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Schorr-Waite Graph Marking Algorithm –Developed With Style 
David Gries, 2006 

 
The Schorr-Waite graph marking algorithm appeared first in about 1968; it is also attributed to Peter Deutsch. 

The idea is to mark the nodes of a graph using no space except one bit per node. The algorithm is extremely useful 
during garbage collection, where little space is available (that’s the reason for garbage collection), and the first step 
is to mark all reachable nodes so that the unreachable, and thus unmarked, nodes can be collected and used again. 

The traditional, recursive, depth-first search algorithm requires space proportional in the worst case to the size of 
the graph, because each recursive call requires a frame or activation record. Done iteratively, depth-first search 
requires a stack of nodes from the root to the node that is currently being processed. The Schorr-Waite algorithm 
ingeniously manipulates the pointers in the graph so that the stack of nodes is encoded in the graph itself. However, 
their presentation of the algorithm was horrible, very difficult to understand. 

In the late 1970’s, I developed the Schorr-Waite algorithm afresh, with the goal of formally proving correct an 
algorithm that used arrays. Along the way, I used principals and strategies of program development that were the 
hallmark of the people doing research in the formal development of programs. Out came a beautifully simple 
presentation of the algorithm. The formal proof is presented in my paper, “The Schorr-Waite graph marking 
algorithm”, Acta Informatica 11 (1979), 223-232. Today, I want to present the algorithm in a less formal way to 
show you what asking the right questions and paying attention to correctness at all stages can do. 

The complete development and explanation are not presented here; they will be done in class. 

Representation of nodes of the binary directed graph 
Consider a binary directed graph, with each node i, for i in 1..n-1, having the form: 
 
  
 

 
Mark field m[i] contains an integer in the range 0..3; initially, it is 0, and the purpose of the algorithm is to set 

m[i] to 3 for each node reachable from a given root (see below). A node may of course have other fields. 
We eliminate some case analysis by assuming that the absence of a left l[i] or right successor r[i] is 

represented by 0 and that node 0 has the form shown below. Node 0 will get marked just like any other node. 
 
 
 
 

 

Purpose of the algorithm 
Let root be the index of the root of the graph, 1 ≤ root < n. Initially, m[i] = 0 for all i, 0 ≤ i < n. 

The purpose of the algorithm is to set m[i] to 3 for all nodes reachable from node root. 

Depth-first traversal of the graph 
We can write easily the following recursive procedure: 

/** Set m[i] to 3 for all nodes i reachable from node p along a path 
    of nodes with 0 mark fields. Precondition: m[p] = 0.  */ 
public void mark(int p) { 
 /* Visit node p */ 
 m[p]= 3;  
 if m[l[p]] == 0 then mark(l[p]); 
 /* Visit node p a second time */ 
 if m[r[p]] == 0 then mark(r[p]); 
 /* Visit node p a third time */ 
} 

This recursive procedure requires a frame for each recursive call. To remove this requirement, we write the 
algorithm iteratively. Note carefully what the recursive algorithm does. For each node p, it “visits” p, marks it, calls 
the procedure recursively to mark its left successor subgraph, “visits” p a second time, calls the procedure 
recursively to mark its right successor subgraph, and “visits” p for a third time. So, each node is visited 3 times. 
Each iteration of the loop of our iterative version will visit one node once. 
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To the left below is a directed graph. Its root is root. The circles represent nodes; left-successor arrows point to 
the left, and right-successor arrow point to the right. Triangles denote arbitrary parts of the graph, which may 
contain arrow to other nodes. To make sure you don’t think we are working with trees, we show one directed arrow 
from a node that gives a cycle in the graph.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The graph on the right is the same graph but with an extra “virtual node” vroot, which will be used to help 

terminate the algorithm. We use vroot = -1. Node -1 does not exist, of course, and the algorithm does not 
reference it. We also show a path (vroot, root, b1, b2, p), which illustrates a typical state of execution 
of depth-first search. Here is part of the invariant of our algorithm: 

P0:  We stipulate that m[vroot] = 2 (we can make it anything we wish, since it is virtual). 
P1:  For all nodes i, m[i] =  number of times node i has been visited. 
P2:  There is a path P: (vroot, root, …, p). P starts at vroot and has root as its second node (if p 

≠ vroot). We state properties of path P: 
(1) 0 ≤ m[p] ≤ 2. 

       (2) For all nodes i on P, except p: (1) 1 ≤ m[i] ≤ 2. 
(3) if m[i] = 1, i’s successor on path P is l[i]; otherwise, it is r[i]. 

P3: All unmarked nodes (with m field 0) of the graph reachable from vroot are reachable along a completely 
unmarked path from at least one node i on path P, as follows: 

 from node p if m[p] = 0  or 
 from some r[i], if m[i] = 1 
P4:  For nodes i not on path P, m[i] = 0 or m[i] = 3. 

Maintaining path P without using extra space 
In the recursive depth-first search algorithm, the frames for the 

recursive calls that are not yet complete contain information about the 
nodes on path P, and this takes space.  

Look at the figure in the upper right, above. Node p is being 
processed next. Suppose we maintain a single variable q to contain 
p’s predecessor on path P. Then, field l[q] is not needed, since it 
can be filled in at any time: we know that l[q] is supposed to 
contain p. Therefore, we can put something else in l[q], and we 
suggest putting q’s predecessor on path P there. And so it goes. For 
each node i (say) on path P, its backpointer Bi is the index of its 
predecessor on P. 

This requires changing the graph as the depth-first search 
proceeds. This is the clever idea of Schorr-Waite and Deutsch. But 
they were not able to present it clearly and simply. To present the idea 
clearly, we need some notation. For each node i of the graph: 

p 

root vroot 

root 

b1 

b2 

vroot 

root 

 

 

p 

q 
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• Li is the value originally in l[i], 
• Ri is the value originally in r[i], 
• Bi is i’s predecessor on path P, if i is on path P (and if i is not vroot). 

So, for nodes on path P, three values must be maintained. The following table describes what is in each node i, 
depending on the value of m[i]. The table also shows what is in variable q, which contains one of the three values 
for node p. Note that when m[i] is 0 or 3, l[i] and r[i] contain their initial values. So, if path P consists only 
of vroot, the graph links contain their initial values. 

 
m[i] l[i] r[i] q 
0 Li Ri Bp 
1 Ri Bi Lp 
2 Bi Li Rp 
3 Li Ri  

 
The table has one strange thing. Suppose m[i] = 1. When asked what value should go in l[i] and r[i], 

practically everyone suggests l[i] = Bi and r[i] = Ri. When developing the iterative algorithm, 
recognizing that there is a choice, I tried both choices. The choice used in the table ends up yielding a simpler 
algorithm, one with less case analysis. The moral of the story is that, when faced with a choice, don’t blindly take 
the “obvious” one but investigate all choices and see which is best. 

The algorithm then takes this form: 

p:= root; q:= vroot; 
// invariant: P0, P1, P2, P3, P4, and the table 
while p ≠ vroot { 
 // Visit node p once 
} 

You can easily see that the invariant is true initially and that, upon termination, when the invariant is true and p 
= vroot, that the result holds: the mark fields of all nodes reachable from root contain 3. So, it remains to 
determine how to make progress in the repetend and how to keep the invariant true while making progress. 

Making progress is easy: add 1 to m[p. How the invariant is maintained depends on node p, after 1 is added to 
m[p]. 

1. Case m[p] = 3. This is the third visit to node p. From invariant P3, all unmarked nodes are reachable 
along an unmarked path from some node other than p or its two successors. So, p should be removed 
from path P, and its backpointer Bp should become the new node p. Also, the values of l[p], r[p], 
and q have to be changed because 1 was added to m[p]. Handled by the then-part of the conditional 
statement below. 

2. Case m[p] = 1 and m[Lp] = 0. This is the first visit to node p, and its left successor Lp is 
unmarked. Lp should be appended to path p. Also, the values of l[p], r[p], and q have to be changed 
because 1 was added to m[p]. Handled by the then-part of the conditional statement below. 

3. Case m[p] = 1 and m[Lp] ≠ 0. This is the first visit to node p, and its left successor Lp is either 
completely marked or is on path P. So, there is nothing to do with p’s left successor. However, the 
values of l[p], r[p], and q have to be changed because 1 was added to m[p]. Handled by the else-
part of the conditional statement below. 

4. Case m[p] = 2 and m[Rp] = 0. This is the second visit to node p, and its right successor Rp is 
unmarked. Rp should be appended to path p. Also, the values of l[p], r[p], and q have to be changed 
because 1 was added to m[p]. Handled by the then-part of the conditional statement below. 

5. Case m[p] = 2 and m[Rp] ≠ 0. This is the second visit to node p, and its right successor Rp is either 
completely marked or is on path P. So, there is nothing to do with p’s right successor. However, the 
values of l[p], r[p], and q have to be changed because 1 was added to m[p]. Handled by the else-
part of the conditional statement below. 

The algorithm is given on the next page. A number of choices led to the extreme simplicity of this algorithm. 

• The decision to represent null, or the absence of a successor, by node 0. 
• The decision on where to place Li, Ri, and Bi, making them rotate through l[i] and r[i]. 
• The decision to have a mark field be a value in 0..3 and to have its value be the number of times the node 

has been visited. Instead, most implementations use two bits, 1 is to be changed from 0 to 1 during the 
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marking phase and the other helps maintain knowledge of whether the left or the right successor of a node 
on path P is being processed. If you want to use this scheme with our algorithm, just change how the 
integers 0..3 are represented in two bits: Let 0 be 00, 1 be 10, 2 be 11, and 3 be 01. Then, the second bit is 
the mark bit. 

• The observation that the recursive algorithm “visits” each node three times and the decision to write a 
single loop, each iteration of which has a distinct purpose: visit one node once. 

• The introduction of virtual node vroot = –1, to provide a simple termination mechanism. 
• Extreme care in writing down the invariant of the algorithm, in logically disjoint pieces. 
• Use of the multiple assignment x1, x2, x3, …:= e1, e2, e3, … . 

p:= root; q:= vroot; 
// invariant: P0, P1, P2, P3, P4, and the table 
while p ≠ vroot { 
   // Visit node p once 
   m[p]:= m[p] + 1; 

   if m[p] = 3  or  m[l[p]] = 0 
   then p, l[p], r[p], q:= l[p], r[p], q, p 
   else l[p], r[p], q:= r[p], q, l[p] 
} 

 
Here is a precise calculation of the work involved in this marking algorithm. Suppose the reachable part of the 

graph has n nodes. Since each node is visited 3 times, there are 3n loop iterations. How many four-way 
permutations are made? Well, m[p] becomes 3 exactly once, and if a successor to node p is found to have a zero 
mark field, it is made nonzero on the next iteration. So, in total, there are 2n 4-way permutations. This means that 
there are n 3-way permutations. What could be simpler? 

Below, I show one program taken off the web. It is for some course at some university, and the text around the 
program says that it is based on chapter 4 of Jones and Lins. I do not know that book. However, you can find on the 
web lots of presentations and proofs of the graph-marking algorithm that use the ideas mentioned above. 

 
// assume all mark bits and all flag bits are 0 
procedure mark(R): 
 current= R; 
 prev= null; 
 while true do 
  // follow left pointers 
  while current != null && current->markBit == 0 do 
   current->markBit = 1; 
   if current refers to a non-atomic object then 
      next= current->left; current->left= prev; 
      prev= current; current= next; 
    // end of while current 
  // retreat 
  while prev != null && prev->flagBit == 1 do 
   prev->flagBit= 0; next= prev->right; 
   prev->right= current; current= prev; 
   prev= next; 
  // end of while previous 
  if prev == null then 
      return; 
  // switch to right subgraph 
  prev->flagBit= 1; 
  next= prev->left; 
  prev->left= current; 
  current= prev->right; 
  prev->right= next; 
 // end of while true 
 


