will eventually be at least t + 1 values broadcast from
processes in L̂l, all nonfaulty processes will interpolate fl

for all l ∈ M̂ , and subsequently will interpolate f and the
secret s.

Weak and Moderated Binding. If the dealer is non-
faulty, it follows from Validity that Weak Binding holds,
taking r = s. So suppose that the dealer i is faulty. If there
is a faulty process j such that (j, c, i, x) ∈ DEALl for a non-
faulty process l and j sends a message l, x′, (c, i) in step 1 of
R′ such that x 6= x′. In this case l did not ignore a message
from j during session (c, i), (j, c, i, x) will never be removed
from DEALl, and eventually j will be added to Dl by line

3 in the DMMl protocol. Hence, j is shunned by l starting
in session (c, i), so weak and moderated binding holds. On

the other hand, if, for each nonfaulty process l ∈ M̂ , all the
values broadcast by processes in L̂l are what they were ex-
pected to be then, at the time that the first nonfaulty process
completes protocol S ′, the set M̂ is fixed. Let H ⊆ M̂ be
the set of nonfaulty processes in M̂ . For each l ∈ H, the
value f̂l(0) is also fixed. If there exists a degree-t polyno-

mial h that interpolates the points in {(l, f̂l(0)) | l ∈ M̂},
then let r = h(0); otherwise, let r = ⊥. We claim that each
nonfaulty process will output either r or ⊥ at the recon-
struct phase. This is true since all nonfaulty processes will
interpolate f̂l for all l ∈ M̂ correctly. Since |H| ≥ t + 1, the

values {(l, f̂l(0)) | l ∈ M̂} determine a polynomial h. If all
remaining values f̄l(0) obtained from the polynomials f̄l for

l ∈ M̂ \ H agree with h, then r is output; otherwise, ⊥ is
output.

It easily follows from step 5 of S ′ that if the moderator
is nonfaulty, then the values {(l, f̂l(0)) | l ∈ M̂} can be
interpolated only by a polynomial h such that h(0) is the
moderator’s value s′; that is, r = s′.

Moderated Hiding. If the dealer and moderator are
nonfaulty then, as long as no nonfaulty process has invoked
protocol R, the combined view of any t faulty processes is
distributed independently of the value of the shared secret,
s. This follows since the dealer uses random degree-t poly-
nomials, so no set of size t learns any information.

As promised, we now show that it is possible that two non-
faulty processes will complete an invocation of MW-SVSS
with different values without detecting a new faulty process.

Example 1. Let n = 4 and t = 1. Consider an invoca-
tion of the MW-SVSS protocol with processes 1, 2, 3, and 4,
where 2 is the dealer and 1 is the moderator. Suppose that, in
the share protocol S ′, process 4 is delayed. Hence, processes
1, 2, and 3 hear only from each other before completing the
share protocol. Thus, L1 = L2 = L3 = M = {1, 2, 3}. Now
suppose that in the reconstruct protocol R′, process 3 hears
the values sent by 2 according to line 1 of R′ before hearing
from 1 or 4. Since it clearly hears from itself as well, K3,1,
K3,2, and K3,3 will each have two points—one from 2 and
one from 3. Since t + 1 = 2 in this case, it follows from
step 3 that 3 will then find the unique degree 1 polynomials
f̂1, f̂2, and f̂3 that interpolate the points in K3,1, K3,2, and

K3,3, respectively. If f̂1(0), f̂2(0), and f̂3(0) are collinear,
and f̄ is the polynomial that interpolates them, then 3 out-
puts f̄(0). If 2 is faulty, then by choosing the values it sends
appropriately, 2 can make f̄(0) an arbitrary element of F .
Now if 1 hears from 3 before hearing from 2 or 4, 1 will also
output a value, which may be different from 3’s.

Of course, to get 3 to output a value different from 1’s, 2
must send a value f̂2

1 that is different from the one that 1
expects to hear. Once 1 gets this value, it will realize that
2 is faulty, and add 2 to its set D1. However, this may
happen after both 2 and 3 have completed the invocation of
MW-SVSS. Notice that this argument relies on the fact that
processes use RB to send their values.

4. IMPLEMENTING SVSS
In this section, we show how to implement SVSS, and then

prove that our implementation satisfies the SVSS properties.
The difficulties of doing this are illustrated by Example 1:

it is possible that two nonfaulty processes output different
values in an invocation (c, i) of the MW-SVSS protocol. Of
course, by the Weak Binding property, this can happen only
if a new faulty process is eventually detected (and is shunned
in all invocations that follow (c, i)). Nevertheless, this de-
tection can come after all processes have completed (c, i).
Thus, we must show that the inconsistency cannot cause
problems.

Share protocolS:
1. If a dealer i wants to invoke S with a secret s, it first

updates c to c + 1, initializes sets of processes G(c,i)

and Gj,(c,i), j 6= i, to ∅ and chooses a random degree-
t bivariate polynomial f(x, y) over the field F such
that f(0, 0) = s.2 Let gj(y) = f(j, y) and let hj(x) =
f(x, j), for j = 1, . . . , n. Dealer i sends each process j
the message gj(1), . . . , gj(t+1), hj(1), . . . , hj(t+1), (c, i)
(so j can reconstruct gj and hj).

2. If a process j receives gj and hj from dealer i for a
session (c, i), then for each process l 6= j, process j
participates in four invocations of MW-SVSS protocol
S ′:

(a) as a dealer with secret f(l, j) and moderator l
(who should also have value f(l, j) if i and l are
nonfaulty);

(b) as a dealer with secret f(j, l) and moderator l
(who should also have value f(j, l) if i and l are
nonfaulty);

(c) as a moderator with secret f(l, j) and dealer l
(who should also have value f(l, j) if i and l are
nonfaulty); and

(d) as a moderator with secret f(j, l) and dealer l
(who should also have value f(j, l) if i and l are
nonfaulty).

3. The dealer i adds j to the set Gl,(c,i) and l to the set
Gj,(c,i) if the dealer completes all four invocations of
the share part of MW-SVSS S ′ with j and l playing
the roles of dealer and moderator.

4. The dealer i adds j to the set G(c,i) if |Gj,(c,i)| ≥ n− t.

5. If |G(c,i)| ≥ n− t, the dealer sends G(c,i), {Gj,(c,i) | j ∈
G}, (c, i) using RB.

6. When process l receives Ĝ, {Ĝj | j ∈ G}, (c, i) from
the dealer and completes all four S ′ protocols for each
pair j, l such that j ∈ Ĝ and l ∈ Ĝj , then it completes
this invocation of S.

Reconstruct protocolR:
1. Each process j initializes the set Ij,(c,i) to ∅ and in-

vokes the reconstruct protocol R′ for each of the four
invocations of MW-SVSS for each pair (k, l) such that
k ∈ G(c,i) and l ∈ Gk,(c,i). After the four reconstruct
protocols associated with k and l are complete, j sets

2Specifically, since a bivariate polynomial of degree t has the
form

Pt
i=0

Pt
j=0 aijx

iyj , we simply set a00 = s and choose
the remaining coefficients at random from F . Of course, the
same ideas apply to choosing a random univariate polyno-
mial f such that f(0) = s.

rj
x,k,l,(c,i) to the reconstructed output value for the en-

try f(k, l) where x was the dealer in the MW-SVSS
protocol (so that x is either k or l).

2. For each k ∈ G, process j adds k to Ij,(c,i) if

• there exists l ∈ Gk such that rkkl or rklk are ⊥;
or

• there do not exist degree-t polynomials that inter-
polate {(l, rj

kkl) : l ∈ Gk} or {(l, rj
klk) : l ∈ Gk}.

Intuitively, Ij,(c,i) consists of those processes that j
ignores in invocation (c, i).

3. For each k ∈ G \ Ij , process j computes the degree-t
polynomials gk and hk that interpolate {(l, rj

kkl) : l ∈
Gk} and {(l, rj

klk) : l ∈ Gk}. If there exist k, l ∈ G \ Ij

such that hk(l) 6= gl(k), then j outputs ⊥. Otherwise,
if there is a unique degree-t bivariate polynomial f̄
such that for all k, l ∈ G \ Ij , f̄(k, l) = gk(l) = hl(k),
then j outputs f̄(0, 0); otherwise, j outputs ⊥.

This completes the description of the SVSS protocol.

Lemma 3. The SVSS protocol satisfies the SVSS proper-
ties.

Proof. For any SVSS session (c, i), if k, j are nonfaulty
processes, then all messages sent from k to j will eventually
not be ignored. This is true since, if (c′, i′) →j (c, i), then
j completed all R′ invocations associated with (c, i). From
the way we use MW-SVSS in R, all processes will also in-
voke all R′ sessions associated with (c, i). Hence from the
Termination property of MW-SVSS and Lemma 1, it fol-
lows that all messages that j expects k to send in session
(c′, i′) will eventually be received. We now go through SVSS
properties in turn.

Validity of Termination. If the dealer is nonfaulty,
then for any two nonfaulty processes k and l, eventually all
four invocations of S ′ will complete. So eventually the set
Gl will be of size at least n−t for each nonfaulty l, the set G
will eventually contain at least n − t elements, and all four
S ′ invocations for each j ∈ G and l ∈ Gj will complete. By
the properties of RB, all processes will eventually receive the
sets G and {Gj : j ∈ G} and, by the Termination property
of MW-SVSS, for each j ∈ G and l ∈ Gj , all processes will
eventually complete all four invocations of S ′. Hence, all
nonfaulty processes will complete protocol S.

Termination. If a nonfaulty process completes proto-
col S, then it follows from the Termination property of the
MW-SVSS protocol and the Reliable Broadcast properties
that all nonfaulty processes complete S. The fact that they
all complete R follows from the Termination property of the
MW-SVSS protocol.

Validity. Suppose that the dealer i is nonfaulty in an
invocation of S with session id (c, i). There are two cases. If
a faulty process j is first shunned by a nonfaulty process l in
some MW-SVSS invocation with session (c′, i′) that is part
of the SVSS invocation with session id (c, i), then, because
l started (c, i) before starting (c′, i′) and l completes (c′, i′)
before completing (c, i), j is also first shunned by l starting in
session (c, i) of SVSS. On the other hand, if no faulty process
is shunned starting in session (c, i), then all invocations of
MW-SVSS must satisfy the first clause of the Validity and

Weak and Moderated Binding properties. It follows from
(the first clause of) the Validity property that if k ∈ G(c,i)

is nonfaulty, then for all l ∈ Gk, it must be the case that
rj

kkl = f(k, l) and rj
klk = f(l, k) (since k acts as the dealer

in computing these values, l acts as the moderator and the
values themselves are correct, since they were received from
i). Thus, it follows that k /∈ Ij,(c,i). Similarly, it follows
from (the first clause of) the Weak and Moderated Binding
property that, for all k ∈ G and l ∈ Gk, if either l or k
are nonfaulty, then it must be the case that rj

llk and rj
klk are

each either f(l, k) or ⊥, and that rj
lkl and rj

kkl are each either
f(k, l) or ⊥. (Here we use the fact that the nonfaulty process
—either k or l—is acting as either dealer or moderator in
the invocations of MW-SVSS during which these values are
computed.) Thus, even if l is faulty, if l /∈ Ij , then we must
have hk(l) = gl(k) for all nonfaulty k ∈ G. It follows that,
in step 3 of R, j correctly reconstructs hl and gl for all
l ∈ G \ Ij . Thus, the polynomial f̄ computed by j will be
f , and j will output f(0, 0).

Binding. If the dealer is nonfaulty, it follows from Valid-
ity that Binding holds, taking r = s. If the dealer is faulty,
there are again two cases. If a faulty process j is shunned
by a nonfaulty process l in some MW-SVSS invocation with
session (c′, i) that is part of the SVSS invocation session
(c, i), then, as argued in the proof of Validity, j is also first
shunned by l in invocation (c, i). On the other hand, if no
faulty process is shunned starting in session (c, i), then all
invocations of MW-SVSS must satisfy the first clause of the
Validity and Moderated Weak Binding properties. Consider
the time that the first nonfaulty process completes protocol
S. At this time, the set G is fixed. Let H be the set of
nonfaulty processes in G. Since |G| ≥ n − t, we must have
that |H| ≥ t+1. If there is a unique degree-t bivariate poly-
nomial f̄(x, y) induced by the entries rjjl, rjlj for all j ∈ H
and l ∈ Gj , then set r = f̄(0, 0); otherwise, set r = ⊥.

We claim that each nonfaulty process will output r at the
reconstruct phase. As in the proof of the Validity property
for SVSS, it follows from (the first clause of) the Validity
property for MW-SVSS that if k ∈ G(c,i) is nonfaulty, then

for all nonfaulty l ∈ Gk, we have that rj
kkl = ĝk(l) and

rj
klk = ĥk(l), where ĝk and ĥk are the polynomials sent by i

to k. Thus, k /∈ Ij,(c,i). Hence, if r = ⊥, then all nonfaulty
processes will output ⊥. Moreover, if r 6= ⊥, then, as in
the proof of Validity for SVSS, by the Weak and Moderated
Binding property, and from the fact that |H| ≥ t + 1, for all
l ∈ G \ Ij , it must be the case that gl and hl agree with f̄ .
Therefore j will interpolate f̄ and output r.

Hiding. If the dealer is nonfaulty and no nonfaulty process
has invoked protocol R, then the combined view of any t
processes is distributed independently of the dealer’s value
s, because every polynomial hj and gj has degree t, and no
process learns more than t values of these polynomials.

This completes the construction of the SVSS protocol. We
now briefly sketch how, using ideas from Canetti and Rabin
[4], we can use SVSS to construct the required asynchronous
Byzantine agreement protocol.

5. FROM SVSS TO BYZANTINE
AGREEMENT

Once we have SVSS, we can get an almost-surely termi-
nating polynomial protocol for Byzantine agreement with

optimal resilience, following the ideas outlined in Canetti’s
[6] thesis. We proceed in two steps. The first step is to
get a common coin. Canetti and Rabin showed that, given
ε > 0, an AVSS protocol that terminates with probability
1− ε could be used to construct a protocol CC that gives a
common coin and terminates with probability 1− ε. We use
SVSS to get a shunning Common Coin (SCC) protocol.

Definition 2 (SCC). Let π be a protocol where each
party has a random input and a binary output. As in SVSS,
we tag each invocation of π with a unique session identi-
fier c. We say that π is a shunning, terminating, t-resilient
Common Coin protocol (SCC protocol) if the following prop-
erties, called the SCC properties, hold (in runs with at most
t faulty processes in some session tagged c):

1. Termination. All nonfaulty processes terminate.

2. Correctness. For every invocation either

• for each σ ∈ {0, 1}, with probability at least 1/4,
all nonfaulty processes output σ; or

• there exists a nonfaulty process i and a faulty process
j such that j is shunned by i starting in session
c.

Lemma 4. For n > 3t there exists a shunning, terminat-
ing, t-resilient Common Coin protocol.

Proof. The protocol to implement SCC is exactly the
protocol in Figure 5–9 in [6], except that we replace the
AVSS protocol with our SVSS. The proof that this proto-
col satisfies the SCC properties follows from Lemmas 5.27–
5.31 in [6], together with the observation that if a process
is shunned starting at a SVSS invocation whose reconstruct
protocol competes before the SCC protocol invocation com-
pletes, then this process is shunned starting at this SCC
protocol invocation.

The second step is to use the common coin protocol to
get the Byzantine agreement protocol. Canetti and Rabin
use their common coin protocol CC that terminates with
probability 1−ε to get a Byzantine agreement protocol that
terminates with probability 1 − ε. We replace the use of
CC by SCC to get an almost-surely terminating protocol.
The key observation is that in the protocol of Figure 5-
11 in [6], if a nonfaulty process j participates in rounds r
and r′ (and hence, in our setting, it participles in the SCC
protocol with session identifiers r and r′), and r < r′, then
it must be the case that r →j r′. Therefore, there can
be at most t(n− t) = O(n2) rounds r such that a nonfaulty
process i shuns a faulty process j starting in round r. Hence,
there are at most O(n2) rounds where the SCC protocol does
not succeed. In all the remaining rounds, the first clause
of the SCC Correctness property holds, so we essentially
have a common coin that is sufficiently strong for Byzantine
agreement. It therefore follows from Lemma 5.38 and 5.29 of
[6] that the expected running time of the protocol is O(n2).
Thus we have the following result.

Theorem 1 (Byzantine Agreement). There is an almost-
surly terminating, polynomial protocol for asynchronous Byzan-
tine agreement protocol with optimal resilience.

6. CONCLUSIONS
We have shown how to use SVSS to give a protocol for

asynchronous Byzantine agreement that has optimal resilience,
almost-surely terminates, and is polynomially efficient. Our
SVSS protocol has implications for asynchronous Secure Mul-
tiparty Computation (ASMPC) of certain functionalities. In
the full paper we define a family of functionalities for which
the use of SVSS gives a protocol for ASMPC that has op-
timal resilience, terminates almost surely, and has perfect
security (the ideal and real worlds are statistically indistin-
guishable). Perhaps the major open question remaining is
whether there exists an asynchronous Byzantine agreement
protocol with optimal resilience and constant expected run-
ning time.

APPENDIX

A. BASIC TOOLS

A.1 Weak Reliable Broadcast
A protocol B with a distinguished dealer holding input s is

a t-tolerant Weak Reliable Broadcast protocol if the following
holds for every execution with at most t faulty processes:

1. Weak termination. If the dealer is nonfaulty, then
every nonfaulty process will eventually complete pro-
tocol B.

2. Correctness.

(a) if a nonfaulty process completes protocol B, then
once the first nonfaulty process completes the pro-
tocol there is a value r such that each nonfaulty
process that completes protocol B accepts r;

(b) if the dealer is nonfaulty, then each nonfaulty
process that completes protocol B accepts s.

Lemma 5. For n > 3t there exists a t-tolerant Weak Re-
liable Broadcast protocol.

Proof. This protocol, which we call WRB, is essentially
Dolev’s [8] crusader agreement. It uses two types of mes-
sages; type 1 messages have the form (r, 1) and type 2 mes-
sages have the form (r, 2). WRB proceeds as follows:

1. The dealer sends (s, 1) to all processes.

2. If process i receives a type 1 message (r, 1) from the
dealer and it never sent a type 2 message, then process
i sends (r, 2) to all processes.

3. If process i receives n−t distinct type 2 messages (r, 2),
all with value r, then it accepts the value r.

If the dealer is nonfaulty, then it is immediate that every
nonfaulty process will send (s, 2), and thus will accept s
(since there are at most t faulty processes, by assumption).
Moreover, if the dealer is nonfaulty, the only type 2 message
sent by a nonfaulty process is (s, 2), so no nonfaulty process
will receive more than t type 2 messages (r, 2) with r 6= s.3

3We assume that, as in VSS, if there are multiple invocations
of WRB, messages are tagged with an invocation number,
so that messages from old invocations will not be confused
with messages from the current invocation.

To see that WRB satisfies the correctness property, sup-
pose, by way of contradiction, that one nonfaulty process i
accepts r and another nonfaulty process j accepts r′, with
r 6= r′. Then i must have received n − t type 2 messages
with value r and j must have received n− t type 2 messages
with value r′. Thus, at least n − 2t ≥ t + 1 processes must
have sent a type 2 message to both i and j. At least one of
these processes must be nonfaulty. But the protocol ensures
that a nonfaulty process will send only one type 2 message.
This gives us the desired contradiction.

A.2 Reliable Broadcast
A protocol B with a distinguished dealer holding input s is

a t-tolerant Reliable Broadcast protocol if the weak termina-
tion and correctness properties of the Weak Reliable Broad-
cast holds, and in addition, the following property holds:

3. Termination. For every execution with at most t
faulty processes, if some nonfaulty process completes
protocol B then all nonfaulty processes will eventually
complete protocol B.

Lemma 6. For n > 3t there exists a t-tolerant Reliable
Broadcast (RB) protocol.

Proof. This protocol, which we call RB, is essentially
Bracha’s echo broadcast. It uses WRB as a subroutine. In
addition to type 1 and type 2 messages, it uses type 3 mes-
sages, which have the form (r, 3). RB proceeds as follows:

1. The dealer sends (s, 1) to all processes using Weak Re-
liable Broadcast (WRB).

2. If process i accepts message r from the dealer using
WRB, then process i sends (r, 3) to all processes.

3. if process i receives at least t + 1 distinct type 3 mes-
sages with the same value r, then process i sends (r, 3)
to all processes.

4. if process i receives at least n− t distinct type 3 mes-
sages with the same value r, then it accepts the value
r.

To see that RB is correct, first observe that, from the cor-
rectness property of WRB, it follows that it cannot be the
case that two type 3 message with different values are sent
by nonfaulty processes at step 2. Moreover, if a nonfaulty
process sends a type 3 message at step 3, it must be be-
cause it got a type 3 message from a nonfaulty process. It
easily follows that all the type 3 messages sent by nonfaulty
processes at either step 2 or step 3 have the same value.

If the dealer is nonfaulty, then it is easy to see that all non-
faulty processes terminate and accept value s, as in WRB.
To see that termination holds for RB, suppose that a non-
faulty process completes the protocol. It thus must have
received n− t type 3 messages with the same value r. Each
other nonfaulty process will eventually have received at least
n − 2t ≥ t + 1 of these messages, and so will send a type 3
message by step 3, if it has not already done so by step 2. As
we argued above, all the type 3 messages sent by nonfaulty
processes must have the same value. Thus, each nonfaulty
process will end up receiving n − t type 3 messages with
value r.

Finally, part (b) of correctness follows easily from our ob-
servation above that all the type 3 messages sent by non-
faulty processes have the same value r.

B. REFERENCES
[1] M. Ben-Or. Another advantage of free choice

(extended abstract): Completely asynchronous
agreement protocols. In Proc. 2nd ACM Symposium
on Principles of Distributed Computing, pages 27-30,
1983.

[2] M. Ben-Or, S. Goldwasser, and A. Wigderson.
Completeness theorems for non-cryptographic
fault-tolerant distributed computation. In Proc. 20th
ACM Symp. Theory of Computing, pages 1–10, 1988.

[3] G. Bracha. An asynchronous [(n - 1)/3]-resilient
consensus protocol. In Proc. 3rd ACM
Symp. Principles of Distributed Computing, pages
154–162, 1984.

[4] R. Canetti and T. Rabin. Fast asynchronous
Byzantine agreement with optimal resilience. In Proc.
25th ACM Symp. Theory of Computing, pages 42–51,
1993.

[5] R. Canetti and T. Rabin. Fast asynchronous
Byzantine agreement with optimal resilience, 1993.
http://people.csail.mit.edu/canetti/materials/cr93.ps.

[6] R. Canetti. Studies in secure multiparty computation
and applications, 1996.
http://people.csail.mit.edu/canetti/materials/thesis.ps.

[7] T. D. Chandra, V. Hadzilacos, and S. Toueg. The
weakest failure detector for solving consensus. Journal
of the ACM, 43:685–722, 1996.

[8] D. Dolev. The Byzantine generals strike again.
Journal of Algorithms, 3:14–30, 1982.

[9] P. Feldman and S. Micali. Optimal algorithms for
Byzantine agreement. In Proc. 20th ACM
Symp. Theory of Computing, pages 148–161, 1988.

[10] P. Feldman and S. Micali. An optimal probabilistic
protocol for synchronous Byzantine agreement. SIAM
J. Comput., 26(4):873–933, 1997.

[11] M. J. Fischer, N. A. Lynch, and M. S. Paterson.
Impossibility of distributed consensus with one faulty
processor. Journal of the ACM, 32(2):374–382, 1985.

[12] J. Katz and C.-Y. Koo. On expected constant-round
protocols for Byzantine agreement. In Cynthia Dwork,
editor, CRYPTO, volume 4117 of Lecture Notes in
Computer Science, pages 445–462. Springer, 2006.

[13] M. Pease, R. Shostak, and L. Lamport. Reaching
agreement in the presence of faults. J. of the ACM,
27(2):228–234, 1980.

[14] T. Rabin and M. Ben-Or. Verifiable secret sharing and
multiparty protocols with honest majority. In
Proc. 21st ACM Symp. Theory of Computing, pages
73–85, 1989.

