Today’s Class

- What are networks
- Properties of networks
 - Attributes of individuals in a network
 - Very different from those of individuals alone
 - Value of a network
 - Metcalfe’s “law”, network effect
- Structure of the Internet
 - Collection of networks
 - Internet Protocol (IP)
 - Services: email, Web, file transfer, ...

What’s a Network?

- Abstractly: a system of inter-connected components
 - Represent as graph with nodes and edges
- Physical networks
 - Railroad, highway, telephone, cable
- Electronic networks
 - Television, radio, Internet
- Information networks
 - Web, payment

Kinds of Networks

- Centrally engineered networks
 - Action of a single controlling agent
 - E.g., Cornell’s campus network, Sprint’s network, global corporate data network
- Distributed or self-organizing networks
 - Actions of many “independent” agents
 - E.g., Internet, trade networks
- Natural networks
 - Biological and ecological systems
 - E.g., nervous system, waterways

Properties of Networks

- The connectivity in networks makes nodes behave differently than isolated individuals
 - Particularly for self-organizing networks
- Generally people more familiar with properties of individuals than networks
 - E.g., human heights
 - Distribution of these properties
 - Normal or bell-shaped
 - Central tendency (mean)
 - Degree of variation (variance or stand. dev.)

Normal Distribution

- Normal or bell-shaped curve characterizes many properties of individuals
- X-axis property, e.g. height
- Y-axis number (or proportion) of individuals with that property
- More near the center, fewer at “tails”
Power Law Distribution
- Quantitative properties of nodes in network often power law distributed
 - Very different from normal distribution
- For instance
 - Links to Web page
 - Visitors to Web site
- Mean doesn’t make much sense
 - No central or average case
- Long tail, 80/20 rule

Consider Following
- Individuals each with a certain score on some test or quantity of some good
- Bell-shaped
 - 25 with 1
 - 60 with 2
 - 150 with 3
 - 60 with 4
 - 25 with 5
- Power law
 - 300 with 1
 - 30 with 10
 - 3 with 100
- What is average (mean) in each case?
 - How representative?

Examples of Power Laws
- Number of AOL users to visit given Web sites in particular day
 - X, visitors to a site (property)
 - Y, sites with this many visitors (count)
- Revenues of AdSense advertisers
 - X, rank of advertiser (rank of count)
 - Y, revenue at that rank (property)

Log-Log Plot
- Hard to see what is going on in plot of power law distribution
 - Very large number of low values dominates
- Instead plot logarithms of both quantities

Power Law Distribution
- Characteristic of power law is a good linear fit to log-log plot
 - Exponentially many items have low values compared to those with high values
 - High values are exponentially larger than low values

Why this is Important
- What value does “the majority” have in a power law vs. a normal distribution?
 - Near the bottom vs. near the middle
 - Winner-take-most phenomena
- In a networked world vast differences between top, nearly top, and low rank
 - Web site traffic, daily page views per million
 - #1 Ranked Yahoo: 80,000
 - #9 Ranked Youtube: 8,000
 - #98 Ranked cnet: 450
 (source: alexa.com)
Aside: Distribution of Wealth

- Is wealth normally distributed, power law distributed, something else?
 - Appears to be power law
- Network property rather than individual
 - Arises from independent actions of many other individuals
 - For information networks often very few limits on degree of network-based properties of individuals
 - E.g., physical constraint of having shaken hands with Bill Gates vs. contributed to his wealth

Value of a Network

- We have been focusing on properties of individual “nodes” in a network
- What about the network itself
 - Particularly centrally engineered networks such as traditional telephone networks
- Simple hypothesis is that value grows proportional to number of “nodes”
 - Each new user increases value by one unit
 - Linear model
 - E.g., pay per subscriber to acquire a network

Metcalfe’s “Law”

- Bob Metcalfe, inventor of the Ethernet, postulated the value of a network increases with the square of the number of users
 - In graph, edges between pairs, count edges rather than nodes
 - Pairwise communication such as telephone, IM, fax, email
 - Value for each user goes up when add one new user
 - Increase of n rather than 1

Valuing Networks in Practice

- Is a network with 100M subscribers worth 10x or 100x a network with 10M subscribers?
 - Linear vs. quadratic, n vs. n^2
- Studies have suggested lies in between
 - As number of subscribers gets large additional value of new subscriber is smaller

Growth of Networks

- Tends to follow s-shaped curve over time
 - Slow growth, the increasing rate, then decreasing
- Similar form seen in diffusion of innovation, crossing the chasm
 - Early, middle and late adopters normally distributed yield similar growth curve

Examples of Growth

- Myspace
- Youtube
Network Effects Arise Broadly

- Not always an obvious network
 - Transmission of information on underlying networks of social interaction
- Format effects
 - Videotape, CD, DVD formats
 - Electronic document formats, Word, pdf
- Expertise/training effects
 - Software packages
- Brand or lifestyle effects
 - Making choices for what others think

The Internet

- Differs from other large manmade networks, highly distributed
 - E.g., electricity, telephone, transportation, ...
 - Internet not planned or administered by one or small number of authorities/providers
 - Grows and evolves based on actions of many companies
- Internet is collection of many networks
 - Each network consists of computers and routers (two types of components)
 - Use common "Internet Protocol" (IP)

The Internet

- Different network layers
- Physical layer – connections between places
 - Wires, fiber, microwave, wireless, ...
- Electronic layer – getting information from one place to another
 - Internet Protocol (IP), BGP, ...
- Information layer – content that people are interested in
 - Web, IM, email, ...

Home Network

- All computers communicate via router
- Broadband connection is link to "public Internet" via service provider (ISP)
 - Note: router can protect your computers from being accessed

Make-Up of Internet

- Your home network is not by itself one of the networks making up the Internet
 - Your ISP gives you one or more IP addresses
 - An IP address is somewhat like a phone number, it specifies a particular computer on the Internet
 - Generally on a home network the IP address is for your router, and your computers are not directly accessible
 - Your ISP often uses "dynamic IP" where your IP address is not fixed
 - Better for outgoing than incoming connections
- Each network in the Internet is called an autonomous system (or AS)
 - Your ISP is (generally) an AS
 - Cornell is an AS
- There are tens of thousands of AS’s
 - Each a “provider”
How Does This Work?

- Separate inter-connected networks around the globe
 - Some are large ISP’s with millions of customers on a single network
- No central planning or authority
 - Not like the few big telco’s in the US coordinating, which is hard enough
- Key is in the design of the underlying communication protocols of the Internet
 - IP routing: getting data between computers

IP Routing Between Networks

- Each router connects two or more networks together
 - Home router connects home network to ISP’s network
 - Routers can be within or between AS’s
- Certain AS’s are connected by routers
 - Have "peering agreements" about what data they will send over these connections
 - Terms, financial and otherwise, up to each pair of AS’s that decide to connect directly
 - Generally large global providers have multiple connections

IP Routing Analogy

- Like driving without a map
 - At each intersection either take a road that says it is heading towards your destination or one that says "all other destinations"
- Data broken into packets
 - Like having people on same itinerary travel separately, each making own choices at intersections
 - Signs at intersections may change based on congestion so routes differ
- Generally good for avoiding congestion

Internet Structure

- A particular structure has evolved
 - Tier 1 providers (ATT, Level3, Sprint, …)
 - Generally operate own multinational or global networks
 - All have peering arrangements with each other, where do not pay for traffic
 - Regional providers (commercial), Tier 2
 - Local commercial providers
 - Residential providers
 - Local phone companies
 - Cable companies

Internet Payment Models

- Would be substantial overhead to charging for each packet of data
 - Lots of bookkeeping
 - Potentially networks from many intermediate providers traversed
- Model that has evolved is based on end user payment for bandwidth
 - Peak amount of data that can be sent at once
 - Total amount of data sent over some time period
- Peering agreements between providers

End-User Internet Payment

- Peak bandwidth (millions of bits/sec)
 - $15/mo 56kb (consumer dialup)
 - $30/mo 128kb upstream - 768kb downstream broadband (consumer "broadband")
 - $300/mo 1.6mb T1 (commercial)
 - $5-20k/mo 155mb OC3 (commercial)
- Commercial users tend to use their full bandwidth 24/7, consumers not
 - Asymmetric broadband disproportionately cheaper as a result
- Each of these categories generates billions of annual revenue to ISP’s
Internet Structure and Payment

- Nothing cast in stone about these payment models or structures
 - Whatever customers are willing to pay for
 - Anyone can set up a business that charges for access in other ways
 - But needs to cover costs of infrastructure and of paying others for access
 - Recently hot area is virtual system operators or providers of network services
 - Has been for wireless phone networks more than Internet

Internet Services

- End users of the Internet rarely see anything about the IP-level
 - Except maybe configuring an IP address at some point
- Services on top of basic network
 - DNS maps names of sites to IP addresses
 - HTTP web protocols deliver content
 - SMTP email protocols deliver mail
 - Various (incompatible) IM protocols

Next Time

- Discuss strategy and the Internet
 - Read Porter, Hammonds and Tapscott articles