A Logical Characterization of Iterated Admissibility

Joseph Y. Halpern and Rafael Pass
Computer Science Department, Cornell University, Ithaca, NY, 14853, U.S.A.
e-mail: halpern@cs.cornell.edu, rafael@cs.cornell.edu

June 23, 2009

Abstract

Brandenburger, Friedenberg, and Keisler provide an epistemic characterization of iterated ad-
missibility (i.e., iterated deletion of weakly dominated strategies) where uncertainty is represented
using LPSs (lexicographic probability sequences). Their characterization holds in a rich structure
called acompletestructure, where all types are possible. Here, a logical charaacterization of iterated
admisibility is given that involves only standard probability and holds in all structures, not just com-
plete structures. A stronger notionstfong admissibilitys then defined. Roughly speaking, strong
admissibility is meant to capture the intuition that “all the agent knows” is that the other agents
satisfy the appropriate rationality assumptions. Strong admissibility makes it possible to relate ad-
missibility, canonicalstructures (as typically considered in completeness proofs in modal logic),
complete structures, and the notion of “all | know”.



1 Introduction

Admissibilityis an old criterion in decision making. A strategy for playés admissible if it is a best
response to some belief of playihat puts positive probability on all the strategy profiles for the other
players. Part of the interest in admissibility comes from the observation (due to Pearce [1984]) that a
strategyo for player: is admissible iff it is not weakly dominated; that is, there is no strat€gfpr

playeri that givesi at least as high a payoff asno matter what strategy the other players are using,
and sometimes givesa higher payoff.

It seems natural to ignore strategies that are not admissible. But there is a conceptual problem when
it comes to dealing witliterated admissibility (i.e., iterated deletion of weaklhy dominated strategies).
As Mas-Colell, Whinston, and Green [1995, p. 240] put in their textbook when discussing iterated
deletion of weakly dominated strategies:

[T]he argument for deletion of a weakly dominated strategy for playisrthat he con-
templates the possibility that every strategy combination of his rivals occurs with positive
probability. However, this hypothesis clashes with the logic of iterated deletion, which
assumes, precisely, that eliminated strategies are not expected to occur.

Brandenburger, Friedenberg, and Keisler [2008] (BFK from now on) resolve this paradox in the
context of iterated deletion of weakly dominated strategies by assuming that strategies are not really
eliminated. Rather, they assumed that strategies that are weakly dominated occur with infinitesimal (but
nonzero) probability. (Formally, this is captured by using an LR&«eographically ordered probabil-
ity sequencg They define a notion of belief (which they cabsumptiopappropriate for their setting,
and show that strategies that surviveounds of iterated deletion are ones that are played in states
where there there igth-order mutual belief in rationality; that is, everyone assume that everyone as-
sumes ...k — 1 times) that everyone is rational. However, they prove only that their characterization of
iterated admissibility holds in particularly rich structures cattedhpletestructures (defined formally in
Section 4), where all types are possible.

Here, we provide an alternate logical characterization of iterated admissibility. The characterization
simply formalizes the intuition that an agent must consider possible all strategies consistent with the
rationality assumptions he is making. Repeated iterations correspond to stronger rationality asumptions.
The characterization has the advantage that it holds in all structures, not just complete structures, and
assumes that agents represent their uncertainty using standard probability meaures, rather than LPS’s or
nonstandard probability measures (as is done in a characterization of Rajan [1998]). Moreover, while
complete structures must be uncountable, we show that our characterization is always satisfible in a
structure with finitely many states.

In an effort to understand better the role of complete structures, we comssideg admissibility
Roughly speaking, strong admissibility is meant to capture the intuition that “all the agent knows”
is that the other agents satisfy the appropriate rationality assumptions. We are using the phrase “all
agenti knows” here in the same sense that it is used by Levesque [1990] and Halpern and Lakemeyer
[2001]. We formalize strong admissibility by requiring that the agent ascribe positive probability to
all formulas consistent with his rationality assumptions. (This admittedly fuzzy description is made
precise in Section 3.) We give a logical characterization of iterated strong admissibility and show that
a strategy survives iterated deletion of weakly dominated strategies iff there is a structure and a state
whereo is played and the formula characterizing iterated strong admissibility holds. While we can take



the structure where the formula holds to be countable, perhaps the most natural structure to consider is
the canonicalstructure, which has a state corresponding to very satisfiable collection of formulas. The
canonical structure is uncountable.

We can show that the canonical structure is complete in the sense of BFK. Moreover, under a tech-
nical assumption, every complete structure is essentially canonical (i.e., it has a state corresponding to
every satisfiable collection of formulas). This sequence of results allows us to connect (iterated admis-
sibility), complete structures, canonical structures, and the notion of “all | know”.

2 Characterizing Iterated Deletion

We consider normal-form games withplayers. Given a (normal-formy)-player gamd”, let 3;(T")
denote the strategies of playein I'. We omit the parentheticdl when it is clear from context or
irrelevant. Let = Y1 x --- x X,,.

Let £; be the language where we start withe and the special primitive propositioRAT; and
close off under modal operatof$ and(B;), fori = 1,...,n, conjunction, and negation. We think of
B,y as saying thap holds with probability 1, andB;)¢ as saying thap holds with positive probability.
As we shall seg(B;) is definable as B, if we make the appropriate measurability assumptions.

To reason about the ganie we consider a class of probability structures correspondirig té
probability structure)M appropriate forI" is a tuple(2,s, 7, PR1,...,PR,), WhereQ is a set of
states;s associates with each statec (2 a pure strategy profile(w) in the gamd”; F is ac-algebra
over (2; and, for each playef, PR; associates with each statea probability distributionPR;(w)
on (2, F) such that, (1) for each strategy for playeri, [o;]y = {w : si(w) = 0;} € F, where

si(w) denotes playei’s strategy in the strategy profigw); (2) PR;(w)([si(w)]ar) = 1; (3) for
each probability measure on (€2, F), and playeri, [r,ijp = {w : I;(w) = n} € F; and (4)
PRi(w)([PRi(w),i]ar) = 1. These assumptions essentially say that playerows his strategy and
knows his beliefs.

The semantics is given as follows:

(M, w) [= true (sotrueis vacuously true).

(M,w) = RAT; if s;(w) is a best response, given playér beliefs on the strategies of other
players induced byPR;(w). (Because we restrict to appropriate structures, a players expected
utility at a statew is well defined, so we can talk about best responses.)

(M, w) | —pif (M, w) |~ ¢.

(M,w) = oA iff (M,w) = ¢ and(M,w) = ¢

(M,w) = By if there exists a sef’ € F; such thatF' C [¢]y andPR;(w)(F) = 1, where
]

(M

M,
M,

el ={w: (M,w) E ¢}.
,w) = (B;)y if there exists a set’ € F; such thatF’ C [¢]rr andPR;(w)(F) > 0.

Given a language (set of formulag) M is £-measurabléf M is appropriate (for some ganig
and[¢] s € F for all formulasy € L. Itis easy to check that in afi;-measurable structuréB; ) is
equivalent to-B; .



To put our results on iterated admissibility into context, we first consider rationalizability. Pearce
[1984] gives two definitions of rationalizability, which give rise to different epistemic characterizations.
We repeat the definitions here, using the notation of Osborne and Rubinstein [1994].

Definition 2.1: A strategyo for playeri in gamel is rationalizableif, for each playerj, there is a set
Z; C ¥;(I") and, for each strategy € Z;, a probability measurg,- on X_;(I") whose support is a
subset ofZ_; such that

e o c Z;,and

e for each playey and strategy’ € Z;, strategy’ is a best response to (the beliefs).

The second definition characterizes rationalizability in terms of iterated deletion.

Definition 2.2: A strategyo for playeri in gamel is rationalizablé if, for each playerj, there exists
a sequenc&), Xj, X7,... of sets of strategies for playgrsuch thatX? = ¥; and, for each strategy

o' e XJ’?, k > 1, a probability measurg, ;, whose support is a subsetﬁi"ﬁ;1 such that
e 0 €N72,X;; and
e for each playey, each strategy’ € X]’? is a best response to the beligfs ;.

Intuitively, X jl consists of strategies that are best responses to some belief of playerXx !

con-
J

sists of strategies iﬁ(Jh that are best responses to some belief of playeith supportXﬁj; that is,

beliefs that assume that everyone else is best reponding to some beliefs assuming that everyone else is

responding to some beliefs assuming A.tifnes).
Proposition 2.3: [Pearce 19847 strategy is rationalizable iff it is rationalizable

We now give our epistemic characterizations of rationalizability. Rdtl” be an abbreviation for
RATA...ARAT,; let E¢ be an abbreviation dB; o A. . .AB,,¢; and define*¢ for all k inductively
by taking E%¢ to bey and E**1¢ to be E(E* o). Common knowledge ap holds iff E* holds for all
k> 0.

We now give an epistemic characterization of rationalizability. Part of the characterization (the
equivalence of (a) and (b) below) is well known [Tan and Werlang 1988]; it just says that a strategy is
rationalizable iff it can be played in a state where rationality is common knowledge.

Theorem 2.4: The following are equivalent:

(a) o is arationalizable strategy forin a gamel’;

(b) there exists a measurable structurethat is appropriate fod* and a statev such thas; (w) = o
and(M,w) = EFRAT forall k > 0;



(c) there exists a measurable structurethat is appropriate fol” and a statev such thas;(w) = o
and(M,w) = (B;)E*RAT for all k > 0;

(d) there exists a structur@/ that is appropriate forl' and a statew such thats;(w) = ¢ and
(M,w) = (B;)E*RAT for all k > 0.

Proof: Suppose that is rationalizable. Choosg; C X;(I') and measureg, for each strategy’ €
Z; guaranteed to exist by Definition 2.1. Define an appropriate strugfuse (2, s, 7, PR1, ..., PRy),
where

e O =2, x--- X Z,;

e s;(d) =0y

e F consist of all subsets &%;

e PR;(5)(d")is0if o] # o; and isu,, (0”_;) otherwise.

Since each player is best responding to his beliefs at every state, it is easy to 8¢, that= RAT
for all statess. It easily follows (formally, by induction o), that(M, &) = E¥RAT. Clearly M is
measurable. This shows that (a) implies (b).

The fact that (b) implies (c) is immediate, sincefif !y logically implies B; E*, which in turn
logically implies(B;); E*¢ for all k and all formulagp. The fact that (c) implies (d) is also immediate.

Finally, to see that (d) implies (a), suppose thais a structure appropriate forandw is a state in
M such thas;(w) = o and(M,w) = (B;)E*RAT for all k > 0. For each playef, define the formulas
C* inductively by takingC} to betrue andC]’.€+1 to beRAT; A Bj(Aj12;C},). An easy induction shows
that fork > 1, C]’? is equivalent taRAT; A Bj(ECRAT A ... A E¥=2RAT) in appropriate structures.
Define X§ = {s;(w') : (M,o') = C}}. If o/ € XJ for k > 1, choose some state’ such that
(M,w') = RAT; A B;E*"2RAT ands;(w’) = o', and defingu, ; to be the projection o0PR (')
ontoX_;. It easily follows that the support ¢f,- ; is Xﬁj‘.l and that’ is a best response with respect to
tio - Finally, since(M,w) = (B;)E*RAT for all k > 0, it easily follows thatr = s;(w) € N2, X~
Thus, by Definition 2.2¢ is rationalizabléand, by Proposition 2.3y is rationalizablell

We now characterize iterated deletion of strongly dominated (resp., weakly dominated) strategies.

Definition 2.5: Strategyo for player isi strongly dominated by’ with respect to¥X' ; C ¥_; if
ui(o,7—i) > wi(o,7—;) for all —_; € ¥’ .. Strategyo for player is: weakly dominated by’ with
respecttax’ , C X_; if u;(o,7—;) > wi(o,7—;) forall —; € ¥' , andu; (o, 7" ;) > u;(o, 7" ;) for some
T, ex .

Strategyo for playeri survivesk rounds of iterated deletion of strongly dominated (resp., weakly
dominated) strategies if, for each playethere exists a sequemXé’, X}, ij, e ,Xj’? of sets of strate-
gies for player; such thatX]Q = Y, and, ifh < E, thean’.“rl consists of the strategies m]h not
strongly (resp., weakly) dominated by any strategy with respem’jtg ando € XF. Strategyo sur-
vives iterated deletion of strongly dominated (resp., weakly dominated) strategies if it surviuasds
of iterated deletion for alk. i



The following well-known result connects strong and weak dominance to best responses.
Proposition 2.6: [Pearce 1984]

e A strategyo for playeri is not strongly dominated by any strategy with respect'tq iff there is
a beliefy,, of playeri whose support is a subset®f ; such thaw is a best response with respect
o g

e A strategyo for playeri is not weakly dominated by any strategy with respeét'tgiff there is a
belief., of playeri whose support is all af’_, such thai is a best response with respectg.

It immediately follows from Propositions 2.3 and 2.6 (and is well known) that a strategy is ratio-
nalizable iff it survives iterated deletion of strongly dominated strategies. Thus, the characterization
of rationalizability in Theorem 2.4 is also a characterization of strategies that survive iterated deletion
of strongly dominated strategies. To characterize iterated deletion of weakly dominated strategies, we
need to enrich the langaugh somewhat. Lells(T") be the extension of, that includes a primitive
propositionplay, (o) for each player and strategy € ¥;, and is also closed off under the modal
operatory. We omit the parentheticdl when it is clear from context. We extend the truth relation to
Lo in probability structures appropriate fbras follows:

o (M,w) [= play;(o) iff w € [o] -
e (M,w) E Qpiffthere is some structurk!’ appropriate fof’ and states’ such that M’, ') = .

Intuitively, O is true if there is some state and structure wheigtrue; that is, ifp; is satisfiable. Note
that if Q¢ is true at some state, then it is true at all states in all structures.

Let play(c) be an abbreviation fon}_, play;(c;), and letplay_;(c—;) be an abbrevation for
Ajziplay;(oj). Intuitively, (M,w) = play(d) iff s(w) = o, and(M,w) = play_;(0—;) if, at w,
the players other thainare playing strategy profile_;. Define the formulasD;? inductively by taking
DY to be the formularue, ande“ to be an abbreviation of

RAT; A Bj(Ajrzi D) A (Ao _sex;0(play_j(0—5) A (Ajrgg D)) = (Bj) (play_; (o).

It is easy to see thab¥ implies the formulaC} defined in the proof of Theorem 2.4, and hence
implies RAT; A Bj(E°RAT A ... A E*2RAT). But D} requires more; it requires that playgr
assign positive probability to each strategy profile for the other players that is compatibl@’&gifh

Theorem 2.7: The following are equivalent:

(a) the strategy for playeri survivesk rounds of iterated deletion of weakly dominated strategies;

(b) forall ¥’ < k, there is a measurable structuié* appropriate forl’ and a states*’ in M*’ such
thats;(w*') = o and(M*,w*") = DF;

(c) for all ¥ < k, there is a structureM*" appropriate forT' and a statew® in M*" such that
si(w*) = o and(M* ") = DF.



In addition, there is a finite structurd?” = (QF,s, F, PRy, ..., PR,) such that?* = {(k',i,) :

K <kl<i<ngeXFx xXF} sk, i6) =5 F=2% whereX! consists of all strategies

for playerj that survivek’ rounds of iterated deletion of weakly dominated strategies and, for all states
(K,i,5) € OF, (A", (K,i,5)) = AjpD¥ .

Proof: We proceed by induction ol proving both the equivalence of (a), (b), and (c) and the existence
of a structurélZ” with the required properties.

The result clearly holds ik = 0. Suppose that the result holds flor we show that it holds for
k + 1. We first show that (c) implies (a). Suppose thaf"',w*') = DY ands;(w*’) = o; for all
k" < k+1. Itfollows thato; is a best response to the beligf. on the strategies of other players induced
by PRI (w). Since(M*F!, Wk 1) = Bj(A;x;D%), it follows from the induction hypothesis that
the support ofu,; is contained inX* . Since(M,w) |= Ao_;es_; (O(play_j(o—j) A (AjzD})) =
(Bj)(play_;(o—;))), it follows from the induction hypothesis that the support.gf is all of Xﬁj.
Since(M*¥,w*') |= D¥ for k' < k, it follows from the induction hypothesis that € X*. Thus,
oj € X]]?H.

We next construct the structufd”™ '+ = (s, F,PR1,...,PR,). As required, we define
QL = (K,i,3) K <k+1,1<i<ndeXKx. x XNV s,ide)=cF=2" Fora
statew of the form (%', i, &), sinces; € X]’?/, by Proposition 2.6, there exists a distributjop ,, whose
support is all otXﬁ;l such thatr; is a best response 1o,,. Extenduy ,; to a distributionuge,mj on
QF+1 as follows:

e fori +# j, Iet%,wj(k”,z",%’) = Ui o, (T—5) if i = j, k" = k' =1, andr; = 0, and O otherwise;
® iy o, (K7 T) = pi o, (7=;) if ' = j, k" = K, and7; = 0, and O otherwise.

Let PR;(K,i,5) = a,’g,,i’aj. We leave it to the reader to check that this structure is appropriate. An
easy induction o’ now shows thatiz" ", (K4, 7)) |= /\#Z—Dé‘?' fori=1,...,n.

To see that (a) implies (b), suppose tlat c Xj’?“. Choose a state in M of the form
(k + 1,i,0), wherei # j. As we just showed(ﬁkﬂ,(k:’,i,&) = D¥, ands;(K,i,5) = o;.
Moreover,MkJrl is measurable (sincg consists of all subsets 6F+1).

Clearly (b) implies (c)l

Corollary 2.8: The following are equivalent:

(a) the strategys for player: survives iterated deletion of weakly dominated strategies;

(b) there is a measurable structufd that is appropriate fol" and a statev such thats;(w) = o
and (M, w) = (B;)D¥ for all k > 0;

(c) there is a structuré/ that is appropriate fol” and a statev such thats;(w) = o and (M, w) =
(B;)DF for all k > 0.



Note that there is no analogue of Theorem 2.4(b) here. This is because there is no statBZ’Where
holds for allt > 0; it cannot be the case thaplaces positive probability on all strategies (as required by
D¥) and thati places positive probability only on strategies that survive one round of iterated deletion
(as required byD%), unless all strategies survive one round on iterated deletion. We can say something
slightly weaker though. There is somesuch that the process of iterated deletion converges; that is,
Xk = X]’?“ for all j (and henceX¥ = X* for all ¥’ > k). That means that there is a state where

Df’ holds for allk” > k. Thus, we can show that a strategyor player: survives iterated deletion of
weakly dominated strategies iff there exists and a state such thas; (w) = o and(M,w) = DY for

all k' > k. SinceC**! impliesC¥, an anlagous results holds for iterated deletion of strongly dominated
strategies, wittD¥" replaced byC¥'.

It is also worth noting that in a state whef?* holds, an agent doasot consider all strategies
possible, but only the ones consistent with the appropriate level of rationality. We could require the
agent to consider all strategies possible by using LPS’s or nonstandard probability. The only change
that this would make to our characterization is that, if we are using nonstandard probability, we would
interpretB; to mean that holds with probability infinitesimally close to 1, whilg3;)¢ would mean
thaty holds with probability whose standard part is positive (i.e., non-infinitesimal probability). We do
not pursue this point further.

3 Strong Admissibility

We have formalized iterated admissibility by saying that an agent consider possible all strategies consis-
tent with the appropriate rationality assumption. But why focus just on strategies? We now consider a
stronger admissibility requirement that we call, not surprisingfigng admissibility Here we require,
intuitively, thatall an agent knows about the other agents is that they satisfy the appropriate rationality
assumptions. Thus, the agent ascribes positive probability to all beliefs that the other agents could have
as well as all the strategies they could be using. By considering strong admissibility, we will be able to
relate work on “all I know” [Halpern and Lakemeyer 2001; Levesque 1990], BFK’s notion of complete
structures, and admisibility.

Roughly speaking, we interpret “all agenknows is¢” as meaning that ageritbelievesy, and
considers possible every formula about the other players’ strategies and beliefs consisteniliuiil,
what “all | know” means is very sensitive to the choice of language. A%be the language whose
only formulas are (Boolean combinations of) formulas of the feilay, (o), i = 1,...,n, 0 € ;.
Let £ consist of just the formulas of the forplay;(0), and let£%; = U, LY. DefineO; ¢ to
be an abbreviation foB;p A (Aweﬁgiow A1) = (B;)). Then itis easy to see thm;“rl is just
RATJ‘ A Oj_(/\j’ijD?/)'

We can think ofO; ¢ as saying “all agent knows with respect to the languag¥ is ».” The
language£? is quite weak. To relate our results to those of BFK, even the langdage too weak,
since it does not allow an agent to express probabilistic beliefsCt@t) be the language that extends
L£2(T) by allowing formulas of the fornpr;(¢) > « andpr;(¢) > «, wherea is a rational number
in [0,1]; pr;(v) > « can be read as “the probability gf according toi is at leasty”, and similarly
for pri(¢) > a. We allow nesting here, so that we can have a formula of the ferpplay; (o) A
pri(play,; () > 1/3) > 1/4. As we would expect,

o (M,w) = pri(p) iff PRi(w)([¢]m) = a.



The restriction tax being rational allows the language to be countable. However, as we now show, it is
not too serious a restriction.

Let £4(I") be the language that extend$(I") by closing off under countable conjunctions, so that
if p1,¢2,...areformulas, then so is,°_, ¢, and formulas of the formr;(¢) > «, wherea is a real
number in[0, 1]. (We can expresgr;(¢) > « as the countable conjunctiory ., gecqnjo,11P7i(®) > 5,
where( is the set of rational numbers, so there is no need to include formulas of thefofm) > o
explicitly in £4(I").) We omit the parentheticdl in £3(T") and £*(T") when the gamé' is clear from
context. A subsed of £3 is £3-realizableif there exists an appropriate structueefor I and statev in
M such that, for all formulag € £3, (M,w) |= ¢ iff p € .2 We can similarly define what it means
for a subset of2* to be £*-realizable.

Lemma 3.1: Every£3-realizable set can be uniquely extended toZdrrealizable set.

Proof: Itis easy to see that evefi?-realizable set can be extended toZirrealizable set. For suppose
that® is £3-realizable. Then there is some statand structurél/ such that, for every formula € £3,
we have that M, w) = ¢ iff ¢ € ®. Let ®’ consist of the* formulas true at. Then clearlyd’ is an
L-realizable set that extends

To show that the extension is unique, suppose that there arétwealizable sets, say;, and®,
that extend®. We want to show tha®; = ®,. To do this, we consider two languagé’ and L5,
intermediate betweef® and£*.

Let £° be the language that extend$ by closing off under countable conjunctions and formulas
of the formpr;(¢) > «, wherea is a rational number if0,1]. Thus, in£®, we have countable
conjunctions and disjunctions, but can talk explicitly only about rational probabilities. Nevertheless, it
is easy to see that for every formutac £*, there is an formula equivalent formufé € £°, since ifa
is a real number, thepr;(p) > « is equivalent tov g, sefo,11nq Pri(¥) > B (an infinite disjunction
V2, ¢; can be viewed as an abbreviation fon:2; —y;).

Next, let£% be the result of closing off formulas i* under countable conjunction and disjunction.
Thus, in£%, we can apply countable conjunction and disjunction only at the outermost level, not inside
the scope ofpr;. We claim that for every formula € L£°, there is an equivalent formula .
More precisely, for every formula € £°, there exist formulag;; € £3,1 < 4,5 < oo such thatp is
equivalent ton °_; Voo | vy We prove this by induction on the structureoflf ¢ is RAT;, play;(o),
or true, then the statement is clearly true. The result is immediate from the induction hypothesis if
is a countable conjunction. Ip has the form—¢’, we apply the induction hypothesis, and observe
that —(AS_; Vo, omy) IS equivalent toves_; AP | —p.,,. We can convert this to a conjunction of
disjunctions by distributing the disjunctions over the conjunctions in the standard way (just as
Es) U (E3N Ey)is equivalent tq E1 U Es) N (Ey U Ey) N (Ee U E3) N (B2 U Ey)). Finally, if ¢ has
the formpr;(¢') > «, we apply the induction hypothesis, and observe thatA\S°_; V2 | @) > «
is equivalent to

M N
Var>a,a’e@n(o,1] Aii=1 VR=1P7;(A=1 Vi1 ©mn) > o

The desired result follows, since if two states agree on all formula® jthey must agree on all
formulas in£%, and hence on all formulas i® andC*. I

For readers familiar with standard completeness proofs in modal logic, if we had axiomatized the logic we are implicitly
using here, thec®-realizable sets would just be the maximal consistent sets in the logic.



The choice of language turns out to be significant for a number of our results; we return to this issue
at various points below.

With this background, we can define strong admissibility. Lgtconsist of all formulas inC? of
the formpr;(¢) > a andpr;(¢) > a (p can mentiorpr;; it is only the outermost modal operator that
must bei). Intuitively, £ consists of the formulas describirg beliefs. LetC?, consist ofC? together
with formulas of the formtrue, RAT;, andplay;(o), foro € %;. Let E?ﬁw be an abbreviation for
U2 L5, . We can similarly defing} and .}, .

If p € E(_i) 4 define0;p, read “all agent knows (with respect td3) is ¢,” as an abbreviation for
the £* formula

Bip N (Ngecy (o i) = (Bj)y).

Thus, O;¢ holds if agenti believesy but does not know anything beyond that; he ascribes positive
probability to all formulas inC3_i + consistent withp. This is very much in the spirit of the Halpern-
Lakemeyer [2001] definition a®; in the context of epistemic logic.

Of course, we could go further and define a notion of %athows” for the language&*. Doing
this would give a definition that is even closer to that of Halpern and Lakemeyer. Unfortunately, we
cannot require than agenascribe positive probability to all the formulasif_,, . consistent withy;
in general, there will be an uncountable number of distinct and mutually exclusive formulas consistent
with ¢, so they cannot all be assigned positive probability. This problem does not aris€%yigmce
it is a countable language. Halpern and Lakemeyer could allow an agent to consider an uncountable set
of worlds possible, since they were not dealing with probabilistic systems. This stresses the point that
the notion of “all | know” is quite sensitive to the choice of language.

Define the formulag’ inductively by takingF? to be the formuldrue, andF*™! to an abbreviation
of RAT; N Oi(/\#iFf). Thus,F}~C+1 says that is rational, believes that all the other players satisfy
level-k rationality (i.e.,Ff), and that is all that knows. An easy induction shows thE‘jCH implies
that; is rational and believes that everyone believdstimes) that everyone is rational. Moreover, itis
easy to see tha‘f}ngl impIiest“. The difference is that instead of requiring just thatssign positive
probability to all strategy profiles compatible wlfFﬁj, it requires thay assign positive probability to
all formulas compatible WitIfF’jj.

A strategyo; for playeri is kth-level strongly admissiblé it is consistent withFi’“; that is, if
play;(0;) A FF is satisfied in some state. The next result shows that strong admissibility characterizes
iterated deletion, just as admissibility does.

Theorem 3.2: The following are equivalent:
(a) the strategys for player: survivesk rounds of iterated deletion of weakly dominated strategies;

(b) forall ¥’ < k, there is a measurable structufé”" appropriate forl’ and a state.*" in M*" such
thats;(w*) = o and(M* | w*") = FF;

(c) for all ¥ < k, there is a structureM/*" appropriate forT' and a statew® in M*" such that
si(w*) = o and(M* ") = FF;

Proof: The proof is similar in spirit to the proof of Theorem 2.7. We again proceed by inductién on
The result clearly holds fok = 0. If k£ = 1, the proof that (c) implies (a) is essentially identical to that
of Theorem 2.7; we do not repeat it here.



To prove that (a) implies (b), we need the following three lemmas; the first shows that a formula is
always satisfied in a state that has probability 0; the second shows that that we can get a new structure
with a world where agentascribes positive probability to each of a countable collection of satisfiable
formulas in£? ;; and the third shows that formulas.{t‘jﬁr for different players are independent; that
is, if p; € L7, is satisfiable, then sois; A ... A ¢y,

Lemma 3.3 If ¢ € £* is satisfiable in a measurable structure, then there exists a measurable structure
M and statev such that(M, w) = ¢, {w} is measurablePR;(w)({w}) =0forj=1,...,n.

Proof: Suppose thatM’ ') E ¢, where M’ = (', s/, F,PR},...,PR.). LetQ = Q' U

{w}, where wherev is a fresh state; leF be the smallest-algebra that containg and{w}; lets

andPR; agree withs’ and PR’ when restricted to states @' (more precisely, ito” € €/, then
PRj(W")(A) = PRj(W")N(ANY) forj = 1,...,n). Finally, defines;(w) = s;(w’), and take
PR;(w)(A) = PR (W) (AN ) forj = 1,...,n. Clearly{w} is measurable, arBR ; (w)({w}) = 0

for j = 1,...,n. An easy induction on structure shows that for all formulaga) (M,w) = ¥ iff

(M,u") E 1, and (b) for all states” € ', we have thatM,w") E ¢ iff (M',w") |= 4. It follows

that(M,w) = ¢, and thatV is measurablel

Lemma 3.4: Suppose that € ¥, @' is a countable collection of formulas it ;, ¢ € £, and¥’_,

is a set of strategy profiles iR_; such that (a) for each formulg’ € @', there exists some profile
o_; € ¥’ ;suchthatp A ¢’ Aplay_;(c_;) is satisfied in a measurable structure, and (b) for each profile
o_; € X', play_;(c—;) is one of the formulas i®’. Then there exists a measurable structifeand
statew such thats(w) = &, (M,w) = play_;(o0—i) > aiff pj(o—;) > a (thatis, u—; agrees with
PR;i(w) when marginalized to strategy profilesii ;), and (M, w) = By A (B;)¢’ forall ¢’ € @',

Proof: Let ®' andX’ ; be as in the statement of the lemma. Supposedhat {1, p2,...,...}. By

assumption, for each formulg, € @', there exists some strategy profile, € ¥’ ,, measurable struc-
ture M* = (QF sk, FF PRY, ..., PRE), andw* € OF such that M*,w*) = ¢ A @i, A play_; (0" ;),
for k = 1,2,.... By Lemma 3.3, we can assume without loss of generality fhdtf < F* and

PRE(WF)({w'}) = 0. DefineM > = (0,5, F> PR, ..., PRyY) as follows:

o 0 = U2 OFU{w}, wherew is a fresh state;
e Fis the smallest-algebra that containgo} U F, U F U .
e s> agrees withPR} when restricted to states 2, except thas$® (w¥) = 0; ands™(w) = &,

e PRJ° agrees WithPRf when restricted to states i* (more precisely, ifw’ € QF, then
PR (w)(A) = PRE(w)(ANQF), except thaPR{® (w) = PR (w!) = PR;(w?) = - - is de-
fined to be a distribution with suppojts!, w?, ...} (so that all these states are given positive prob-
ability) such thatPR;* (w) agrees: when marginalized to profiles i_;, andPR}°(w)({w}) =
1 for j # 4. Itis easy to see that our assumptions guarantee that this can be done.

We can now prove by a straightforward induction on the structure tfat (a) for all formulasy,
k =1,2,3,..., and states/ € QF — {w*}, we have tha{M* ') = v iff (M=, w') | ¢; and
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(b) for all formulasy € £ ., k =1,2,3,..., and(M* wk) = o iff (M, w*) = 4. (Hereitis
important thafPRE?O(w’f) = PR? (w) = 0for j # i; this ensures thagts beliefs about’s strategies and

beliefs unaffected by the fact theff(w*) # s3°(w*) andPRE(WF) # PRZ(wF).) It easily follows
that (M, w) = Bip A (B;)¢' forall ¢’ € o', i

Lemma 3.5:1f ¢; € £§+ is satisfiable for = 1,...,n, thenp; A ... A @, is satisfiable.

Proof: Suppose thatM?,w') | ¢;, whereM? = (Qf,s', 7, PRY,...,PR,) andy; € L}, . By
Lemma 3.3, we again assume without loss of generality{th&t € F* andPR;(w’)({w'}) = 0. Let
M* = (Q*,s*, F*,PRY,...,PR}), where

.« O =UL,0

e F*is the smallest-algebra containingF' U ... U F*;

e s* agrees withs’ on states if)/ except thas; (w?) = si(w?) (so thats*(w!) = - - - = s*(w"));

e PR} agrees withPR! on states iMY’ except thatPR} (w’) = PRi(w') (so thatPR}(w') =
o =PR;(W") = PRYW)).

We can now prove by induction on the structureyothat (a) for all formulasp, i = 1,...,n,
and states)’ € Q', we have tha{M*,w’) = ¢ iff (M*,u') |= ¢; (b) for all formulasy € £},
1 <4,5 <n, (M,w) E¢iff (M*,w) = ¢ (again, here it is important th@®R (w’) = 0 for
j =1,...,n). Note that part (b) implies that the state . .., w" satisfy the same formulas i *. It
easily follows that{ M*,w') = p1 A ... Ay fori=1,....n.1

We can now prove the theorem. Again,Péf be the strategies for playgithat survivek rounds of
iterated deletion of weakly dominated strategies. To see that (a) implies (b), SuppOﬁZeGEthfH.
By Proposition 2.6, there exists a distributippwhose support is(* . such that; is a best response
to u;. By the induction hypothesis, for each strategy profile € Xﬁi, and allj # 4, the formula
play;(7j) A FJQ is satisfied in a measurable structure. By Lemma Blby_,(7—;) A (AjﬁFf) is
satisfied in a measurable structure. Takingp be/\#iFf, by Lemma 3.4, there exists a measurable
structureM and statev in M such that the marginal 3R ;(w) on X* is p;, s;(w) is 0;, and(M, w) |=
Bi(Nj#iFf) A (Aweﬁf,_mo(w A (NjgiFS)) = (Bj)y). It follows that(M,w) = RAT;, and hence
that(M,w) = F, as desired.

It is immediate that (b) implies (cji

Corollary 3.6: The following are equivalent:
(a) the strategys for playeri survives iterated deletion of weakly dominated strategies;

(b) there is a measurable structufd that is appropriate fol" and a statev such thats;(w) = o
and (M, w) = (B;)FF for all k > 0;

(c) there is a structuré/ that is appropriate fol” and a statev such thats;(w) = o and (M, w)
(B;)FFforall k > 0.

Proof: The proof is essentially identical to that of Corollary 2.8, so is omitted Hiere.
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4 Complete and Canonical Structures

4.1 Canonical Structures

Intuitively, to check whether a formula is strongly admissible, and, more generally, to check if all agent
1 knows isp, we want to start with a very rich structuid that contains all possible consistent sets of
formulas, so that ifp A v is satisfied at all, it is satisfied in that structure. Motivated by this intuition,
Halpern and Lakemeyer [2001] worked in tb@nonicalstructure for their language, which contains a
state corresponding to every consistet set of formulas. We do the same thing here.

Define the canonical structufd® = (Q°,s¢, F¢, PRS, ..., PRE) for £* as follows:

e O = {wg : ®is arealizable subset ¢ (I'};
o s°(wg) = 7 iff play(o) € P;
o F¢={F,: ¢ e L'}, whereF, = {wg : ¢ € D};

o Pri(we)(F,) = inf{a: pri(p) > a € }.
Lemma 4.1: M€ is an appropriate measurable structure for

Proof: It is easy to see thaft“ is ac-algebra, since the complement Bf is F., andNyo_ F,, =
Fpe_ o,,. Given a strategy for playeri, [o]ye = Fyay.r) € F. Moreover, each realizable
set & that includesplay,;(oc) must also includepr;(play;(c)) = 1, so thatPR;(ws)(si(ws)) =
PRi(we)(Fpiay, (si(ws)) = 1. Similarly, suppose thaPR;(we) = 7. Then{w € Q° : PR;(w) =
T} = Neers Nacqnio, (el ye)>a} Foza € F¢. Moreover, ifa € Q N[0, 1], thenm([¢]are) >
iff pri(¢) > a € ®. Butif pr;(p) > a € @, thenpr;(pr;(¢) > a) = 1 € ®. It easily follows that
PRi(wa)({w : PRi(w) = w}) = 1. Finally, the definition ofF¢ guarantees that every et] - is
measurable and th@®R,;(ws ) is indeed a probability distribution off2¢, 7). I

The following result is the analogue of the standard “truth lemma” in completeness proofs in modal
logic.

Proposition 4.2: For o) € £*, (M¢,ws) |= v iff ¢ € ®.

Proof: A straightforward induction on the structure©fll

We have constructed a canonical structuredér It follows easily from Lemma 3.1 that the canon-
ical structure forC? (where the states are realizalflé sets) is isomorphic td/¢. (In this case, the set
F¢ of measurable sets would be the smaltestigebra containingie] »; for ¢ € £3.) Thus, the choice
of £3 vs. £* does not play an important role when constructing a canonical structure.

A strategyo; for playeri survives iterated deletion of weakly dominated strategies ifithiermula
undominated(o;) = play;(o;) N (A, (B;) FF) is satisfied at some state in the canonical structure. But
there are other structures in whiahdominated(o;) is satisfied. One way to get such a struture is by
essentially “duplicating” states in the canonical structure. The canonical structure esmbleelded
in a structureM if, for all £3-realizable set®, there is a stateyg in M such that M, we) = ¢ iff
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¢ € ®. Clearlyundominated(o;) is satisfied in any structure in which the canonical structure can be
embedded.

A structure in which the canonical structure can be embedded is in a sense larger than the canonical
structure. Butundominated(o;) can be satisfied in structures smaller than the canonical structure.
(Indeed, with some effort, we can show that it is satisfiable in a structure with countably many states.)
There are two reasons for this. The first is that to satisfyjominated(o;), there is no need to consider
a structure with states where all the players are irrational. It suffices to restrict to states where at least
one player is using a strategy that survives at least one round of iterated deletion. This is because players
know their strategy; thus, in a state where a strategfpr player; is admissible, playef must ascribe
positive probability to all other strategies; however, in those states, plastéirplayso;.

A perhaps more interesting reason that we do not need the canonical structure is our use of the lan-
guageLs. Strong admissibility guarantees that playewill ascribe positive probability to all formulas
 consistent with rationality. Since a finite conjunction of formulagris also a formula inC?, player
4 will ascribe positive probability to all finite conjunctions of formulas consistent with rationality. But
a state is characterized bycauntableconjunction of formulas. Sinc€? is not closed under count-
able conjunctions, a structure that satisfi@gominated (o;) may not have states corresponding to all
L3-realizable sets of formulas. If we had usétinstead of£? in the definition of strong admissibility
(ignoring the issues raised earlier with usifig), then there would be a state corresponding to every
L*-realizable (equivalentlyZ3-realizable) set of formulas. Alternatively, if we consider appropriate
structures that are compact in a topology where all sets definable by formulas (i.e., sets of the form
[elar, for o € £3) are closed (in which case they are also open, sfrcs]y; is the complement of
[¥]ar), then all states where at least one player is using a strategy that survives at least one round of
iterated deletion will be in the structure.

Although, as this discussion makes clear, the formula that characterizes strong admissibility can be
satisfied in structures quite different from the canonical structure, the canonical structure does seem to
be the most appropriate setting for reasoning about statements involving “allidgews”, which is
at the heart of strong admissibility. Moreover, as we now show, canonical structures allow us to relate
our approach to that of BFK.

4.2 Complete Structures

BFK worked with complete structures. We now want to show fétis complete, in the sense of BFK.
To make this precise, we need to recall some notions from BFK (with some minor changes to be more
consistent with our notation).

BFK considered what they call@ateractive probability structuresThese can be viewed as a special
case of probability structures. BFK-like structure(for a gamel’) is a probability structuré/ =
(Q,s, F,PR1,...,PRy) such that there exist spaces, ..., T, (whereT; can be thought of as the
type spacdor playeri) such that

e Q is isomorphic to&¥ x T’ via some isomorphisth;
o if h(w) =& x t, then

- s(w) =7,
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— takingT;(w) = t; (i.e., the type of playetin h(w) is t;); the support ofP R ;(w) is contained
in{w:si(w) =0, T;(w) = t;}, so thatPR;(w) induces a probability oXx_; x T_;;

— PR;(w) depends only of;(w), in the sense that T;(w) = T;(w'), thenPR;(w) and
PRi(w') induce the same probability distribution &h ; x T_;.

A BFK-like structureM whose state space is isomorphi(flo< Tis completdf, for every for each
distributiony; overX_; x T_;, there is a state in M such that the probability distribution @b ; x T"_;
induced byPR,;(w) IS ;.

Proposition 4.3: M€ is complete BFK-like structure.

Proof: A set® C £? is £3-realizableif there exists an appropriate structure for ' and statev in
M such that, for all formulag € £3, (M,w) |= ¢ iff ¢ € ®. Take the type spack to consist of all
L3-realizable sets of formulas. There is an isomorphisbetween2¢ and¥ x T', whereT;(w) is the
i-realizable type of formulas of the forpr;(¢) > « that are true ab; that is,h(w) = s(w) x T1(w) X
-« x T, (w). It follows easily from Lemma 3.5 thdtis a surjection. we can identifp®, the state space
in the canonical structure, with x 7.

To prove thatM¢ is complete, given a probability on >_; x T_;, we must show that there is
some statev in M¢ such that the probability induced YR ;(w) on X_; x T_; is u. Let M+ =
(Qsigman Fr g PRE ... PRE), whereM* are defined as follows:

o W =0UY x {u} xT_;

e F" is the smallest-algebra that containg and all sets of the forr& x {u} x [¢]’,., and
[’ consists of the all type profiles.; such that, for some statein M€, (M€, ¢) = ¢ and

T-ilp) = t-i;
o st(w) = s%w) forw € Q°, andsH (& x {u} x t) = &;

o PRY(w) = PRj(w)forw € Q% j =1,...,n;for j # i, PRY(F x ux t—;) = PR;j(w), where
sj(w) = o; andT}(w) = t; (this is well defined, since i§;(w') = o; andT;(w') = t;, then
PRj(w) = PR;(w'); finally, PR (¢ x p x t_;) is a distribution whose support is contained in
{oi} x By x {u} x T, andPR} (G x pu x t-3)(F x pu x [@]yre) = pl[]se)-

Choose an arbitrary statee % x {1} x T_;. The construction oM* guarantees that far € L‘E{i) 4
(MH*,w) = pri(p) > aiff p([e]).) > a. By the construction ofi/¢, there exists a state’ € Q°
such that M€, ') = o iff (M*,w) = 1. Thus, the distribution oX_; x 7T—; induced byPR;(w) is
1, as desired. This shows thai® is completell

We now would like to show that every measurable complete BFK-like structure is the canonical
model. This is not quite true because states can be duplicated in an interactive structure. This suggests
that we should try to show that the canonical structure can be embedded in every measurable complete
structure. We can essentially show this, except that we need to resstadngly measurableomplete
structures, where a structure is strongly measurable if it is measurable and the only measurable sets are
those defined by, formulas (or, equivalently, the set of measurable sets is the smallest set that contains
the sets defined by formulas). We explain where strong measurability is needed at the end of the
proof of the following theorem.
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Theorem 4.4:1f M is a strongly measurable complete BFK-like structure, then the canonical structure
can be embedded it

Proof: Suppose thal/ is a strongly measurable complete BFK-like structure. We can assume without
loss of generality that the state spaceldfhas the form>~ x 7. To prove the result, we need the
following lemmas.

Lemma 4.5: If M is BFK-like, the truth of a formula € £} at a statew in M depends only on's
type; That is, ifT;(w) = T;(«'), then(M,w) E ¢ iff (M,w') E ¢. Similarly, the truth of a formula
in £;4 in w depends only os;(w) andT;(w), and the truth of a formula i}, in w depends only on
T_,-(w).

Proof: A straightforward induction on structuri.

Define abasic formulato be one of the form); A ... A ¢, wherey; € £§+ fori=1,...,n.
Lemma 4.6: Every formula in3 is equivalent to a finite disjunction of basic formulas.

Proof: A straightforward induction on structuri.

Lemma 4.7: Every formula inE;?’Jr is equivalent to a disjunction of formulas of the form

play; ()N (=) RATA(=)pri(p1) > arA. . A(2)pri(em) > amA(2)pri(¥1) = BiA. . A(2)pri(¥n) 2 B,

1)
wherep1, ..., 0m, Y1, ..., Vs € E(’LZ.H and the “(—)” indicates that the presence of negation is
optional.

Proof: A straightforward induction on the structure of formulas, using the observation-giag, (o)
is equivalent to/ ;gma e, 00 20y Play; (0'). 1

Lemma 4.8 If ¢ € £3 is satisfiable, thefip] s # 0.

Proof: By Lemma 4.6, it suffices to prove the result for the casehat basic formula. By Lemma 4.7,

it suffices to assume that the thecomponent” of the basic formula is a conjunction. We now prove the
result by induction on the depth of nesting of the modal operatpm . (Formally, defineD (1)), the
depth of nesting opr;’s in v, by induction on the structure af. if ¢ has the fornplay; (o), RAT;,

or true, thenD(v) = 0; D(—~¢)) = D(v); D(th1 A ) = max(D(t1), D(¢)); and D(pry(v) >

a) = D(pr;(v) > a) = 1+ D(3).) Because the state spa@eof M is essentially a product space,
by Lemma 4.5, it suffices to prove the result for formulasCin . It is clear thaty possibly puts
constraints on what strategys using, the probability of strategy profilesih ;, and the probability of
formulas that appear in the scopepof, in ¢. If M' = (', s/, F',PR},...,PR.) is a structure and

W' e ', then(M' ') | piff si(w') andPR}(w') satisfies these constraints. (We leave it to the reader
to formalize this somewhat informal claim.) By the induction hypothesis, each formula in the scope of
pr; in ¢ that is assigned positive probability ByR; (') is satisfied inM. SinceM is complete and
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measurable, there is a statén A/ such thas;(w) = s)(w’) andPR;(w) places the same constraints
on formulas that appear inasPR;. We must havé M, w) = ¢. 11

Returning to the proof of the theorem, suppose tWat (€2, s, 7, PR, ..., PR,). Given a state
w € Q°, we claim that there must be a statein M such thas(w’) = s¢(w) and, foralli = 1,...,n,
PRS(w)([¢]ame) = PRi(w')([¥]ar). to show this, because 61 is a product space, arliR;(w’)
depends only off;;(w’), it suffices to show that, for eaghthere exists a state; in M such that, for
eachi, PRS(w)([¥]ame) = PRi(wi)([¢]ar)- By Lemma 4.8, ifft]are # 0, then[y]as # 0. Thus, the
existence ofv; follows from the assumption thdt/ is complete and strongly measurable.

Roughly speaking, To understand the need for strong measurability here, note that even without
strong measurability, the argument above tells us that there exists an appropriate measure defined on
sets of the formje] as for ¢ in Ei(‘ﬂ.”. We can easily extendto a measurg’ on sets of the fornfiy] as
for ¢ in £f‘ﬂ.)+. However, if the sefF of measurable sets it/ is much richer than the sets definable
by £* formulas, it is not clear that we can extepdto a measure on all gF. In general, a countably
additive measure defined on a subalgebra of &sef measurable sets cannot be extended td~or
example, it is known that, under the continuum hypothesis, Lebesgue measure defined on the Borel
sets cannot be extended to all subset®)of] [Ulam 1930]; see [Keisler and Tarski 1964] for further

discussion). Strong measurability allows us to avoid this probliem.

References

Brandenburger, A., A. Friedenberg, and J. Keisler (2008). Admissibility in gaBesnomet-
rica 76(2), 307-352.

Halpern, J. Y. and G. Lakemeyer (2001). Multi-agent only knowilagirnal of Logic and Computa-
tion 11(1), 41-70.

Keisler, J. and A. Tarski (1964). From accessible to inaccessible cardialdamenta Mathemat-
ica 53 225-308.

Levesque, H. J. (1990). All I know: a study in autoepistemic logidificial Intelligence 4%3),
263-3009.

Mas-Colell, A., M. Whinston, and J. Green (199B)icroeconomic ThoeryOxford, U.K.: Oxford
University Press.

Osborne, M. J. and A. Rubinstein (1994)Course in Game Theorgambridge, Mass.: MIT Press.

Pearce, D. G. (1984). Rationalizable strategic behavior and the problem of perfé&xtmomet-
rica 52(4), 1029-1050.

Rajan, U. (1998). Trembles in the Bayesian foundation of solution conciptmal of Economic
Theory 82248-266.

Tan, T. and S. Werlang (1988). The Bayesian foundation of solution concepts of ghmesl of
Economic Theory 485), 370-391.

Ulam, S. (1930). Zur masstheorie in der allgemeinen mengenlEbrelamenta Mathematicae 16
140-150.

16



