
Programming	Methodology	and	the	Semantics	of	Programs													July	2016	
David	Gries	

My part of this summer course on programming methodology and the semantics of programs is de-
signed to introduce you to semantics for programming languages that give insight into methodologies for
the practical development of programs (or algorithms).

Visit this website for course materials: http://www.cs.cornell.edu/gries/July2016/

You will learn about calculational logic.

You will see Sir Tony Hoare’s axiomatic basis for computer programs, as described in a paper pub-
lished in 1969. It gives a definition of a programming language in terms of how to prove programs correct,
not in terms of how to execute programs.

You will then see Edsger Dijkstra’s weakest precondition definition of a programming language, which
gives us insight into how to develop a program and its proof hand-in-hand, with the proof ideas leading the
way. These ideas were published in about 1976.

Both of these definitions will be very formal, and you will learn that programs (or algorithms) can be
formally developed —even “calculated”. Learning and practicing these ideas will change how you think
about developing programs. You will become much more efficient and accurate programmers, because you
will use a methodology when developing programs. You will, no doubt, do lots of development informally,
but it will work because it will be based on formalisms that you will have learned and mastered.

Below, we give you several programming problems. We suggest that you try to solve them any way you
can, relying on your own skills at the moment and not just doing what someone else shows you. The idea is
to have a benchmark; something that shows you where your programming skills are now, so you can com-
pare them to what you can do a week or two from now.

Write the algorithms in any language you want. Try to argue why they are correct, because any profes-
sional programmer must convince others that their work is good.

1. Table of cubes. Write an algorithm that, given n ≥ 0, creates a table of cubes: 0
3
, 1

3
, 2

3
, …(n-1)

3
. More

formally, store values in b[0..n-1} to truthify the following postcondition. How fast is your algorithm?

 (forall i: 0 ≤ i < n: b[i] = i
3
)

Restriction: Do not use exponentiation or multiplication!

2. Saddleback search. Given is a 2-dimensional integer array
b[0..m-1, 0..n-1], each row and column of which is in ascending order (see
example to the right). It is guaranteed that a value x is in b. Write an algo-
rithm to find one place where x occurs (there may be more than one). A
row-major search finds x in worst-case time m*n. Can we do better? How
fast is your algorithm?

Example. For x = 6, there are three possible solutions for the array to the right above: position [0, 3], posi-
tion [0, 4], and position [2, 3].

3. Binary search. Assume that integer array segment b[0..n-1] is sorted in ascending order (although it is
not necessary, as we will show you later). Assume that virtual array element b[-1] = -∞ and b[n] = ∞ The
algorithm can’t reference these virtual elements; they are there only to help us describe the algorithm. Write
an algorithm to find an integer k that satisfies the following postcondition for given x. How fast is your
algorithm? Is it a binary search for x?

 b[k] <= x < b[k+1]

4. Function fusc. Consider function f defined below. Write an algorithm to calculate f(n), for n >= 0. How
fast is your function?

 f(0) = 0 f(1) = 1
 f(2n) = f(n) for 0 < n
 f(2n+1) = f(n) + f(n+1) for 0 < n

2 3 5 6 6
2 4 5 7 8
5 5 6 8 8
5 7 7 8 9

0
1
2
3

b 0 1 2 3 4

Programming	Methodology	and	the	Semantics	of	Programs													July	2016	
David	Gries	

About David Gries
It may help you to know something about your

instructor for the first part of this course. I was
born and raised in New York City —the borough
of Queens. I majored in mathematics at Queens
College, where my father was a professor of the
classics —he taught Latin, Greek, Greek Mytholo-
gy, French, and German.

I took only one computer science course, as a
senior in college, in 1959, 57 years ago. We wrote
programs in the assembly language of a fake com-
puter. We wrote subroutines to calculate sines, co-
sines, things like that. We couldn’t run them be-
cause we the college didn’t have a computer.

Upon graduation, I got a job as a mathemati-
cian-programmer, as a civilian, for the U.S. Naval
Weapons Laboratory, in Dahlgren, Virginia. They
taught us Fortran in one week. I spent a great deal
of time programming in the assembly language of
the IBM 7090 computer. Most programmers were
writing programs to handle the first weather satel-
lite, to calculate ballistics tables, things like that.
All numerical. People did not think of doing data
processing on the computer much at that point.

In 1962, my wife, Elaine, who I met in Dahl-
gren, and I went to graduate school at the Univer-
sity of Illinois, she in philosophy and me in math. I
had a research assistantship, which was to help
two Germans write one of the first Algol 60 com-
pilers, for the IBM 7090 computer. They designed
the compiler; I was the lead programmer.

After a year, we went with them to Munich,
Germany, where I finished the compiler and also
got my PhD, in math, in June 1966. It was in nu-
merical analysis—theory of norms.

Computer Science Departments were just start-
ing then, and my Professor, F.L. Bauer, wrote the
Chair of the Department a letter (there was no
email), telling him to take me as an assistant pro-
fessor. So I got my first academic position without
an interview! Doesn’t happen these days!

My research was in compiler writing, and I
ended up writing the very first text on compiler
writing, Compiler Construction for Digital Com-

puters, in 1971. But I also got interested in the
problems of programming, inspired by the first
NATO Conference on Software Engineering in
1968 in Garmisch, Germany, where I met many
famous people. I got to know Edsger Dijkstra, To-
ny Hoare, and others, and worked with them
throughout my life. So, most of my research has
been in programming methodology, semantics of
programs, logics —anything that could help me
understand programming and how to teach it.

In 1969, I moved from Stanford to the CS De-
partment at Cornell, where I have been ever since
except for sabbaticals and leaves at places like
Munich, Germany; Oxford, England; Austin, Tex-
as; and Athens, Georgia.

When I got my PhD in 1966, I told my father
that I would never be an administrator, which he
was at the time. Research and teaching were too
important. But as we get older, we change our
views, our perspectives. Here is something to re-
member: Never say never.

I was Chair of the CS Department for 5 years
in the 1980s, and from 2003 to 2011 I was associ-
ate dean for undergrad programs in Cornell’s Col-
lege of Engineering. I “retired” in 2011, but I still
teach because I like it and because our course en-
rollments are so high. I also served as Chair of the
Computing Research Association in the late
1980’s, when it changed from a small group of
computer science chairs to a real organization that
served the interests of computing research. I am
proud of these contributions to the CRA.

Computing wasn’t my whole life. I have a wife
and twins (who are now 47 years old!). Son Paul
teaches CS at the University of Toronto —we
wrote a book together. Daughter Susan works for
the State of Oregon, dealing with environmental
and efficiency issues.

I used to play sports —American softball,
bowling, basketball, golf, volleyball, etc. But as
one gets older, the body doesn’t respond the same
way and one gives up these sports. Music has al-
ways been exciting for me. I used to play the pi-
ano, and my wife and I still sing in the Ithaca
Community Multicultural Chorus. You can see a
video of a song I wrote when a dean retired:
www.youtube.com/watch?v=R-6MX7A611k

I first went to China in 1981. I taught the Sci-
ence of Programming at Fudan University, Shang-
hai, for 3 weeks. Just what I am teaching you in
this summer course. I have been back to China 4
or 5 times since then.

Elaine	
and	
David	
1964	

