Graphical Models for Finding People in Images

Daniel Huttenlocher
Computer Science Department
January 2005

Joint work with Pedro Felzenszwalb and Xiangyang Lan
Patches in Deformable Configuration

- Dates at least to pictorial structures [FE73]
 - Cost of placing patch at a location
 - Spring-like cost between certain patch pairs
- Can view as undirected graphical model
 - Parts are nodes, connections are edges
Main Topics

- Tree structured (2D) probabilistic models
 - Capture kinematic relations
- Appearance model (likelihood)
 - Power of soft detection
- MAP estimation vs. sampling
 - Hypothesize and test
- Beyond tree structured models
 - Coordination of limbs
- Hierarchies of models
 - Composing graphical models
Undirected Graphical Model

- Set of parts $V = \{v_1, \ldots, v_n\}$
- Configuration $L = (l_1, \ldots, l_n)$
 - Discrete random variable l_i for each part v_i
- Appearance parameters $A = (a_1, \ldots, a_n)$
 - Model of how each part looks (e.g., templates)
- Spatial relations $S = \{s_{ij} \mid e_{ij} \in E\}$
 - Edge e_{ij}, $(v_i, v_j) \in E$ for neighboring pairs of parts
- Undirected graph $G = (V, E)$
 - First order Markov random field model
Statistical View

- Posterior probability of configuration L given model $M=(A, S)$ and image I
 \[p_M(L|I) \propto p_M(I|L)p_M(L) \]
- Likelihood $p_M(I|L)$ of observing image I given configuration L of model M
 - Appearance for fixed configuration
- Prior $p_M(L)$ probability of model M being in configuration L
 - Generally limited to *relative* locations of parts, as absolute location not informative
Estimation Problems

- **Detection**
 - Likelihood ratio $P_M(I|\text{present})/P_M(I|\text{absent})$
 - Where $P_M(I|\text{present}) = \sum_L P_M(L)P_M(I|L)$

- **Localization**
 - Maximum a posteriori (MAP)
 $$\arg\max_L P_M(L|I) = \arg\max_L P_M(L)P_M(I|L)$$

- **Supervised learning**
 - Maximum likelihood (ML) given pairs (I_j, L_j)
 $$S^* = \arg\max_S \prod_j P_M(L_j)$$
 $$A^* = \arg\max_A \prod_j P_M(I_j|L_j)$$
Form of Likelihood

- Assume $P_M(I|L) = \prod_V g_i(I,l_i)$
 - Appearance factors into product of functions, each dependent on location of a single part
 - Common assumption in part-based approaches

- Simple part appearance model
 - Binary silhouette

- Rectangular region specifying probability of silhouette pixel
 - Interior: probability close to 1
 - Exterior: probability close to 0

- Likelihood based on pixel counts in image
Soft Detection

- Compute likelihood of image (patch) given model for every location of every part
 - Quality map for each part
 - Make robust to missing parts by truncation or choice of foreground/background probabilities

- Combine maps for all the parts to compute the posterior
 - Efficient for trees and using fast “convolution”

- No detection decisions made about individual parts, only entire configuration
Form of Prior

- Efficient algorithms if graph G acyclic
 - Chains, trees both often used to represent kinematic structure
 - E.g., tree edges correspond to joints of skeleton

- Tree-structured prior $p_M(L)$ factors
 $$\prod_E p_M(l_i, l_j)$$
 $$\prod_V p_M(l_i)^{\deg(v_i)-1}$$

- Generally no reasonable prior on location of single part, choose to be 1 so drops out
About Acyclic Models

- Tractable algorithms
 - Traditionally $O(m^2n)$ for n parts and m discrete locations per part
 - But $O(mn)$ using distance transform or box sum to compute “convolutions” [FH00,FH05]

- Consistent solutions
 - Chain or tree recursion selects compatible values for neighboring nodes
 - Recursive methods not possible when loops

- Reasonable for modeling people, hands, ...
 - Will consider some limitations and extensions
Relation Between a Pair of Parts

- Spring model of revolute joint
 - Gaussian distribution over transformed part locations
 \[p_M(l_i,l_j) \propto N(T_{ij}(l_i) - T_{ji}(l_j), 0,D_{ij}) \]
 - \(T_{ij}, T_{ji}\) capture ideal relative locations of \(v_i, v_j\)
 - Fast methods require that \(T_{ij}(l_i), T_{ji}(l_j)\) can be discretized on a grid
 - Covariance matrix \(D_{ij}\) measures deformation
 - Consider case of diagonal covariance

- Negative log probability is a Mahalanobis distance between part locations (cost)
Relation Between a Pair of Parts

- Part location l_i specifies
 - Location (x_i, y_i)
 - Orientation, o_i
 - Foreshortening along main axis, s_i

- Distribution $\mathcal{N}(T_{ij}(l_i) - T_{ji}(l_j), 0, D_{ij})$
 - This is a simple revolute joint model
 - T_{ij} and T_{ji} map each pair of connected parts to a common coordinate frame
 - Degree of deviation – range of motion – represented by covariance D_{ij}
Learned Prior from Labeled Examples

- Training data specifies part locations in image but not connectivity
 - Learn which parts form tree (in ML sense) as well as connection parameters: mean, variance

- Model for relatively wide range of forward facing poses
 - Kinematic structure
MAP Pose Estimation

- Fast algorithm using distance transforms to compute \(\arg\max_L P_M(L)P_M(I|L) \)
 - Most likely configuration of model in image
- May be multiple good configurations
 - Highest posterior probability not necessarily "best" when using tree prior and silhouettes
Sampling

- Hypothesize and test paradigm
 - Postulate configurations with high posterior probability, verify using other means
- Fast algorithm using box sum or FFT to compute factored posterior [FH05]
- Efficiently generate sample configurations
 - For one part sample a location with high posterior probability
 - Given that part location sample a high (conditional) probability location for each child, and so on
Sampling Example
Sampling Results

- Pick best match using Chamfer distance
Robustness of Soft Detection

- Parts can be missing or occluded and still be inferred from overall configuration.
Beyond Modeling Kinematics

- Coordination of limbs
 - E.g., balance, walking, running, dancing, ...
 - Not captured by tree models

- Conditional independence of location of limb given torso does not hold
 - While limbs can move independently for many activities do not
 - Represent such additional spatial dependencies

 - But with computationally tractable models, not simply adding more edges to graph
Example: Side View of Walking

- High degree of correlation in orientation of upper arms and legs conditioned on torso
- Rule out approach of simply connecting torso and upper arms/legs into 5 clique
 - Exact inference exponential in clique size
- Analyze dependencies in terms of common factor(s)
 - Factor analysis of siblings yields single underlying orientation parameter
 * Not surprisingly, corresponds to “swing” or extent parameter
A Latent Swing Variable

- Introduce additional variable into model corresponding to common factor
 - Does not correspond to any part
 - Capture dependencies among orientation parameters of torso and four upper limbs
Inference With This Model

- Each value of latent variable defines a tree
 - Finite set of trees for discrete problem
- Compute MAP estimate by maximizing posterior over these trees
 - Each tree solved efficiently
 - Because sub-problems are all trees and select one, also get consistent solution
- Explicit search over values of swing parameter
 - Can use coarse search to rule out
Learning This Model

- Limb coordination parameters, such as swing, do not affect kinematic structure
 - Connections between limbs and range of motion – revolute joint – remain unchanged

- Learn tree structured model
 - To capture kinematics

- Use factor analysis to determine which siblings related by common factors
 - Introduce latent coordination variable(s)
 - To capture limb coordination
Simple Experiments

- MAP estimate for images containing side view of person walking
 - Latent variable model vs. tree model
Front View Person Dancing
Hierarchies of models

- For example: HMM for tracking using pictorial structure models as states
- Observe silhouette at each time
- Determine which model most likely and parameters aligning that model with image
- Display aligned model
Relatively Efficient Inference

- Generally not easy to combine state model with HMM inference
 - E.g., linear dynamical system (LDS) models, “switching linear state models” [PRM00]
- With tree-like graphical models tractable to compute
 $$P(I|M) = \sum_L P_M(L)P_M(I|L)$$
- Or use MAP as an estimate of sum
 - Precisely what needs to be computed to determine which model most likely at each time step
More Complex Temporal Model

- Combine possible viewing directions with 4 state gait model
 - As simplification allow change in viewpoint or gait state, but not both simultaneously

- Approximate inference method to speed up
 - Using “extent” of silhouette to select among models
Example Image Sequence

- Walking with change in viewpoint
 - Automatic selection of view and gait state, alignment of chosen model with image
 - Correctly tracks left vs. right arms and legs through sequence
Summary

- Tree structured (2D) models
 - Capture kinematic structure
- Soft detection
 - Detect entire configuration not individual parts
- Sampling useful for hypothesize and test
- Beyond tree structured models
 - Coordination of limbs using factor analysis and latent variable in graphical model
- Hierarchies of models
 - Graphical models can be composed efficiently