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ABSTRACT

Real-time sentiment analysis is a challenging machine learning task,
due to scarcity of labeled data and sudden changes in sentiment
caused by real-world events that need to be instantly interpreted.
In this paper we propose solutions to acquire labels and cope with
concept drift in this setting, by using findings from social psychol-
ogy on how humans prefer to disclose some types of emotions. In
particular, we use findings that humans are more motivated to re-
port positive feelings rather than negative feelings and also prefer
to report extreme feelings rather than average feelings.

We map each of these self-report imbalances on two machine
learning sub-tasks. The preference on the disclosure of positive
feelings can be explored to generate labeled data on polarizing top-
ics, where a positive event for one group usually induces negative
feelings from the opposing group, generating an imbalance on user
activity that unveils the current dominant sentiment.

Based on the knowledge that extreme experiences are more re-
ported than average experiences, we propose a feature representa-
tion strategy that focus on terms which appear at spikes in the social
stream. When comparing to a static text representation (TF-IDF),
we found that our feature representation is more capable of detect-
ing new informative features that capture the sudden changes on
sentiment stream caused by real-world events.

We show that our social psychology-inspired framework pro-
duces accuracies up to 84% while analyzing live reactions in the
debate of two popular sports on Twitter — soccer and football — de-
spite requiring no human effort in generating supervisory labels.
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1. INTRODUCTION

One goal of a sentiment analysis system is to, given a text doc-
ument, infer its polarity toward entities and events mentioned in
the text [45, 32]. As social media platforms become the primary
medium used by people to express their opinions and feelings about
a multitude of topics that pop up daily on news media, the vast
amount of opinionated data now available in the form of social
streams gives us an unprecedented opportunity to build valuable
applications that monitor public opinions and opinion shifts [24,
23]. For example, a sports web portal can track the crowd sentiment
during live matches, something far more appealing than the relative
number of mentions of each team, which is what most sports web
sites currently offer. Creating such applications enrich the personal
experience of watching live events on TV, and following the social
media buzz simultaneously with live broadcasted events is becom-
ing a joint experience, where watching not only the event itself, but
how others react to it, is part of the experience.

The task of interpreting positive and negative feelings expressed
on social streams exhibits a number of unique characteristics that
are not present in the static and well-controlled domains on which
sentiment analysis has focused in the last decade — mainly prod-
uct and movie reviews [45, 37, 23]. On the downside, it faces
two challenges that are common to many data stream classification
tasks [33]: (i) the limited availability of labeled data and (ii) the
need to deal with the evolving nature of the stream, which causes
the target concept to change and requires learning models to be
constantly updated — a problem known as concept drift [47]. Chal-
lenge (i) is a serious drawback because current sentiment analysis
models are heavily based on supervised approaches [37, 45], and
human constraints on generating a constant flow of labeled mes-
sages on streams remain high. The sparsity of language, the use of
neologisms and word lengthening as an indicator of sentiment (e.g.,
“c000000000l1!”, “gooooooooaal!” [8]) also contribute to make the
process of acquiring large labeled sets of pre-classified messages
unfeasible [23]. Challenge (ii) arises in sentiment streams as it is
necessary to deal with constant changes of vocabulary and sudden
changes of sentiment in reaction to real-world events. For example,
in a few minutes a positive sentiment of the fans of a soccer team
commenting on Twitter or Facebook may vanish by a goal scored
by the adversary team; such sentiment drift represents a great chal-
lenge for real-time sentiment tracking, since it requires the stream
classifier to be capable of quickly identifying and adapting to the
sudden change on the dominant sentiment [43].

Despite these important constraints and drawbacks, streams re-
flecting the society’s immediate emotional reactions regarding a
topic have an important property, which we seek to exploit in this
work, namely, the flow of opinions from social networking ser-
vices is inherently constrained to manifestations from individuals



that have explicitly and deliberately chosen to post a message in
reaction to some real-world event; thus, the distribution of positive
and negative opinions is potentially quite different from the random
samples obtained in traditional opinion polls and survey method-
ologies [31]. Although such reporting bias is usually perceived as a
source of inaccuracy [28, 16], here we argue that the self-reporting
nature of social media, when observed on large-scale social net-
work data, may actually provide signals that ease the task of senti-
ment tracking in online environments, provided that we understand
the factors that motivate people to publicly express their feelings.
‘We build sentiment analysis models that exploit two factors widely
described by substantive research from social psychology and be-
havioral economics that describe human preferences when disclos-
ing emotion publicly:

Positive-negative sentiment report imbalance: Peo-
ple tend to express positive feelings more than negative
feelings in social environments [5, 12, 30, 25].

Extreme-average sentiment report imbalance: Peo-
ple tend to express extreme feelings more than average
feelings in social environments [2, 11, 10, 28].

We explore each of these two self-report imbalances to accom-
plish a different subtask in learning-based sentiment analysis. The
first self-report factor, which we call positive-negative sentiment
report imbalance throughout the paper, is employed to acquire la-
beled data that supports supervised classifiers. In the context of po-
larizing groups — a division of the population into groups of people
sharing similar opinions in the context of a topic [3, 19], a positive
event for one group tends to be negative to the other, and vice-
versa. For example, while supporters of a football team are likely
to be happy when their team scores, fans of the adversary team are
expected to be upset when faced with the same event. Based on so-
cial psychology research that states that the disclosure of positive
feelings is preferred, we can then make a prediction of the cur-
rent dominant sentiment by simply counting how many members
of each group, relative to group sizes, decided to post a message
during the specified time frame. Since the social context informa-
tion only holds during time frames when a significant real-world
event happens, we adopt a probabilistic model that computes the
uncertainty of the social context, and, at each time frame, gener-
ates a probabilistic sentiment label, which can then be incorporated
into a range of content-based supervised classifiers.

The second self-report factor we explore is related to the human
tendency to report extreme experiences more than average experi-
ences [2, 11, 10, 28]. The extreme-average sentiment report im-
balance implies an important consequence for real-time sentiment
tracking: because extreme feelings stimulate reactions, spikes of
activity in streams of opinionated text tend to contain highly emo-
tional terms, which are precisely the features that are helpful for
sentiment prediction. We propose a simple text representation strat-
egy based on this observation, named term arousal, that maintains,
for each term (or lexical unity, e.g., n-grams), a measure of how of-
ten it appears in high-volume time windows in the stream; we call
these high-arousal terms. Our experimental studies demonstrate
that these terms are better indicators of emerging and strong feel-
ings than traditional static representations (e.g., TF-IDF), allowing
the underlying classification model to adapt quicker to sudden sen-
timent drift induced by real-world events.

In summary, our main contributions in this paper are:

1. We raise awareness over the fact that opinions expressed on
social media platforms are not a random sample of the online

population, but are impacted by many social and psycholog-
ical factors that need to be accounted for in order to build
reliable and useful sentiment analysis systems;

2. We show that self-report imbalances create rich social con-
texts that can be leveraged to improve two key subtasks in the
construction of a sentiment stream classifier — namely, the ac-
quisition of labeled data and feature representation suitable
to deal with sudden sentiment drifts.

We evaluated our social psychology-inspired framework on sports
events heavily debated on Twitter; when instantiating our frame-
work with a Multinomial Naive Bayes classifier, our results are
comparable to what is typically obtained as an acceptable result
for document-level sentiment analysis — between 80% and 85% of
accuracy [45] — but, because the stream-based scenario imposes
stricter and harder constraints, we believe they point to a promising
option for sentiment classification on evolving social streams. In
addition, our approach targets two generic sub-tasks for learning-
based sentiment analysis — label acquisition and feature represen-
tation. As a result, our framework can be incorporated into sophis-
ticated sentiment classifiers that make use of more powerful NLP
models and features.

2. SOCIAL PSYCHOLOGY BACKGROUND

Psychologists classify emotions into two independent dimensions:
pleasure (happiness or sadness) and activation (or arousal) [4]. The
self-report imbalances we briefly presented in Section 1 are biases
in the bidimensional emotion space caused by the fact that social
media systems are communicative platforms; as a consequence,
opinions and feelings expressed in online social environments are
a result of opinion holders’ explicit desire to make his friends or
followers aware of his or her opinions. In other words, the com-
municative nature of social media makes social data a side effect
of intentional and deliberate communication between users, rather
than as a representation of some underlying activity [39, 31].

On the positive-negative dimension, the preference on the disclo-
sure of positive feelings is caused by our need in being perceived as
successful and happy persons [34, 40], and it causes a bias where
everyone in online social environments perceives others as happier
than they actually are [25]. In the case of opinions expressed over a
polarizing topic, the preference on sharing positive news and opin-
ions goes beyond the human’s desire to improve his or her reputa-
tion: each group also gives preference to news and facts that favor
their viewpoints, a result of many biases such as confirmation bias
and selective exposure [20, 31]. Notice that the definition of a pos-
itive event is group-dependent: for rival supporters of a team or
opposers of politicians in office, negative facts such as a conceded
goal or a political scandal will be explored by them as “positive”
— i.e., as a motivation to explore the fact to their benefit. Also,
in some contexts, such as product reviews, the bias leans toward
the disclosure of negative experiences [22]; our sentiment analysis
framework is generalized to take advantage of the asymmetry on
either direction.

On the arousal dimension, it was found that extreme emotions
— angriness, anxiety, awe, excitement — are high-arousal emotions:
they affect our body and put us in a state of activation and readiness
for action [4, 5]. In social media, action means making private
feelings public, what makes sentiment expressed on online media
to be biased towards strong feelings and opinions.

In the next sections we will detail how we embed these biases on
sentiment self-report in the analysis of feelings expressed on social
streams.



3. ACQUIRING LABELED DATA

Differently from the majority of research on supervised senti-
ment analysis, which focus on batch processing of opinionated doc-
uments [37, 45], here we are interested in the setting where the data
arrives as an infinite stream and reflects real-world unpredictable
events. As we discussed in Section 1, in this setting a constant flow
of labeled messages is required to build and update supervised sen-
timent models. Unfortunately, in textual streams characterized by
sparse and time-changing content it is not feasible to manually ob-
tain labeled data in significant amounts and in a timely manner [33].

To overcome this problem, we propose a method to acquire la-
beled messages by exploring the positive-negative sentiment report
imbalance in the context of polarizing groups. We compare the
strength of reactions of polarizing groups during each time span,
moving from processing individual messages to processing groups
of messages. These groups are obtained by dividing the social
stream into a sequence of non-overlapping and contiguous time
windows of equal duration (e.g., At minutes), what gives us the
capability of exploiting the social context induced by the set of
users that expressed their sentiment w.r.t. topic 7" during each time
window W;. Each window W; contains all messages sent during
the time period [t;, t; + At] (W starts at to and ;41 = t; + At)
and is composed of a triple (Sz, Dy, Vi ):

e S, is a multiset of group memberships of all users who posted
a message during W;. On a polarized domain, we assume
that each user belongs to one of two groups, Ga or Gp.'
For instance, S; = {Ga,Ga,Ga,Gp, Gp} indicates that
3 members of group G 4 and 2 members of group G g posted
amessage during W;. Assigning users to groups is a task that
can be accomplished by several community detection and
graph mining techniques that explore the social ties among
users, under the assumption that similar users are likely to
connect to each other [1, 19].

e D, is the sum vector of all feature vectors extracted from
messages written during W;

e V.: € {4+, —} indicates the ground-truth sentiment expressed
during W; w.r.t. an entity e in the context of topic T. Here,
each e is an individual or organization naturally linked to
the polarizing group that supports it; for instance, if G =
{Democrats}, than e(G) = {Barack Obama}, and e(G) =
{New York Giants team} if G = {New York Giants fans}.

Note that, instead of seeking for labels for individual messages,
we label all the messages mentioning an entity e in time window
W with the same polarity Ve ;. Although we do not expect every
opinion expressed during a time window to follow the same polar-
ity, we seek here to determine the dominant sentiment during W;
furthermore, the probabilistic method we will detail next assigns a
confidence on the label estimation, what can be interpreted as an es-
timate of the proportion of positive and negative messages written
during a given W.

For now we ignore the content vector D; and focus on S; as an
input to build a sentiment prediction function f : S — ). The fun-
damental principle we seek to exploit is that, on polarized discus-
sions dominated by two opposing groups G 4 and G g, in general
Ye(G 4),e = + implies that V(g ), = —, and vice-versa (we will

"In practice, a domain can be associated with more than two
groups, i.e., N=20 groups of supporters are found on National Foot-
ball League. However, at each event of interest (e.g., a football
match), we focus on the two polarizing groups that have a direct
interest on it.

relax this requirement in Section 4, by learning a content-based
classifier based on labels provided by S:). A simple approach to
predict ), based on S; is to consider that each message is a “vote”
toward the sentiment expected to drive more reactions and, thus, a
majority-voting strategy is employed to predict the dominant sen-
timent at W;. In the toy example S; = {Ga,Ga,Ga,GB,GB},
since we are supported by social theories that indicate preference
toward the report of positive sentiment, we would predict 3 votes
for labels (Ve(a ).t = +> Ve(ag),t = —) and 2 votes for labels
(Ve(ga),t = = Ye(ap),t = +). The only point of caution here
is that normalizing by group sizes |G| and |Gg| is important to
discount the effect of larger groups on S;.

Majority-voting is a simple and straight-forward approach, but
it has an important limitation: it does not quantify the uncertainty
on the information provided by the voters [42]. Since the labeling
mechanism by social context is not perfect, capturing the degree of
confidence on the correlation between S; and ) is crucial if we
will incorporate this information on learning models. In particular,
the labeling scheme based on positive-negative report imbalance is
error-prone due to two reasons:

1. S; is likely to carry a significant correlation with the dom-
inant sentiment only when a well-determined and relevant
event happened during time window W4, i.e., a goal or touch-
down in a sports match, or some breaking news on the topic
being followed. Most of the time, the positive-negative re-
port imbalance will not be triggered at a sufficient strength,
and an unreliable prediction will be generated.

2. Since we are modeling only user posting decisions in face of
positive/negative events and abstracting from several other
factors that influence the posting decision (as well as dif-
ferent individual posting probabilities), we are prone to deal
with noise due to the many factors that motivate user reac-
tions and that we are not accounting for.

Therefore, in order to make our approach reliable and more use-
ful, it is desirable to associate with each predicted label }; a mea-
sure of confidence P()|S;) that captures the noisy nature of the
multiset of group memberships S:. We instantiate a probabilistic
model that assumes that on each time window W, a coin of bias
0: is tossed to decide whether each message will be authored by
a member of G4 or Gp, and |G 4 | messages from members of
G4 and |G p,| from members of G are observed. A fair coin
is expected to generate a number of heads (G 4) and tails (GB)
proportional to O¢qir = % and 1 — BOqr, respectively,
modeling the fact that members of both groups are reporting their
sentiment with the same probability. Alternatively, a biased coin,
whose 0; is different from % at some degree, means that
members of one group are self-reporting their feelings at a higher
rate than the other, indicating that its members are probably expe-
riencing positive feelings in comparison to the other group.

A coin model is convenient because it naturally models the intu-
itive fact that spikes of activity in the social stream are more infor-
mative: in the same way that our confidence on the bias of a coin in-
creases as we toss it more times, a time window W; which contains
a large number of messages (and, consequently, a larger multiset
S¢) is more likely to carry a clear dominant sentiment, not only due
to a larger sample, but because spikes of activity are likely to be
associated with real-world events that trigger the positive-negative
report imbalance. Our probabilistic model is divided into two steps:

1. Estimate the probability distribution on the latent variable 6.;

2. Estimate how far 6, is from 64 = %.



We use Bayesian estimates in both steps. To estimate the uncer-
tainty on 6, we need to calculate the posterior predictive distribu-
tion P(6¢|St), i.e., the distribution over ; after observing the re-
sulting multiset S¢. In Bayesian inference, the posterior P(0:|S;) is
proportional to a likelihood function P(S;|6;) and a prior distribu-
tion P(0:); we adopt the classical Beta-Binomial model: P(S:|6:)

is computed from a binomial distribution Bin(|W,|, %)

and the prior follows a Beta distribution Beta(a, b) (a and b are hy-
perparameters) [42, 7]. As a result of the conjugacy property of the
Binomial and the Beta distributions, the posterior predictive distri-
bution nicely follows a Beta distribution Beta(|G a¢|+a, |G B |+
b) that captures our uncertainty over 6; [7].

It is still necessary to choose the hyperparameters a and b that
govern the prior distribution P(6;) and capture the knowledge ac-
quired from previous observed data streams over the noisy nature
of the coin. To incorporate our prior knowledge that 6, is expected
to be proportional to group sizes, we want to find hyperparameters
a and b in the form a = % and b = %. K can
be understood as a smoothing parameter: the greater its value, the
more confident the model is that 6, is close to 84 and less impor-
tance will be given to the data. On the other hand, if we choose an
uniform prior Beta(1, 1), then we let the model rely totally on the
observed data to judge how likely the tosses are coming from a coin
of bias 6;; the expected value of the coin bias in this case is equiv-
alent to the maximum likelihood estimate 6; = % [7].
Such direct estimation of 8; makes the unrealistic assumptions that
tosses are generated i.i.d. from a noiseless coin.

We estimate K from the streaming data by employing an Empir-
ical Bayes approach’. To learn the extent to which the coin we are
modeling is noisy, we take advantage of the data continuity in the
stream: we observe a sequence of noisy estimates (6o, 01, ..., 0%)
of a different coin being tossed at each time window. The property
we want to explore here is that we expect consecutive time win-
dows W; and W11 of similar message volume to share a similar 0;
large differences in 6 between these windows should be attributed
to noise, since no significant real-world event has happened (other-
wise we would observe a large ||Si+1| — |Si||). On the other hand,
we would like to allow consecutive time windows with a large dif-
ference in message volume to exhibit a larger absolute difference
|0i+1 — 65|, since, according to our user behavior model, a spike of
activity will trigger a bias either on G4 or Gp.

We seek to find the value of K that maximizes Equation 1. p is
the Pearson correlation coefficient, and AV and AG(K) are vectors
containing the sequence of ||Si4+1| — |S;|| and |0;4+-1 — ;| observed
on the stream. Note that we write A@(K) as a function of K, since
the estimates of 6, are affected by the prior distribution P(6;|K).
The highest Pearson correlation will explain larger differences in 6
through larger differences in time-window volume, and we estimate
it by using a standard gradient descent method.

K = argmaz(p(AV,A0(K))) (1)
Recall that our goal is to estimate how far the latent variable 60,
is from O¢qir = %, what indicates a bias in the posting

decision of either G 4 or G . This value can be estimated by cal-
culating the area under the curve of the distribution Beta(|Ga |+

a,|GB,t|+0b) at the decision threshold x = %. If I;(a,b)

is the CDF of Beta(a,b) in the interval (0, x), then

*Empirical Bayes methods are approaches that estimate the prior
distribution over a random variable from the data itself, rather than
defining the distribution before observing any data, as on standard
Bayesian inference [17].

conf(Oair, St) = max(lig, /(G al+Ics) (IGatl + a,|GB | +b)
L—Tig,1/06a1+165) (Gl +a,|GB | +b)
)

where I is the regularized incomplete Beta function and can be used
to compute to the cumulative distribution function in a Beta distri-
bution [42]. The value 1 — con f(6fq:r, St) gives us an estimate of
how likely the predicted label is trustable given the observed social
context Sy, i.e., P(V¢|St).

3.1 Experimental Evaluation using Twitter data

We evaluate the predictive power of social contexts induced by
the positive-negative report imbalance on the analysis of the reac-
tions expressed on Twitter by fans of two popular sports that gen-
erate passionate debate on social media: soccer and (American)
football. Sports competitions are among the topics that generate
the largest fractions of audience both in broadcasting media [46]
and social media [29]; however, most initiatives taken by content
portals to turn the live game experience into an online social expe-
rience are still restricted to simple tools such as the display of the
most popular tweets or plots on the variation of the relative number
of mentions of the playing teams. Measuring the crowd sentiment
during live matches is something far more appealing and may an-
swer relevant questions such as “do the supporters still believe in a
win, despite losing the match so far?”.

Table 1 gives an overview of two datasets we obtained from the
Twitter data collection API. The datasets comprise fans’ debate on
Brazilian Soccer League seasons (2010, 2011 and 2012) and NFL
(2010/11, 2011/12 and 2012/13 seasons). We chose team names
and specific words of each competition as keywords. More than
35.8 million tweets from 5.6 million users have been collected in
the SOCCER dataset, and 23 million tweets from 4.2 million users
in the case of the NF L dataset. While tweets on Brazilian soccer are
mostly in Portuguese, NFL debate is dominated by English, what
gives us the possibility to experiment our model in two languages,
after we build a content-based stream classifier in Section 4.

Table 1: General overview of the datasets collected from Twitter.

||  Soccer | NFL
seasons 10-11-12 | 10/11, 11/12, 12/13
language Portuguese English
# of user groups (teams) 12 20
# of tweets 35,834,453 23,094,280
# of users 5,638,906 4,230,731
# of users w/ 1+ post/week 35,121 58,981

Before performing any sentiment prediction, we need to segment
the user base into polarizing groups. In the sports domain, the nat-
ural criterion for dividing users into polarizing groups is to reflect
their team preference. Several community detection and graph min-
ing approaches that leverage social ties and social interactions can
be used to accomplish this task; we manually labeled a set of users
with their team preference and then used the similarities in their
retweet pattern to estimate the class of unlabeled users [20].

Due to the highly-dynamic nature of sporting events, we analyze
sentiment and social contexts in 1-minute time windows; larger
time frames may be suitable for less dynamic domains. To generate
ground-truth sentiment labels, we examined the match facts and the
evolving sentiments for a number of matches in the SOCCER and
NFL dataset. In addition to the match score, we manually exam-
ined the content of tweets and also included cases where the match



score did not reflect the sentiment, as soccer matches that ended as
null ties (0-0), but the result was enough to grant one of the teams
the championship title. Although each time window is associated
with a set of messages, we aim to determine the overall, global sen-
timent which dominates each time window, instead of individually
trying to predict the polarity associated with each post.

Figure 1 shows the accuracy on the sentiment prediction task for
the two datasets. On the z axis, we grouped time windows accord-
ing to its volume in relation to the average time window volume:
bin = i corresponds to time windows where the number of mes-
sages were between ¢ and ¢ + 1 times the average.
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Figure 1: Accuracy on sentiment prediction on 1-minute time win-
dows. We grouped time windows according to its volume in rela-
tion to the average time window volume. Social contexts based on
positive-negative sentiment report imbalance are highly effective
on sentiment prediction on large-volume time windows.

We observe that, for high-volume time windows, accuracy is
very high: we could predict with more than 90% of accuracy the
dominant sentiment on time windows whose volume of tweets were
at least 5 times the average, despite not taking any textual content
into account. This result validates the sociopsychological principle
that motivated our method — positive and negative feelings are dis-
closed with different probabilities — and, confirms that, in the sports
domain, sentiment report is biased toward the positive feeling.

We can also note from the histogram that accuracy decreases
with the volume of tweets in the time-window; on time-windows
whose volume is above average, accuracy is comparable to a ran-
dom guesser, meaning that the induced social context is not relevant
and the positive-negative report imbalance is not triggered in suffi-
cient strength, and other factors are affecting the posting decisions’
of members of G4 and Gp.

Since the majority of the time windows are not voluminous, it is
important to capture the uncertainty on the sentiment prediction
made by social contexts. In order to instantiate the probabilis-
tic measure of label uncertainty we presented in this section, we
use the data to set hyperparameters Kgoccer and Ky that cap-
ture the previous knowledge on the coin that control the relation-
ship between messages and author’s groups over time. We found
Ksoccer = 12000 and Knypr = 6000 as the value that maxi-
mizes the Pearson correlation that relates AV and AG(K) (Equa-
tion 1). Figure 2 compares, for the SOCCER dataset, the theoretical
label uncertainty prediction with the empirical accuracy obtained
for each volume bin; the approximation is reasonable, and results
are similar for the NFL dataset.

Figure 3 shows the convex shape of the Pearson correlation mea-
sure (Equation 1) as we increase the hyperparameter K goccer in the
coin model. On the red curve, we plot the absolute error between
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Figure 2: Difference between theoretical confidence estimate and
empirical accuracy obtained for time windows of tweet volume = x
times the average.

the predicted and empirical accuracy for each value of Ksoccer, to
show that the maximum of the Pearson correlations coincides with
the minimum of the absolute error curve. Results are similar for
the NFL dataset, and demonstrate that exploring the sequence of
time-windows to smooth the measure of the coin bias 6 is a simple
and effective strategy.
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Figure 3: Choice of hyperparameter K soccer as the value that max-
imizes Equation 1; Pearson correlation maximum coincides with
the best empirical measurement of uncertainty.

4. FEATURE REPRESENTATION

In the last section, we demonstrated the predictive power of so-
cial contexts induced by the positive-negative report imbalance and
the segmentation of users into polarizing groups. In addition to
the low accuracy on low-time volume windows, using just S and
ignoring content D is restrictive due to two reasons:

1. Sentiment prediction does not improve over time, since knowl-
edge from past time windows is not carried to recent time
windows. Improving performance as more data is processed
is a basic requirement for any machine learning approach;

2. It enforces that Yo, ¢t = + = Ygz,t = —, what is gen-
erally acceptable, given the polarized nature of polarized de-
bate, but is not capable of capturing more complex variations
of sentiment, where members of |G 4| and |G| can share a
similar sentiment at the same time, or different intensities of
sentiment.



We take inspiration on the social psychology finding that de- Figure 4 provides empirical evidence that the arousal feature

scribes how humans’ decision on expressing their feelings is in- space is adequate to capture sentimental n-grams by correlating the
creased by the strength of the sentiment they are experiencing [2, arousal measure with two features commonly associated with senti-
11, 10, 28] (which we call, for short, as extreme-average report ment — the use of word lengthening [8] (as on “c00000000000001”")
imbalance) to devise a textual feature representation (and, hence, a and the use of uppercase. The more arousal we associate with a
feature selection strategy) specially designed to track sudden varia- term (n-gram), the greater is the chance it is written using one of
tions of sentiment on evolving and dynamic social streams and that these two linguistic indicators. In Tables 2 and 3, we display the
makes use of the textual feature vector D, to improve accuracy on top features in each dataset according to arousal and TF-IDF. In
sentiment prediction. brackets, we show the value of arousal identified for each term;
It is widely known that the underlying text representation im- high-arousal n-grams are clearly more sentimental than TF-IDF.
pacts the performance of text mining and linguistics applications [21,
44]; different feature definition choices (part-of-speech features, 05 ‘ ‘ :
. . repeated chars (SOCCERy—
bag-of-words, n-grams etc), feature weighting schemes (such as uppercase chars (SOCCER)
. . repeated chars (NFL)
binary, TF and TF-IDF) and feature selection approaches can be 0af uppercase chars (NFL) ]
suitable for different tasks — such as text classification, text cluster- <
ing and search [44, 48]. When the textual data arrives as a stream, 3 |
an adequate choice of text representation is even more critical: 2
e The potentially infinite size of the stream limits the storage i V

of an ever growing high dimensional feature space, what in- g

creases the need for adequate feature representation/selection |

that keeps the feature space as compact as possible [26].

e Static text representations (such as TF-IDF) may not be op-

timized to nonstationary text streams, since they do not cap- arousal measure

ture adequately the dynamic nature of the feature probability

distribution [27, 21], which is strongly affected by emerging Figure 4: Indicators of excitement (use of uppercases and repeated

new topics and real-world events. characters) correlate with term arousal measure.

As explained in Section 3, D; is the feature vector extracted from
messages written during time window W;: Table 2: Top 5 features for NFL dataset, according to arousal and
TF-IDF representations. Arousal values are in brackets.

Dr = [we, wez, ooy wind] arousal | TF-IDF

and wy; is the weight of the j-th feature in D;. Instead of adopt- PACKERS_WIN_SUPERBOWL (3.54) yu_know_what

ing traditional term frequency (TF) or term-frequency-inverse doc-

1 i
ument frequency (TF-IDF) as weights, we exploit the fact that time- SUPER_BOWL_CHAMPIONS!! (3.53) you_would_think

windows have a varying volume of messages and, according to YEAH! (3'4%) your_quarterback_is
the extreme-average report imbalance, more people post a message superbowl_xlv_champions (2.65) you_lost_money
when affected by an emotional, strong feeling. As a consequence, touchdown!! (2.34) you_imagine_how

emotional content is likely to be concentrated on spikes of activity
in social streams at a greater frequency than low-emotional terms.

t
Let W, = kgo !{Wtu be the average volume of messages sent in Table 3: Top 5 features‘for SOCCER dataset, acc?ording to arousal
. . . . — and TF-IDF representations. Arousal values are in brackets.
each time window up to the t-th time window and Wi term =
3 [IWiltermeDy | o . arousal | TF-IDF
.N—k‘be the same measure, but considering only time arcat_goal (1.53) win!
windows that contain term. We then define wy term as:
’ £00000000000000] (6.80) | gol_from_team
- he_scores(5.31) an_equalizer
Weterm = YLiterm 3) GOOOL (5.00) co!
Wi penalty_for_team (3.34) he_shoots

W, term measures how the occurrence of term between [Wo, W]
is correlated to high-volume time windows. w¢ term = 1 means
that term appears on time windows whose volume are, on average, High-arousal terms and concept drift. There has been signifi-
equal to the average time window volume, and thus it indicates that cant efforts to perform effective classification on text streams under
the term is not expected to be associated with strong emotions (e.g., concept drift environments; the most common strategy is to employ
spikes). A term with w¢ term = 5 means that term, on average, forgetting and weighting mechanisms that decrease the importance
appears on time windows whose volume are five times greater than of old instances of data and force the stream classifier to focus on
the average. We name these terms as high-arousal terms, since they recent instances [49]. We follow a different strategy: instead of
are associated with moments where the crowd being monitored felt trying to restrict learning to recent examples, we design a dynamic
motivated to react and express feelings and opinions, caused by the feature space, where at any given time the feature space is defined
fact that highly emotional feelings activate people and drive them by the useful terms selected using arousal as a selection criterium.

to action [4]). As a consequence, we are capable of quickly identifying, on spikes



of activity, new features with high predictive power that may ap-
pear or gain importance over time (i.e., high values of arousal) that
become important for sentiment classification.

When a spike occurs and (potentially) changes the dominant sen-
timent in the stream, due to a real world event which immediately
affect users’ happiness, adapting the model to such concept drift is
challenging if the stream model is strongly built on past data [27].
Tackling concept drift at the feature representation stage has the ad-
vantage that unlike instance weighting and forgetting mechanisms,
useful knowledge from the past is never discarded, what could harm
classification perfomance [27]. In pratice, this means that we use
information from old spikes to predict the sentiment at the current
time window, what may be especially useful when the label is in-
correctly predicted by the model we presented in Section 3.

4.1 Experimental Evaluation

We incorporate the textual feature vector D; in a learning model
by interpreting P()|S) estimates from Section 3 as probabilistic
labels (or soft labels), which can then be incorporated into a vari-
ety of supervised learning algorithms [42, 36]. We have chosen to
employ a version of Multinomial Naive Bayes extended to consider
probabilistic labels [38]. We make this choice because of the easi-
ness to extend Naive Bayes to incorporate probabilistic labels and
its suitability for stream classification, since conditional term-class
probabilities can be easily updated as more data is processed. Our
features correspond to unigrams, bigrams and trigrams represented
with term-arousal weights.

Figure 5 shows how accuracy varies, in the SOCCER dataset, as
we vary the number of features we include in the model, consider-
ing both our term arousal representation and the traditional TF-IDF
representation. We varied a threshold at the time window level, i.e.,
we included in the model the top K-ranked features on each time
window. In addition to being more effective, the term arousal repre-
sentation allows the sentiment model to be very compact, since the
best accuracy were obtained by considering just the top 50 terms
on each time window. Results are similar in the NFL dataset.
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Figure 5: Accuracy vs top-K features comparing term-arousal and
TF-IDF feature representation — SOCCER dataset.

In Figure 6 we show the increase on accuracy per volume bin,
when adding textual features to the model. The increase on accu-
racy on lower-volume bins can be interpreted as the “transfer” of
the reliable social context from spikes to the lower-volume time
windows through the terms: when a high-arousal term is used on a
low-volume time window, it contributes to the correct prediction of
such time intervals.

4.2 Real-time sentiment tracking of live matches

To illustrate the usefulness and the utility of our combined label
acquisiton/feature representation method, we now analyze the sen-
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Figure 6: High-arousal n-grams carry the informative social con-
texts from the spikes to subsequent low-volume time windows —
SOCCER dataset.

timent of the crowds expressed on Twitter during some interesting
matches. For each match, we show the variation on the sentiment
score over time in conjunction with the overall volume of tweets
from each crowd. The scores are obtained by computing the ra-
tios between the positive and negative probability estimates of the
Naive Bayes classifier. Figure 7 shows the reactions of the support-
ers during SuperBowl 2011:

1. The Green Bay Packers score two touchdowns in the first
quarter, reflected on the two spikes of happiness before 200’.

2. At 200’ the Steelers scores a touchdown, and, after another
touchdown at 240’, the mood of Steelers’ fans are better than
Packers for a significant part of the match.

3. After a sequence of touchdowns from both teams between
320’ and 350°, the game comes to an end at 360" and Pack-
ers is proclaimed SuperBowl winners. Note that the majority
of changes in the dominant sentiment of each crowd occur
after a spike in the volume of messages, indicating that users
are reacting to events. Note, also, that after the spike at 360’
related to Packers’ victory, our content-based classifier is ca-
pable of keeping track the positive sentiment towards Pack-
ers, in part because of high-arousal terms such as the ones
shown in Table 2.

SuperBowl 2011: Green Bay Packers 31 Pittsburgh Steelers 25
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Figure 7: Sentiment variation during SuperBowl 2011 — Packers vs
Steelers.

In the 2012 SuperBowl, played on February 5th, we also detected
changes in crowd’s humour, as shown in Figure 8:

1. The New York Giants started the game scoring 2-0 at 158’
and 9-0 with a touchdown at 168’.



2. The Patriots scored two touchdowns in a row, at 224’ and
265’, reversing the expectations about the game outcome.

3. The Giants managed to score a touchdown in the last minute
of the game and were proclaimed the 2012 SuperBowl cham-
pions at 298’, generating a long period of happiness on their
supporters, whereas Patriots supporters were upset.

SuperBowl 2012: New York Giants 21 vs New England Patriots 17
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Figure 8: Sentiment variation during SuperBowl 2012 — Giants vs
Patriots.

Soccer. We also illustrate our results with two matches of the
last round of the 2011 Brazilian Soccer League. In Figure 9, team
Cruzeiro comfortably beats his fierce rival Atletico by a surpris-
ing score of 6-1, scoring two goals in the early minutes of the
match. Our model was able to correctly capture the positive re-
actions of Cruzeiro fans, and negative reactions of Atletico sup-
porters. The second match, in Figure 10, showed a totally different
pattern: Vasco and Flamengo played at the last round of the Brazil-
ian 2011 Soccer League and Vasco needed to win in order to have
any chance of winning the championship title:

1. At 149’, Vasco scored, and our algorithm detected a sud-
den burst of positive sentiments for Vasco and negative sen-
timents for Flamengo.

2. At minute 199’, however, Flamengo scores (note the spike in
volume of tweets), vanishing any chances of Vasco winning
the title. Our algorithm detected a sharp negative spike for
Vasco in that moment. Even after conceding a goal, Vasco
supporters were still upset, as expected; this illustrates the
capacity of our algorithm in learning from spikes and using
the learned term polarities on the subsequent time intervals.

3. Note that we have been able to track different supporters’
reactions, even during “similar” events: although Atletico
scored against Cruzeiro at 220’, it was already losing by 5-0,
what kept Cruzeiro supporters at a better mood. On the other
hand, Flamengo’s tie goal against Vasco was a much more
important one, and, even though Vasco was not losing the
game, that goal vanished their chances of winning the title.

5. RELATED WORK

Social media data has been successfully used to detect real-world
events such as disease outbreaks [9], earthquakes [41] and recur-
ring events such as goals and touchdowns in sports matches [29].
Most of these researches are not focused on the deviation between
self-reported data and real data; it is implicitly assumed that the
number of users who decide to react and comment on the events
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Figure 9: Sentiment variation during Brazilian Soccer League
match — Cruzeiro vs. Atletico.

Brazilian Soccer League 2011: Vasco 1 Flamengo 1
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Figure 10: Sentiment variation during Brazilian Soccer League -
Vasco vs. Flamengo.

being monitored will be large enough to allow detection. How-
ever, the self-reported nature of social media can strongly impact
the observed social data, as observed by [28]: if we search in Twit-
ter for the words “breathing” and “drinking water”, we may end
up (wrongly) concluding that people usually drink more water than
breath in their daily lifes. Some recent works try to compensate
these biases in analysis of political debate, by observing that a small
fraction of people intensively self-report their political opinions,
while a silent majority does not [35], what can dramatically change
conclusions and statistics on political behavior. Differently from
these works, we stress that we aim to use self-reporting bias and
the social/temporal contexts it creates to our benefit, in the design
of better opinion analysis models, rather than correcting its effects.
Our work is closely related to research that explores opinion
holder biases’ to perform sentiment analysis. Especially on the po-
litical domain, it is known that biases on opinion holders highly
correlate to the type of opinion they express, and that social con-
texts based on groups of people with similar viewpoints provide
useful signals for opinion analysis [20, 15, 31]. We add to these
group-based social contexts a temporal perspective to explore the
correlation between the real-world events taking place and the users
currently reacting to what they are observing. To the best of our
knowledge, this is the first attempt to detect positive and negative
sentiment expressed on online media by capitalizing on the reasons
that stimulate people to communicate more or less their feelings.
Sentiment analysis is still focused on static scenarios such as
product reviews [37], on which lexicons of positive and negative
words and traditional supervised machine learning techniques have
been quite successful [45]. We are interested in sentiment analy-
sis as a stream data mining task, a setting which requires learning



algorithms to constantly update and refine data description mod-
els, in face of the time-changing characteristics of the data [14, 6].
The simultaneous presence of concept drift and lack of labeled data
makes real-time sentiment analysis an even harder problem, since
some standard solutions from one challenge make assumptions that
do not hold in the other. The state-of-the art solution for coping
with the scarcity of labeled data, semi-supervised learning, makes
use of both labeled and unlabeled data for model generationand has
also been applied to sentiment analysis [32]. However, due to the
nonstationary characteristic of social streams, the usefulness of a
few initially available labeled examples may be limited since they
can become quickly outdated [13]. Conversely, the traditional ap-
proach for dealing with concept drift on nonstationary data is to
incrementally update the model through fresh, recently-acquired
labels that are provided by the stream [47], but this solution may
not be feasible due to lack of labeled data. In terms of machine
learning approaches, our algorithm is best related to distant super-
vision [18], which generate labeled data not by manual inspection
of individual instances, but by applying some sort of heuristic/rule
which output noisy labels. While distant supervision has consid-
ered emoticons as the source of labels, we take inspiration on social
psychology patterns that guide people’s reactions.

6. CONCLUSIONS

As a growing fraction of web content is generated in the form of
social streams, there is a promising opportunity to build rich appli-
cations that track the emotional reactions of social media users dur-
ing dynamically changing and potentially polarizing events such as
sports matches, political debates and live breaking news. Tradi-
tional sentiment analysis, however, is not designed to operate on the
stream setting, since the field has focused its attention on extracting
opinions from static text such as product and movie reviews.

Real-time sentiment analysis is a difficult task; labeled data is
usually not available to support supervised classifiers, and debate
about monitored topics may turn into unpredictable discussions.
We propose solutions to these challenges based on the different
propensity users have on disclosing positive and extreme feelings,
in comparison to negative and average feelings.

Since we mapped the usage of the social information on two
machine-learning sub-tasks — acquisition of labeled data and fea-
ture representation — our work is orthogonal to current and future
supervised models for real-time sentiment analysis. Depending on
the characteristics of the domain and the social media platform, one
or other sub-task may benefit more from our models.

We envisage a series of future research directions. In addition to
experimenting our models on other domains (e.g, political debate
and TV shows), we plan to enrich the social context we use to track
sentiment by exploring the reaction patterns not only at group-level,
but at user-level and on multi-group levels. At the user level, we
can uncover different, more complex behavior of social media user
posting patterns. Are there users which, in contrast to the dominant
pattern, prefer to comment on negative experiences for their oppos-
ing sides than on positive events of their own side? At multi-group
level, we may exploit the different relationships between polarized
groups to generate more informative social contexts. For instance,
supporters from rival teams are likely to follow and react when-
ever their rivals are being defeated, and that information could be
embedded in the social context.

Another direction to improve our work is to better investigate
the impact of time window sizes. In addition to automatically de-
termine the optimal window size (or make it dynamic), analyzing
effects of different window sizes in our models may unveil new
patterns on how social media users react to real-world events.
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